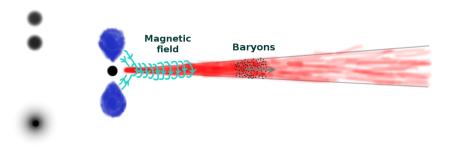
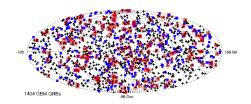
How polarization measurements will disentangle gamma-ray bursts models

Péter Veres

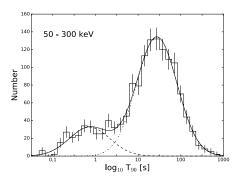

University of Alabama in Huntsville, CSPAR

collaborators: Colleen Wilson-Hodge, Rob Preece, Valerie Connaughton, Mark McConnell, Narayana Bhat

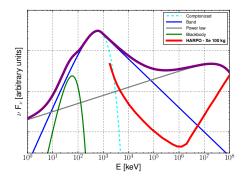

TPC-HARPO workshop April 12-14, 2017

Outline

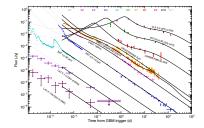
- GRB models [radiation mechanisms for GRBs]
- Polarization [history of prompt polarization]
- LEAP [proposed polarimeter for ISS]
- Consequences for TPC-HARPO [\geq MeV range, Compton models]



- Random directions on the sky $(\sim \text{few per week})$
- Short/long divide in duration
- Broad non-thermal spectrum emerging complex picture
- Afterglow visible for \sim week(s)
- Prompt: keV to \lesssim MeV, AG: radio to \lesssim TeV
- Deduce: compact object, $\Gamma > 100$, $\theta_{jet} \approx \text{few}^{\circ}$, $E_{iso} = 10^{51} - 10^{55} \text{ erg}$


$3^{\rm rd}$ GBM GRB catalog Bhat+16

- Random directions on the sky (~ few per week)
- Short/long divide in duration
- Broad non-thermal spectrum emerging complex picture
- Afterglow visible for \sim week(s)
- Prompt: keV to ≲ MeV, AG: radio to ≲TeV
- Deduce: compact object, $\Gamma > 100$, $\theta_{jet} \approx few$ °, $E_{iso} = 10^{51} - 10^{55} \text{ erg}$



 $3^{\rm rd}$ GBM GRB catalog Bhat+16

- Random directions on the sky (~ few per week)
- Short/long divide in duration
- Broad non-thermal spectrum emerging complex picture
- Afterglow visible for \sim week(s)
- Prompt: keV to ≲ MeV, AG: radio to ≲TeV
- Deduce: compact object, $\Gamma > 100$, $\theta_{jet} \approx \text{few}^{\circ}$, $E_{iso} = 10^{51} - 10^{55} \text{ erg}$

- Random directions on the sky (~ few per week)
- Short/long divide in duration
- Broad non-thermal spectrum emerging complex picture
- Afterglow visible for \sim week(s)
- Prompt: keV to \lesssim MeV, AG: radio to $\lesssim {\rm TeV}$
- Deduce: compact object, $\Gamma > 100$, $\theta_{\rm jet} \approx$ few °, $E_{\rm iso} = 10^{51} - 10^{55}$ erg

Perley+14

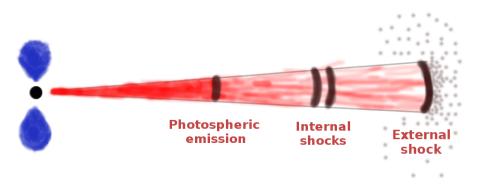
- Random directions on the sky (~ few per week)
- Short/long divide in duration
- Broad non-thermal spectrum emerging complex picture
- Afterglow visible for \sim week(s)
- Prompt: keV to \lesssim MeV, AG: radio to \lesssim TeV
- Deduce: compact object, $\Gamma > 100$, $\theta_{\rm jet} \approx {\rm few}^{\circ}$, $E_{\rm iso} = 10^{51} - 10^{55}$ erg

credit: NASA/Swift/deWilde

Scenarios for GRB prompt emission

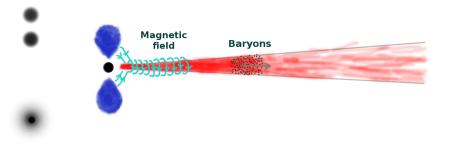
- Photospheric models (dissipative/non-dissipative)
 - Blackbody / shocks + synchrotron / geometry / $\tau \gg 1$ dissipation
- Internal shocks
 - Shocks + Synchrotron / Self-Compton / magnetic fields
- External shock (?)

Synchrotron / Self-Compton


Scenarios for GRB prompt emission

- Photospheric models (dissipative/non-dissipative)
 - Blackbody / shocks + synchrotron / geometry / $\tau \gg 1$ dissipation
- Internal shocks
 - Shocks + Synchrotron / Self-Compton / magnetic fields

Internal shocks


Scenarios for GRB prompt emission

- Photospheric models (dissipative/non-dissipative)
 - Blackbody / shocks + synchrotron / geometry / $\tau \gg 1$ dissipation
- Internal shocks
 - Shocks + Synchrotron / Self-Compton / magnetic fields
- External shock (?)
 - Synchrotron / Self-Compton

Motivation for polarimetric observations

- What carries the energy in GRB jets?
 - $ightarrow \mathsf{Baryons}$
 - $\rightarrow \text{Magnetic fields}$
- Polarized emission \rightarrow magnetic fields
- Advected from central engine, $B_{\perp} \propto R^{-1}$, $B_{\parallel} \propto R^{-2}$.
- BUT: geometry (mostly viewing angle) can also increase pol. degree \rightarrow Jet is viewed at the edge to within $\sim 1/\Gamma$

Prompt polarization history

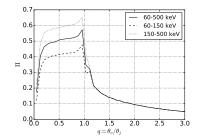
Pub			Energy		
Date	GRB	Instrument	(keV)	П	Refs
2004	GRB 021206	RHESSI	150 - 2000	80% ± 20%	Coburn & Boggs 2003
2004	GRB 021206	RHESSI	150 - 2000	< 4.1%	Rutlege & Fox 2003
2004	GRB 021206	RHESSI	150 - 2000	$41^{+57}_{-44}\%$	Wigger+04
2005	GRB 930131	CGRO/BATSE	20 - 1000	(35-100%)	Willis+05
2005	GRB 960924	CGRO/BATSE	20 - 1000	(50-100%)	Willis+05
2007	GRB 041219a	INTEGRAL/SPI	100 - 350	98% ± 33%	Kalemci+07
2007	GRB 041219a	INTEGRAL/SPI	100 - 350	$96\% \pm 40\%$	McGlynn+07
2009	GRB 041219a	INTEGRAL/IBIS	200 - 800	$43\% \pm 25\%$	Götz+09
2009	GRB 061122	INTEGRAL/SPI	100 - 1000	< 60%	McGlynn+09
2011	GRB 100826a	IKAROS/GAP	70 - 300	$\textbf{27\%} \pm \textbf{11\%}$	Yonetoku+11
2012	GRB 110301a	IKAROS/GAP	70 - 300	$70\% \pm 22\%$	Yonetoku+11
2012	GRB 110721a	IKAROS/GAP	70 - 300	$80\% \pm 22\%$	Yonetoku+11
2013	GRB 061122	INTEGRAL/IBIS	250 - 800	> 60%	Götz+13
2014	GRB 140206a	INTEGRAL/IBIS	200 - 800	> 48%	Götz+13
2016	GRB 151006a	Astrosat/CZTI	100 - 300	-	Rao+16

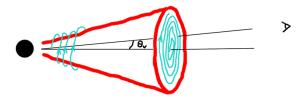
Table: GRB Polarization Measurements (from McConnell 2016)

GRB prompt emission likely polarized

- Outstanding issues:
 - \rightarrow PA change
 - \rightarrow Explain high Π
- Need: high confidence (low MDP) measurements

How to calculate polarization from a relativistic source?

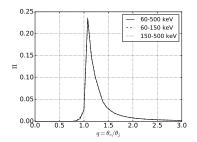

- Synchrotron $\Pi_0 = \frac{p+1}{p+7/3} = \frac{\alpha+1}{\alpha+5/3} \lesssim 0.8$ $N(\gamma_e) \propto \gamma_e^{-p}$ or $F_{\nu} \propto \nu^{-\alpha}$
- Compton scattering $\Pi_0 = \frac{1-\cos^2 \theta'}{1+\cos^2 \theta'} \lesssim 1$ θ' - scattering angle
- For optically thin sources e.g. Toma+09:

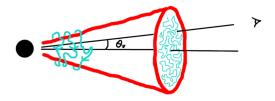

•
$$I_{\nu} = \frac{1+z}{D_{L}^{2}} \int d\phi \int d\mu \delta_{D}^{2} j'(\nu')$$

• $\left\{ \begin{array}{c} Q_{\nu} \\ U_{\nu} \end{array} \right\} = \frac{1+z}{D_{L}^{2}} \int d\phi \int d\mu \delta_{D}^{2} j'(\nu') \Pi_{0} \left\{ \begin{array}{c} \cos(2\chi) \\ \sin(2\chi) \end{array} \right\}$
 $\rightarrow j'(\nu')$ - spectral emissivity - carries the spectral shape
 $\rightarrow \Pi_{0}$ - local pol. degree, χ - local pol. angle

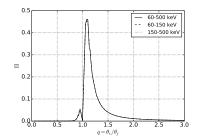
- Integrate for jet surface
- Jitter radiation (Mao+13)
- Dissipative photospheres
 - \rightarrow detailed radiative transfer (e.g. Lundman+16)

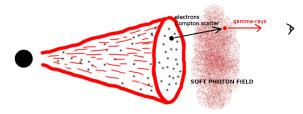
Models

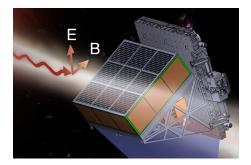

- Polarization affected by
 - ightarrow Geometric
 - \rightarrow Intrinsic effects
- Ordered B field (SO) (Granot+03)
- Random B field (SR) (Sari99)
- Compton upscatter (CD) (Lazzati+04)



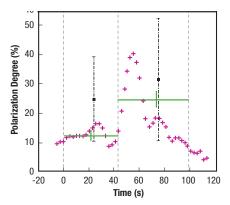
Models


- Polarization affected by
 - ightarrow Geometric
 - \rightarrow Intrinsic effects
- Ordered B field (SO) (Granot+03)
- Random B field (SR) (Sari99)
- Compton upscatter (CD) (Lazzati+04)

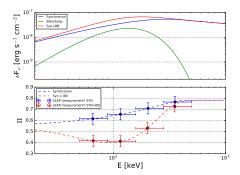



Models

- Polarization affected by
 - ightarrow Geometric
 - \rightarrow Intrinsic effects
- Ordered B field (SO) (Granot+03)
- Random B field (SR) (Sari99)
- Compton upscatter (CD) (Lazzati+04)

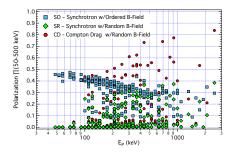


- LargE Area gamma-ray burst Polarimeter (LEAP)
- Proposed mission to ISS
- Polarimetry: 30-500 keV
- 30-40 GRB per year, MDP \lesssim 30%



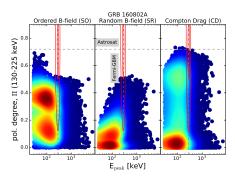
credit: LEAP team

- Consider a bright GRB
- Time-resolved polarization (ICMART, Deng+16)
- Band \rightarrow synchrotron origin
- Synchrotron or
 Synchrotron + blackbody
- LEAP can distinguish between the two cases

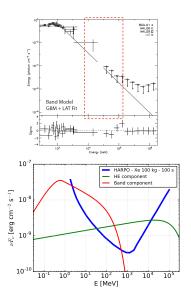


- Consider a bright GRB
- Time-resolved polarization (ICMART, Deng+16)
- $\bullet \ \mathsf{Band} \to \mathsf{synchrotron} \ \mathsf{origin}$
- Synchrotron or Synchrotron + blackbody
- LEAP can distinguish between the two cases

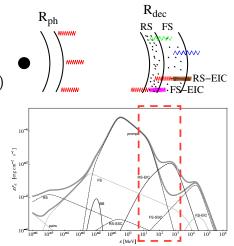
LEAP capabilities 2.


- Consider a set of GRBs with measured Π
- Measure peak energy
- Monte Carlo so it matches observations (e.g. BATSE, HETE2, GBM fluence)
- LEAP can distinguish between the three models

Toma+09, McConnell16

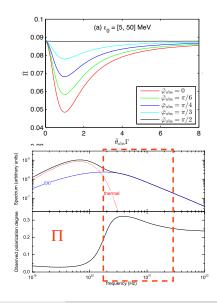

Find GRB model - probabilistic approach

- Which model is best?
- Observe $\Pi \pm \Delta \Pi$, $E_{\rm peak}$
- Astrosat GRB 160802A $\Pi = 0.72 \pm 0.22 \text{ (Rao+17, prelim.)}$ $E_{\text{peak}} = 282 \text{ keV (GBM)}$
- Viewing angle, opening angle, Lorentz factor - unknown/uncertain
- Simulate distr. for 3 models
- Integrate over uncertainties (red ellipses)
- SO : SR : CD = 0.31 : 0.14 : 0.55


GRBs above 10 MeV - TPC -HARPO

- Uncharted territory emergence of the afterglow?
- Extension of Band PL does not continue \gtrsim GeV. Spectral cutoff:
 - \rightarrow Pair production
 - $ightarrow \Gamma m_e c^2/(1+z) \sim 100$ MeV
- TPC-HARPO is well suited to observe this spectral regime

GRBs above 10 MeV - TPC -HARPO 2.


- Emerging new component
 - \rightarrow Synchrotron self-Compton (SSC)
 - \rightarrow External inverse Compton (EIC)
 - \rightarrow something else?
- Transition between Band or synchrotron and power law or Compton (Veres+12)

GRBs above 10 MeV - TPC -HARPO 3.

- Polarization signature

 → SSC low Π highly geometry dependent (Chang+14)
 → EIC moderate Π (Fan09)
- More detailed modeling needed
 → but see talk by Böttcher for
 blazars
- TPC HARPO will be able to constrain pol. for bright GRBs

- Interesting times for GRB polarization
- Upcoming MeV-GeV range prompt data exciting
- MeV-GeV polarimetry even more exciting

Thank you!