Welcome to our workshop

THANES FOR, TAKING THE TIME TO TRAVEL FROM NEAR. AND FAR TO B HERE WITH US

SPEAKERS: PLEASE UPLOAD YOUR TALK TO INDICO

YOU MUST BE LOGGED IN TO INDICO TO DO THIS

INSTRUCTIONS ARE PROVIDED ON THE WEBPAGE OF THE WORKSHOP
[F YOU HAVE ANY DIFFICULTY, PLEASE CONTACT ONE OF US
= [EIRDRE, DENIS, PHILIPPE OR oTEVE

Deirdre HORAN, TPC MeV Workshop, 12.04.2017
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Workshop MEV 2017

Coffee breaks

12-14 avril 2017 . . .
Ecole polytechnique - Amphi Marie Curie e will be set up just outside the
amphi
e no food / drinks are allowed inside
ampnhi

Lunch (Thursday) - provided

e Club Magnan

e we will walk there together

Lunch (Friday) - not provided

= |et us know if you want to have
lunch on campus

= 2 options:
e canteen (10€ - must buy "ticket")”
e café (various options)

Dinner

® Wwe have not arranged a workshop
dinner

e Wwe are available to help with
reservations/recommending restaurants
- jJust come and see one of us

*https://www.polytechnique.edu/en/on-campus-dining-and-services


https://www.polytechnique.edu/en/on-campus-dining-and-services
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A PROTOYPE
BALLOON DETECTOR,

Self-triggering TPC telescope
for gamma-rays

Deirdre HORAN, TPC MeV Workshop, 12.04.2017



OUTLINE

SCIENTIFIC MOTIVATION

- BRIEF INTRODUCTION AND HISTORY

ST3G - APROTOTYPE DETECTOR

OUR PLAN

Deirdre HORAN, TPC MeV Workshop, 12.04.2017
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“using blazars to illustrate the gap since these are broadband emitters from radio all the way up to gamma rays
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MEV ENERGY
COVERAGE

HOW DO
oUPERMAGSIVE
BLACK HOLES
FORM?

oUPERNOVA
REMNANTS

WHERE DO
UHECRS GET
ACCELERATED?

PULSARS

GALACTIC

CENTRE

[S LORENTZ
[INVARIANCE
VIOLATED?

WE HOPE TO
FURTHER DEVELQOP
OUR SCIENTIFIC
IDEAS DURING
THIS WORKSHOP
.. THANKS TO YOU
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Space phase
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USE TPC TO MEASURE
POLARIGATION

Balloon phase
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KEY CHALLENGE:

= oELF TRIGGERING .. IN REAL TIME .. IN SPACE
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SIMULATION OF EVENT IN ST3G
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SIMULATION OF THE CRAB NEBULA

10

exact

FROM DOCUMENT CIRCULATED BY DENIS

approximate

107" 1

CRAB (INDEX: 2; FLUX:1 X103 MEV CM% S7)
1 WEEK EFFECTIVE EXPOSURE WITH ST3G @35 KM (KIRUNE)
10.0 SIGMA FOR ANGULAR CUT OF 0.3 DEG

10

Angle (deg)
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WE WANT TO FLY ST3G ON A BALLOON TO:
CALIBRATE THE INSTRUMENT WITH ACTUAL COSMIC DATA
UNDERSTAND THE BACKGROUND
RUN THE TRIGGER IN ITS REAL ENVIRONMENT

= MEASURE THE COMBINED SENSITIVITY OF THE TRIGGER/
DETECTOR oYoTEM
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WE PLAN TO SUBMIT A PROPOSALTO
CONSTRUCT THE DEMONSTRATOR OF ST3G

WE WILL NOT REQUEST A BALLOON FLIGHT AT
THIS POINT



o130

CNES APPEL D'OFFRE 2017: DEADLINE - 21 APRIL

WE PLAN TO SUBMIT A PROPOSALTO
CONSTRUCT THE DEMONSTRATOR OF ST3G

WE WILL NOT REQUEST A BALLOON FLIGHT AT
THIS POINT

THANKS FOR YOUR ATTENTION

Deirdre HORAN, TPC MeV Workshop, 12.04.2017



o130

CNES APPEL D'OFFRE 2017: DEADLINE - 21 APRIL

WE PLAN TO SUBMIT A PROPOSALTO
CONSTRUCT THE DEMONSTRATOR OF ST3G

WE WILL NOT REQUEST A BALLOON FLIGHT AT
THIS POINT

THANKS FOR YOUR ATTENTION

Deirdre HORAN, TPC MeV Workshop, 12.04.2017



HTTPS:/WWW.UNIVERSETODAY COM/50094/BLAZARS/
HTTPS:/WWW BU EDU/BLAZARS/RESEARCH HTML
HTTPS:/FUTURISM COM/PULSARS-WHAT-ARE-THEY-WHY-DO-THEY-SPIN-S0-FAST-2/
HTTPS:/EN WIKIPEDIA ORG/WIKI/PULSAR
HTTPS:/SITES GOOGLE.COM/SITE/VISALACROSSTHEGALAXY/THE-GALACTIC-CENTRE
HTTPS:/WWW NASA GOV/MISSION_PAGES/SWIFT/BURSTS/SUPERGIANT-STARS HTML
HTTP./INSPIREHEPNET/RECORD/L561054
HTTPS:/WWW MPI-HD MPG DE/ASTROPHYSIK/HEA/RESEARCH/RESEARCH HTML
HTTPS:/EN WIKIPEDIA ORG/WIKI/DARK_MATTER
HTTPS:/ENWIKIPEDIA ORG/WIKI/SUPERNOVA_REMNANT
HTTPS:/WWW NASA GOV/MISSION_PAGES/GLAST/NEWS/GAMMA-RAY-DRAGONS HTML
HTTP.JEARTHSKY ORG/SPACE/MIND-BOGGLING-FERMI-BUBBLES-PROBED-VIA-QUASAR-LIGHT

Deirdre HORAN, TPC MeV Workshop, 12.04.2017


https://www.bu.edu/blazars/research.html
https://futurism.com/pulsars-what-are-they-why-do-they-spin-so-fast-2/
https://en.wikipedia.org/wiki/Pulsar
https://sites.google.com/site/visalacrossthegalaxy/the-galactic-centre
https://www.nasa.gov/mission_pages/swift/bursts/supergiant-stars.html
http://inspirehep.net/record/1381533
https://www.mpi-hd.mpg.de/astrophysik/HEA/research/research.html
https://en.wikipedia.org/wiki/Dark_matter
https://en.wikipedia.org/wiki/Supernova_remnant
https://www.nasa.gov/mission_pages/GLAST/news/gamma-ray-dragons.html
http://earthsky.org/space/mind-boggling-fermi-bubbles-probed-via-quasar-light
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s Lorentz Invariance violated”

Lorentz invariance is the fundamental symmetry of Einstein’s theory of relativity

I.e. the laws of physics remain the same for all observers that
are moving with respect to each other at uniform velocity

* Lorentz invariance has been tested to a great level of detail but
there exist grand unified theories (e.g. the Standard-Model
Extension) where gravity is combined with the three other
fundamental forces which allow for the breaking of Lorentz
symmetry at the Planck scale

* |.e. at very high energies - unattainable experimentally
(1.22x1013GeV)

* But minute deviations from Lorentz invariance might still be
present at much lower energies
* these deviations can accumulate over large distances
* this makes astrophysical measurements the most sensitive
tests of Lorentz symmetry



s Lorentz Invariance violated”

In the photon sector violations of Lorentz symmetry include
vacuum dispersion and vacuum birefringence

Vacuum dispersion Vacuum birefringence
* if the speed of light in a vacuum is e when the rotation symmetry of the
energy (frequency)-dependant vacuum is broken, light still has two
polarisation components but they
* photons of different energies travel at different speeds
emitted from a high-z source will
arrive on earth at different times e as aresult, the net polarisation of

the light changes as it propagates
* Fermi LAT observations of, e.qg.,

distant GRBs has placed limits on e change in polarisation depends on
this effect the energy (frequency) of the light
Ot o« OVL OP =« WOVL

sensitivity gain of 1/w compared to

time-of-flight measurements
B

\ sensitivity depends on L ]
T TIITIITITTTIITTITTITTITTE  ———




s Lorentz Invariance violated”

In the photon sector violations of Lorentz symmetry include
vacuum dispersion and vacuum birefringence

Vacuum birefringence

* light is shown propagating from a distant
galaxy to the Earth

e the instantaneous electric-field vector in a
plane transverse to direction of motion is
shown as a black arrow

* the polarisation of the light is determined
by 2 quantities:
* the orientation of the ellipse (w)
* itsshape (E1 and E2)

* the breaking of rotation symmetry causes
the polarisation and hence the orientation
and shape of the ellipse to change as the
light travels through space

http://www.phvsics.indiana. ~K lec/mov.him|#4


http://www.physics.indiana.edu/~kostelec/mov.html#4
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Key challenge: self-triggering ... in real time ... in space




Particles (cm-2 s-1 MeV-1)

e-p L T o

lel = 1
120 |2 10-! 35 km a.s.l.
le-1 > =
le-2 7] -2 L
1e-3 ol 10 2 E-
g F
le4 8 10 E
1e5 >SS E
les b 107
1e-7 E _
1e8 = 10
le-9 = 6
le-10 § 10 /
le-11 QL 107 .A.A...n NPT VAT R
1e12 2 10" 1 10 100 100 10*  10°
2e-1 1e0 2e0 lel 2el le2 2e2 1e3 2e3 led 2e4 1e5 2e5 Kinetic Energy (MeV)
Energy (MeV)
— Up — Down —— Omni
Data recorded at Kiruna (Northern Sweden) 20.01.1996 a.s.. = above sea level

(Quotid Atmospheric Radiation Model (QARM))



