Welcome to our workshop

THANKS FOR TAKING THE TIME TO TRAVEL FROM NEAR AND FAR TO BE HERE WITH US

SPEAKERS: PLEASE UPLOAD YOUR TALK TO INDICO

- YOU MUST BE LOGGED IN TO INDICO TO DO THIS
- INSTRUCTIONS ARE PROVIDED ON THE WEBPAGE OF THE WORKSHOP
- IF YOU HAVE ANY DIFFICULTY, PLEASE CONTACT ONE OF US
 - → DEIRDRE, DENIS, PHILIPPE OR STEVE

Coffee breaks

- will be set up just outside the amphi
- no food / drinks are allowed inside amphi

Lunch (Thursday) - provided

- Club Magnan
- we will walk there together

Lunch (Friday) - not provided

- Iet us know if you want to have lunch on campus
- ➡ 2 options:
 - canteen (10€ must buy "ticket")*
 - café (various options)

Dinner

 we have not arranged a workshop dinner

- we are available to help with reservations/recommending restaurants
 - just come and see one of us

*https://www.polytechnique.edu/en/on-campus-dining-and-services

A PROTOYPE BALLOON DETECTOR

Self-triggering TPC telescope for gamma-rays

OUTLINE

- SCIENTIFIC MOTIVATION
- BRIEF INTRODUCTION AND HISTORY
- ST3G A PROTOTYPE DETECTOR
- OUR PLAN

Gamma-ray Astrophysics at MeV energies **MEV ENERGY** POLARIZATION **COVERAGE HIGH ANGULAR** RESOLUTION

Gamma-ray Astrophysics at MeV energies

Gamma-ray Astrophysics at MeV energies

Gamma-ray Astrophysics at MeV energies **MEV ENERGY** POLARIZATION WHERE DO **COVERAGE** HOW DO UHECRS GET IS LORENTZ SUPERMASSIVE ACCELERATED? **INVARIANCE** BLACK HOLES VIOLATED? FORM? **HIGH ANGULAR** RESOLUTION

Gamma-ray Astrophysics at MeV energies **MEV ENERGY** POLARIZATION WHERE DO **COVERAGE** HOW DO UHECRS GET IS LORENTZ SUPERMASSIVE ACCELERATED? **INVARIANCE** BLACK HOLES VIOLATED? FORM? GALACTIC SUPERNOVA REMNANTS CENTRE PULSARS **HIGH ANGULAR** RESOLUTION

Gamma-ray Astrophysics at MeV energies

2012	2013	2014	2015	2016	2017
	the Herma	atic ARgor	n POlarimete	er (2012 - 2	2017)

TPC

• TPC = CONVERTOR + TRACKER

Balloon phase ST3G

DEVELOP TRIGGER SYSTEM FOR TPC IN SPACE

develop scientific case

- balloon flight
- eventual space-based instrument
- perform simulations to develop trigger
 - design and build trigger system
 - test in lab
- build instrument for balloon flight
 - run trigger in "real" space environment
 - can we self-trigger a TPC efficiently?

Balloon phase ST3G

DEVELOP TRIGGER SYSTEM FOR TPC IN SPACE

develop scientific case

- balloon flight
- eventual space-based instrument
- perform simulations to develop trigger
 - design and build trigger system
 - test in lab
- build instrument for balloon flight
 - run trigger in "real" space environment
 - can we self-trigger a TPC efficiently?

WE WOULD LIKE TO BUILD A LARGER TEAM OF SCIENTISTS AND ENGINEERS FOR THIS BALLOON PHASE

Balloon phase ST3G

DEVELOP TRIGGER SYSTEM FOR TPC IN SPACE

develop scientific case

- balloon flight
- eventual space-based instrument
- perform simulations to develop trigger
 - design and build trigger system
 - test in lab
- build instrument for balloon flight
 - run trigger in "real" space environment
 - can we self-trigger a TPC efficiently?

WE WOULD LIKE TO BUILD A LARGER TEAM OF SCIENTISTS AND ENGINEERS FOR THIS BALLOON PHASE

KEY CHARACTERISTICS

- ENERGY: A FEW MEV GEV
- POLARISATION CAPABILITIES
- HIGH ANGULAR RESOLUTION

KEY CHARACTERISTICS

- ENERGY: A FEW MEV GEV*
- POLARISATION CAPABILITIES*
- HIGH ANGULAR RESOLUTION*

*WE WILL ONLY HAVE LIMITED CAPABILITIES DURING A BALLOON FLIGHT

KEY CHARACTERISTICS OF ULTIMATE INSTRUMENT

- ENERGY: A FEW MEV GEV :
- POLARISATION CAPABILITIES
- HIGH ANGULAR RESOLUTION
- MEV BLAZARS MEV DARK MATTER SOURCE GEOMETRY DISTINGUISH BETWEEN EMISSION MODELS LORENTZ INVARIANCE SEARCHES GALACTIC CENTRE SUPERNOVA OBSERVATIONS

GRBS - PEAK OF EMISSION

RADIO GALAXIES

- 64 MODULES :
 - 1 MODULE = HARPO
- 32 TPCS :
 - 2 MODULES WITH A COMMON CATHODE
- 2 BAR ARGON GAS
- READOUT CHIP ASTRE

- 64 MODULES :
 - 1 MODULE = HARPO
- 32 TPCS :
 - 2 MODULES WITH A COMMON CATHODE
- 2 BAR ARGON GAS
- READOUT CHIP ASTRE

- 64 MODULES :
 - 1 MODULE = HARPO
- 32 TPCS :
 - 2 MODULES WITH A COMMON CATHODE
- 2 BAR ARGON GAS
- READOUT CHIP ASTRE

- 64 MODULES* :
 - 1 MODULE = HARPO
- 32 TPCS :
 - 2 MODULES WITH A COMMON CATHODE
- 2 bar Argon gas
- READOUT CHIP ASTRE

single amplification plane double amplification plane cathode(s)

Note: * PLAN TO SWITCH TO 3X4X5 (60 MODULES) DUE TO THE PLATFORM THAT CNES PROPOSE (CARMEN)

CREDIT: MIKAËL FROTIN

Note: * PLAN TO SWITCH TO 3X4X5 (60 MODULES) DUE TO THE PLATFORM THAT CNES PROPOSE (CARMEN)

ANGULAR RESOLUTION

FROM DOCUMENT CIRCULATED BY DENIS

ANGULAR RESOLUTION

FROM DOCUMENT CIRCULATED BY DENIS

SEE DENIS

BERNARD'S

TALK

SENSITIVITY

5 SIGMA 3 YEARS 10 PHOTONS 90 DEG FROM GAL. PLANE 4 ENERGY BINS PER DECADE

FROM DOCUMENT CIRCULATED BY DENIS

KEY CHALLENGE:

➡ SELF TRIGGERING ... IN REAL TIME ... IN SPACE

A.S.L. = ABOVE SEA LEVEL

DATA RECORDED AT KIRUNA (NORTHERN SWEDEN) 20.01.1996 (QUOTID ATMOSPHERIC RADIATION MODEL (QARM))

A.S.L. = ABOVE SEA LEVEL

SIMULATION OF EVENT IN ST3G

- E	· · · · · · · · · · · · · · · · · · ·		
ite 🗖 🚽 🕹	- ite		F 1
_L .	L		
"F '	'E "	F "	E I
			- I
			E I
	· - · ·	-	
	L .		E
· · ·			
• <u> </u>	<u> </u>	<u> </u>	<u> </u>
		F	E
			E
		-	
			E
· - ·			
· F · · · · · · · · · · · · · · · · · ·	· · · ·	r ·	E
	. <u> </u>	 	<u>,</u>
12			'E I
	F -		F 1
- F · · ·			E
- E-			F
- 6	1	5	E
- -	· F · · ·	r -	E
. E	L .	E	E
· •	F .		E
······································			······
	1		
	- E	-	F 1
_E .	. E		E
- E	· E	E	r I
	. F	F	F 1
	·F	F	F 1
	L		E
"F '	F *	F "	F
		••••••••••••••••••••••••••••••••••••••	
	-	-	-
	T	E	E
F		F	F
E	-		E
	in i		

CREDIT: PHILIPPE GROS

SIMULATION OF THE CRAB NEBULA

- CRAB (INDEX: 2; FLUX:1 X10⁻³ MEV CM⁻² S⁻¹)
- 1 WEEK EFFECTIVE EXPOSURE WITH ST3G @35 KM (KIRUNE)
- 10.5 SIGMA FOR ANGULAR CUT OF 0.3 DEG

- WE WANT TO FLY **ST3G** ON A BALLOON TO:
 - CALIBRATE THE INSTRUMENT WITH ACTUAL COSMIC DATA
 - UNDERSTAND THE BACKGROUND
 - RUN THE TRIGGER IN ITS REAL ENVIRONMENT
 - ➡ MEASURE THE COMBINED SENSITIVITY OF THE TRIGGER/ DETECTOR SYSTEM

- WE WANT TO FLY ST3G ON A BALLOON TO:
 - CALIBRATE THE INSTRUMENT WITH ACTUAL COSMIC DATA
 - UNDERSTAND THE BACKGROUND
 - RUN THE TRIGGER IN ITS REAL ENVIRONMENT
 - ➡ MEASURE THE COMBINED SENSITIVITY OF THE TRIGGER/ DETECTOR SYSTEM

• WE PLAN TO SUBMIT A PROPOSAL TO CONSTRUCT THE DEMONSTRATOR OF ST3G

• WE WILL NOT REQUEST A BALLOON FLIGHT AT THIS POINT

• WE PLAN TO SUBMIT A PROPOSAL TO CONSTRUCT THE DEMONSTRATOR OF ST3G

• WE WILL NOT REQUEST A BALLOON FLIGHT AT THIS POINT

THANKS FOR YOUR ATTENTION

• WE PLAN TO SUBMIT A PROPOSAL TO CONSTRUCT THE DEMONSTRATOR OF ST3G

• WE WILL NOT REQUEST A BALLOON FLIGHT AT THIS POINT

References

HTTPS://WWW.UNIVERSETODAY.COM/30594/BLAZARS/ HTTPS://WWW.BU.EDU/BLAZARS/RESEARCH.HTML HTTPS://FUTURISM.COM/PULSARS-WHAT-ARE-THEY-WHY-DO-THEY-SPIN-S0-FAST-2/ HTTPS://EN.WIKIPEDIA.ORG/WIKI/PULSAR HTTPS://SITES.GOOGLE.COM/SITE/VISALACROSSTHEGALAXY/THE-GALACTIC-CENTRE HTTPS://WWW.NASA.GOV/MISSION_PAGES/SWIFT/BURSTS/SUPERGIANT-STARS.HTML HTTP://INSPIREHEP.NET/RECORD/1381533 HTTPS://WWW.MPI-HD.MPG.DE/ASTROPHYSIK/HEA/RESEARCH/RESEARCH.HTML HTTPS://EN.WIKIPEDIA.ORG/WIKI/DARK_MATTER HTTPS://EN.WIKIPEDIA.ORG/WIKI/SUPERNOVA_REMNANT HTTPS://EN.WIKIPEDIA.ORG/WIKI/SUPERNOVA_REMNANT HTTPS://WWW.NASA.GOV/MISSION_PAGES/GLAST/NEWS/GAMMA-RAY-DRAGONS.HTML HTTP://EARTHSKY.ORG/SPACE/MIND-BOGGLING-FERMI-BUBBLES-PROBED-VIA-QUASAR-LIGHT

Backup slides

Is Lorentz Invariance violated?

Lorentz invariance is the fundamental symmetry of Einstein's theory of relativity

i.e. the laws of physics remain the same for all observers that are moving with respect to each other at uniform velocity

- Lorentz invariance has been tested to a great level of detail but there exist grand unified theories (e.g. the Standard-Model Extension) where gravity is combined with the three other fundamental forces which allow for the breaking of Lorentz symmetry at the Planck scale
 - i.e. at very high energies unattainable experimentally (1.22×10¹⁹GeV)
- But minute deviations from Lorentz invariance might still be present at much lower energies
 - these deviations can accumulate over large distances
 - this makes astrophysical measurements the most sensitive tests of Lorentz symmetry

Is Lorentz Invariance violated?

In the photon sector violations of Lorentz symmetry include vacuum dispersion and vacuum birefringence

Vacuum dispersion

- if the speed of light in a vacuum is energy (frequency)-dependant
- photons of different energies emitted from a high-z source will arrive on earth at different times
- Fermi LAT observations of, e.g., distant GRBs has placed limits on this effect

$\delta t \propto \delta v L$

Vacuum birefringence

- when the rotation symmetry of the vacuum is broken, light still has two polarisation components but they travel at different speeds
- as a result, the net polarisation of the light changes as it propagates
- change in polarisation depends on the energy (frequency) of the light

δφ ∝ ωδν∟

sensitivity gain of **1/ω** compared to time-of-flight measurements

Is Lorentz Invariance violated?

In the photon sector violations of Lorentz symmetry include vacuum dispersion and vacuum birefringence

http://www.physics.indiana.edu/~kostelec/mov.html#4

Vacuum birefringence

- light is shown propagating from a distant galaxy to the Earth
- the instantaneous electric-field vector in a plane transverse to direction of motion is shown as a black arrow
- the polarisation of the light is determined by 2 quantities:
 - the orientation of the ellipse (ω)
 - its shape (E1 and E2)
- the breaking of rotation symmetry causes the polarisation and hence the orientation and shape of the ellipse to change as the light travels through space

Key challenge: self-triggering ... in real time ... in space

Data recorded at Kiruna (Northern Sweden) 20.01.1996 (Quotid Atmospheric Radiation Model (QARM))

a.s.l. = above sea level