

The nature of radiative processes in Gamma-Ray Bursts

Lara Nava — INAF/OABrera & INAF/OATrieste

Palaiseau - April 12th, 2017

OUTLINE

- Observations of prompt and afterglow emission in GRBs
- Standard model: open issues and problems
- Polarization of prompt and afterglow radiation: the theory
- Polarization measurements of prompt and afterglow radiation
- ✤ GRBs @ MeV

EMISSION ENERGY RANGE		DURATION	
• Prompt	keV-MeV	0.1-10 ³ s	

EMISSION	ENERGY RANGE	DURATION
Prompt	keV-MeV	0.1-10 ³ s
 Afterglow 	radio to soft X-rays	days, weeks,

EMISSION	ENERGY RANGE	DURATION
Prompt	keV-MeV	$0.1 - 10^3 s$
► Afterglow	radio to soft X-rays	days, weeks,

EMISSION	ENERGY RANGE	DURATION
Prompt	keV-MeV	$0.1 - 10^3 s$
 Afterglow 	radio to soft X-rays	days, weeks,
High Energy	0.1-100 GeV	1 - 10 ⁴ s

The basic picture: the standard model

EMISSION
Prompt
Afterglow
High Energy

ENERGY RANGE

keV-MeV radio to soft X-rays 0.1-100 GeV **DURATION** 0.1-10³ s days, weeks, ... 1 - 10⁴ s

= unknown physics/quantities that can be constrained with further observations				
	Dissipation mechanism	Radiation process(es)		
Prompt	? Internal Shocks?? Magnetic reconnection?	? Synchrotron?? Inverse Compton?? Thermal contribution?		
Afterglow	✓external shocks	 synchrotron contribution from reverse shock? 		
High- Energy	same as prompt <pre> </pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <th>same as prompt (+SSC)</th></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre>	same as prompt (+SSC)		

Polarization of prompt and afterglow radiation: theory

Theoretical predictions

- Basic synchrotron theory
- + B configuration (Jet? Shocks?)
- + relativistic motion of radiating matter (beaming)
- + curvature of the emitting surface
- + conical geometry of the ejecta
- + line of sight

Non-relativistic case

B

Relativistic case: synchrotron radiation

Relativistic case: synchrotron radiation

Relativistic case: synchrotron radiation

Synchrotron

Polarization of synchrotron radiation

energy distribution of radiating e-

photon spectrum

Rybicki & Lightman, 1986

Spherical emitting surface

Relativistic motion: beaming

H

Relativistic motion: beaming

Jetted geometry

 $heta_{jet}$

1/Г

Jet seen off-axis

Gjet

1/Г

Jet seen off-axis

Gjet

1/Г

 $\theta_{\rm j} = 1/\Gamma$ 0-0.35/ γ 0.61-0.67

Random B (in the plane of the shock)

Linear

θj >> 1/Γ

 $\theta_j = 1/\Gamma$

0

0 - 0.1

General expectations: Prompt vs Afterglow

Prompt

Uniform B (relevant B is from the jet — shocks are adding a tangled component)

High level of polarization

Forward shock: tangled B (relevant B is the one generated at the shock)

- Reverse shock: ordered B (jet)

Afterglow

- *Forward shock*: low level of polarization *Reverse shock*: higher level of
 - polarization

Afterglow: temporal evolution

Different temporal evolutions of П and Р.А. are predicted in different models: *Random field* + *ordered component* (Granot & Konigl 2003) *Structured jets* (Rossi et al. 2004)

Afterglow: temporal evolution

Different temporal evolutions of П and Р.А. are predicted in different models: *Random field* + *ordered component* (Granot & Konigl 2003) *Structured jets* (Rossi et al. 2004)

Afterglow: temporal evolution

Different temporal evolutions of П and Р.А. are predicted in different models: *Random field* + *ordered component* (Granot & Konigl 2003) *Structured jets* (Rossi et al. 2004)

Polarization of prompt and afterglow radiation: measurements

PROMPT – observations

Adapted from Covino & Götz, 2016

GRB name	Polarization	Peak energy [keV]	Fluence [erg cm	Energy range	Redshift	Instrument
021206	80+-20% [compatible with 0]		1.6x10	0.15-2 MeV		RHESSI
930131	>35%					BATSE
960924	>50%					BATSE
041219	65+-26%	201	2.5X10	20-200 keV	0.31	IBIS
061122	>60%	188	2.0X10	20-200 keV	1.33	IBIS
100826	27+-11%	606	3.0X10	20keV-10MeV	0.71-6.84	GAP
110301A	70+-22%	107	3.6X10	10keV-1MeV	0.21-1.09	GAP
110721	84	393	3.5X10	10keV-1MeV	0.45-3.12	GAP
140206	>48%	98	2.0X10	15-350 keV	2.739	IBIS

¹ Pol dependency of differential cross section for Compton scattering

² On board CGRO. Method: Scattering of gamma-ray photons by the Earth atmosphere
 ³ Imager on board INTEGRAL, used as Compton Polarimeter
 ⁴ Spectrometer on board INTEGRAL. Method: Compton scattering
 ⁵ GRB Polarimeter on board IKAROS. Method: anisotropy of differential of Klein-Nishina cross section

PROMPT - 041219A (from Götz et al. 2009)

differential cross section

$$\frac{d\sigma}{d\Omega} = \frac{r_0^2}{2} \left(\frac{E'}{E_0}\right)^2 \left(\frac{E'}{E_0} + \frac{E_0}{E'} - 2\sin^2\theta\cos^2\phi\right)$$

angle distribution

$$V(\phi) = S[1 + a_0 \cos 2(\phi - \phi_0)]$$

Polarization Results for the Different Time Intervals

Name	П	P.A.	
	%	(deg)	
First peak	<4		
Second peak	$43~\pm~25$	38 ± 16	
P6	22 ± 13	121 ± 17	
P8	65 ± 26	88 ± 12	
P9	61 ± 25	105 ± 18	
P28	$42~\pm~42$	106 ± 37	
P30	90 ± 36	54 ± 11	

shows evidence of temporal variation of polarization level Π and polarization angle (P.A.)

AFTERGLOW – observations (not complete)

Adapted from Covino & Götz, 2016

GRB name	Polarization	Time	Frequency Instrument		Comments
980329 980703	<21% <8%	20 days 7 days	radio VLA		
990123	<2.3%	18 hours	optical NOT		
990510	1.7+-0.2 %	18-21 hours	optical	VLT	later meas. consistent with no variability
990712	1-3%	10-35 hours	optical		3 epochs, possible variability. PA constant
991216	<2.7%		optical	VLT	
020813	2%	5-8 hours	VLT		No change in the PA before and after jet break
030329	0.3-2.5%	one month	opt. and radio VLT, NOT, VLBA		Strong variability of П and PA
090102	10%	3 minutes	optical	LT	reverse shock
091018	up to 3%	0.13-2.3 days	optical	VLT	Possible rotation of PA by 90 degrees

GRBs at MeV energies

MeV energy range: early time

Flux

MeV energy range: intermediate times

MeV energy range: intermediate times

MeV energy range: late time (>100s)

MeV range

E

Flux

Synchrotron from afterglow? Evolution?

MeV energy range: late time (>100s)

MeV range

MeV energy range: an example

MeV range

Conclusions (1)

Polarization measurements as complementary information on:

- jet composition
- jet structure
- magnetic field configuration
- geometry of the system
- particle acceleration
- radiative processes

Different models can predict similar polarization levels but different temporal evolution/variability of the polarization level and polarization angle. Measurements at different times are necessary to discriminate between different models

Conclusions (2)

MeV measurements can shed light on:

- cutoffs in the high-energy part of the prompt spectrum
- nature of prompt emission radiation mechanism
- transition from prompt to afterglow phase
- origin of long-lasting GeV radiation detected by the LAT and its temporal evolution
- early afterglow from forward shock