Imaging Polarimeter for a Sub-MeV gamma-rays using an Electron tracking Compton Camera

This presentation is based on arXiv:1703.07600v1 22 Mar. 2017 Komura, S. et al. which will be soon published to ApJ.

Contents

- 1. Plan of ETCC for polarimetry
- 2 Experiment @ Spring 8
- 3 Result of On-axis
- 4 Result of OFF-axis
- 5 Summary

13/Apr./2017 @ MeV TPC.

S. Komura₁, A. Takada₁, Y. Mizumura₁₂, S. Miyamoto₁, T. Takemura₁, T. Kishimoto₁, H. Kubo₁, S. Kurosawa₃, Y. Matsuoka₁, K. Miuchi₄, T. Mizumoto₁, Y. Nakamasu₁, K. Nakamura₁, M. Oda₁, J. D. Parker₁, T. Sawano₅, S. Sonoda₁, T. Tanimori₁₂, D. Tomono₁, and K. Yoshikawa₁

Graduate School of Science, Kyoto University, Sakyo, Kyoto

2 Unit of Synergetic Studies for Space, Kyoto University,

3 Tohoku University, 4 Department of Physics, Kobe University, 5 Kanazawa University

Next Generation of Hard-X and Gamma Polarimetry

Polarization data above hard X-rays

Instruments	Energy band		Pol.	Traget
INTEGRAL / S	PI	100-1000 keV	46±10	Crab Nebula
INTEGRAL / IBIS		200-800 keV	$47 {}^{+19}_{-13}$	Crab Nebula
INTEGRAL / IE	BIS	400-2000 keV	67±30	Cygnus X-1
IKAROS / G	AP	70-300 keV	27±11 他2例	GRB100826A 他2例

$$MDP[\%] = \frac{429}{\mu_{100}R_S} \sqrt{\frac{R_S + R_B}{T}}$$

No highly reliable data with >5sigma $\mu_{100}R_S V T$ As discussed by Weisskopf group, both statistical fluctuation and systematics always cause a positive value of MDF for nonpolarized data.

- ⇒ Low background by sharp well-defined PSF (ability of Imaging with large FoV)
- \Rightarrow and low systematics (treatment of off axis)

Approach of ETCC to Polarimetry

For medium and		Persistent	Transient
weak sources	Mirror +Pol.	Ø	\times
R _s Signal flux	Wide-FoV (non- imaging)	×	0
T Obs. Time	СС	×	Ø
	ETCC	0	Ø

Feature of ETCC for Polarimetry

- dE/dx of paticles in TPCC
 Complete rejection for neutron and cosmic-rays
- Wide-FoV >4 str

T.Tanimori et al., ApJ, 810 (2015), 28

Power of PSF

Contamination of BG γ $\propto \Delta \Omega \propto \Theta^2 \quad \Theta: PSF$ $\Rightarrow :1/100 \text{ of } CC$ $\Rightarrow MDP: x10 \text{ improved}$ But not used in this time

Polarimetry in ETCC for 200keV y (Geant4 Simulation)

Off-axis Correction (Simulation)

For Off-axis correction, both 3D direction of scattered gammas and incident direction of gammas are necessary

 \Rightarrow Only Compton Camera can do it and keep $\,\mu_{100}\,$ in wide -FoV

Experiment@SPring-8

 Dispersive incident angle, energy and polarization factor
 Intense low energy gammas by scatted beam in the air (dramatically increasing accidental rate)

Good consistency with Simulation < 8%

Background rejection

For low enery <200keV PSF is worse ~30° =>PSF cut was not used. & main BG=> low energy scattered γ ____

Then accidental events exceeded real events even after dE/dx cut .

Systematics by BG was estimated from TPC drift time distribution.

If good tracking were possible, Kinematical test and good Gas could remove almost all the accidentals.

On-axis result

Polarization direction	μ ₁₀₀ (Exp.)	μ ₁₀₀ (Sim.)
0	0.58±0.02	0.63 ± 0.01
-22.5	0.58±0.02	0.63 ± 0.01
-45	0.58±0.02	0.62 ± 0.01
-90	0.57±0.02	0.60 ± 0.01
-180	0.59±0.03	0.61 ± 0.01

 $\mu_{100} \sim 0.58@134 \text{ keV}$

Summary result

Eff. Area SMILE-III ETCC ~30 cm² @200keV

MDF:

Crab nebula ~ 12%, Cyg. X-1 ~ 16% @10hrs Observation Possible for reconfirmation of INTEGRAL Results

GRB with >10⁻⁵ erg/cm² ~ 21% (several GRBs /month)

 \Rightarrow similar to POLAR ~10%, (~10 GRBs/year)

Conclusion

□Imaging polarimetry in sub-MeV &MeV has been possible. □ Beam test@SPring-8

- > In intense background, imaging polarimetry is succeeded!
- On-axis MPD =0.58@130 keV
- > Off-axis measurement ,and good MPD is obtained

These results open a new approach of polarimetry in hard Xray and MeV gammas satisfied simultaneously with wide FoV, background rejection, and Imaging. Both transient and persistent objects would be simultaneously observed.

- □ Balloon (SMILE-III ETCC ~30 cm²@200 keV)
 - Crab nebula ~ 12 %, Cyg. X-1 ~ 16 % (10hrs)
 - > GRBs ~ 21% for 10^{-5} erg/cm² (2-3 GRBs/month)

□ Satellite-ETCC (~200 cm², 10⁶sec)

- ➤ ~13mCrab MPD ~10% in 10⁷sec
- ➢ GRBs (>6×10⁻⁶cm⁻² MDP 10% =20GRBs /year