

The PASIPHAE optopolarimetric survey: capabilities, timeline, and science potential

Konstantinos Tassis

What is PASIPHAE?

Polar-Areas Stellar Imaging in Polarization High Accuracy Experiment

The PASIPHAE survey

- ➢ Will measure polarization down to 0.3% at 3σ for all stars with Rmag ≤ 16.5
- Survey will run concurrently in north (Skinakas 1.3m telescope) and south (South African Astronomical Observatory 1m telescope)
 over 4 years (2019-2022)

- > Will cover the sky at $|b| \ge 50^{\circ}$ over 9,000 sqdeg
- > Will deliver over 10⁶ confident polarization measurements

Who is PASIPHAE?

The PASIPHAE Collaboration

Our Sponsors $i\Sigma N f$ stavros niarchos foundation

Why?

Credit: Hu & White 2004 SciAm

Planck's Map

CMB Power Spectrum

CMB Polarization

E-mode Polarization

CMB Polarization

BICEP2

BICEP2

Interstellar Dust in the Galaxy

Interstellar Dust Emits Polarized Light

BICEP2 + Planck

Interstellar dust can**not** be avoided, **no** discovery yet... but maybe something there?

Foregrounds

Planck 2015 X

An Additional Hurdle: 3-d Structure of Dust

Tassis & Pavlidou 2015

Multiple clouds along LOS induce *frequency dependence* of polarization

Clouds of different T may *dominate emission* at different frequencies

Extreme case: cloud 1 dominates at f₁ cloud 2 dominates at f₂

3D Effects Important

7 -

Planck L 2016

Optopolarimetry of Starlight

Dust absorption – induced polarization of starlight:

Common origin with polarized dust emission

Unique handle on 3-d structure of foreground dust & B-field

Magnetic Tomography of Galactic Dust

Stars at different distances act as lampposts only affected by dust and B-field ahead

Will we Know Enough Stellar Distances?

YES! -- Gaia

Distances for a billion stars

10% out to 10kpc

Is Starlight Polarized Enough at High |b|?

sky and measure starlight polarization with RoboPol

Is Starlight Polarized Enough at High |b|?

24

How?

PASIPHAE's WALOPs: Innovative Design

For each point source:

- Split light in 4 linear polarization states differing by 22.5°.
- Project each state in a different CCD
- Combine to obtain Stokes Parameters
- Technology successfully tested with RoboPol, expanded to wide FoV

RoboPol

RoboPol polarimeter used successfully at Skinakas since 2013 for blazar monitroring and interstelalr medium mapping

Actual RoboPol Image

Relevance to high energy polarimetry?

Survey Mode

PASIPHAE will identify high optical polarization point sources

Previously Unknown High Energy Systems Candidate Optical Counterparts For *Fermi* Unidentified Sources

Current Opto-Polarimetric State of the Art at High |b|?

PASIPHAE's Improvement of the State of the Art

PASIPHAE will increase the # of starlight polarizations at high Galactic latitudes a 1000-fold!

Blazars Stand Out on Polarization Maps

32

Thank you