Imaging Polarimeter for a Sub-MeV gamma-rays using an Electron tracking Compton Camera

This presentation is based on arXiv:1703.07600v1 22 Mar. 2017 Komura, S. et al. which will be soon published to ApJ.

Contents

1. Plan of ETCC for polarimetry

2 Experiment @ Spring 8
3 Result of On-axis
4 Result of OFF-axis
5 Summary
13/Apr./2017 @ MeV TPC.
S. Komura ${ }_{1}$, A. Takada ${ }_{1}$, Y. Mizumura ${ }_{12}$, S. Miyamoto ${ }_{1}$, T. Takemura ${ }_{1}$, T. Kishimoto, H. Kubo, S. Kurosawa ${ }_{3}$, Y. Matsuoka, K. Miuchi, T. Mizumoto, Y. Nakamasuı, K. Nakamura, M. Oda , J. D. Parker ${ }_{1}$, T. Sawano $_{5}$, S. Sonoda, T. Tanimori i_{2}, D. Tomono, and K. Yoshikawa
Graduate School of Science, Kyoto University, Sakyo, Kyoto
2 Unit of Synergetic Studies for Space, Kyoto University,
3 Tohoku University, 4 Department of Physics, Kobe University, 5 Kanazawa University

Next Generation of Hard－X and Gamma Polarimetry

Polarization data above hard X－rays

Instruments	Energy band	Pol．	Traget
INTEGRAL／SPI	$100-1000 \mathrm{keV}$	46 ± 10	Crab Nebula
INTEGRAL／IBIS	$200-800 \mathrm{keV}$	47_{-13}^{+19}	Crab Nebula
INTEGRAL／IBIS	$400-2000 \mathrm{keV}$	67 ± 30	Cygnus X－1
IKAROS／GAP	$70-300 \mathrm{keV}$	27 ± 11 他2例	GRB100826A 他2例

No highly reliable data with＞5sigma

$$
M D P[\%]=\frac{429}{\mu_{100} R_{S}} \sqrt{\frac{R_{S}+R_{B}}{T}}
$$ As discussed by Weisskopf group，both statistical fluctuation and systematics always cause a positive value of MDF for non－ polarized data．

\Rightarrow Low background by sharp well－defined PSF（ability of Imaging with large FoV）
\Rightarrow and low systematics（treatment of off axis）

Approach of ETCC to Polarimetry

For medium and weak sources

R_{S}	Signal flux
R_{B}	Noise flux
T	Obs. Time

	Persistent	Transient
Mirror +Pol.	〇	\times
Wide-FoV (non- imaging)	X	\bigcirc
CC	X	\bigcirc
ETCC	\bigcirc	\bigcirc

> W-FoV: but intense background and off-axis correction
> Mirror : Imaging -> low banknnnuind
ETCC: imaging + W-FoV

$$
M D P[\%]=\frac{429}{\mu_{100} R_{S}} \sqrt{\frac{R_{S}+R_{B}}{T}}
$$

Persistent sources

$$
R_{b} \gg R s \Rightarrow M P D \propto \frac{\sqrt{R_{B}}}{\mu_{100} R_{S}} \propto \frac{\sqrt{P S F}}{\mu_{100} R_{S}} \quad \begin{aligned}
& \text { Sharp PSF is } \\
& \text { needed }
\end{aligned}
$$

Feature of ETCC for Polarimetry

- Ture Imaging (sharp 2D-PSF)
$>$ Good rejection of $B G \gamma$
- dE/dx of paticles in TPCC >Complete rejection for neutron and cosmic-rays
- Wide-FoV >4 str
T.Tanimori et al., ApJ, 810 (2015), 28

Power of PSF
Contamination of BG γ $\propto \Delta \Omega \propto \theta^{2} \quad \theta:$ PSF
$\Rightarrow: 1 / 100$ of $C C$
\Rightarrow MDP: x10 improved
But not used in this time

Polarimetry in ETCC for 200keV v (Geant4 Simulation)

Off-axis Correction (Simulation)

200 keV gamma

Incident 9 coordinates $\left(\theta_{p}, \varphi_{p}\right)$

For Off-axis correction, both 3D direction of scattered gammas and incident direction of gammas are necessary
\Rightarrow Only Compton Camera can do it and keep μ_{100} in wide -FoV

Experiment@SPring-8

BL08W: ~100\%linear Polarized Xray beam ($100-300 \mathrm{keV}$)

Polarization

> Dispersive beam $>\sim 50^{\circ}$ $>$ High Count rate $>300 \mathrm{~Hz}$ x3 of Balloon Experiment

On-axis Analysis

\square Dispersive incident angle, energy and polarization factor

- Intense low energy gammas by scatted beam in the air (dramatically increasing accidental rate)

Good consistency with Simulation < 8\%

Background rejection

For low enery <200keV PSF is worse ~30 =>PSF cut was not used. \& main $B G=>$ low energy scattered γ

Then accidental events exceeded real events even after $\mathrm{dE} / \mathrm{dx}$ cut .

Systematics by BG was estimated from TPC drift time distribution.

(a)

Drift time in TPC

(b)

Energy Spectrum

If good tracking were possible, Kinematical test and good Gas could remove almost all the accidentals.

On-axis result

Dependences of the modulation factor μ (open circles) on to $\theta_{\text {max }}$, the relative detection efficiency λ (open triangles), and the figure of merits $\lambda \sqrt{\mu}$ (filled squares) on the integration region from 0 to $\theta_{\text {max }}$.

Polarization direction	μ_{100} (Exp.)	μ_{100} (Sim.)
0	0.58 ± 0.02	0.63 ± 0.01
-22.5	0.58 ± 0.02	0.63 ± 0.01
-45	0.58 ± 0.02	0.62 ± 0.01
-90	0.57 ± 0.02	0.60 ± 0.01
-180	0.59 ± 0.03	0.61 ± 0.01

OFF-axis Analysis

Summary result

Eff. Area SMILE-III ETCC ~30 cm^{2} @200keV

- MDF:

Crab nebula ~ 12\%, Cyg. X-1 ~ 16\% @10hrs Observation Possible for reconfirmation of INTEGRAL Results

GRB with $>10^{-5} \mathrm{erg} / \mathrm{cm}^{2} \sim 21 \%$ (several GRBs /month)
\Rightarrow similar to POLAR $\sim 10 \%$, (~ 10 GRBs/year)

Conclusion

\square Imaging polarimetry in sub-MeV \&MeV has been possible.
\square Beam test@SPring-8
$>$ In intense background, imaging polarimetry is succeeded!
> On-axis MPD $=0.58 @ 130 \mathrm{keV}$
> Off-axis measurement ,and good MPD is obtained
These results open a new approach of polarimetry in hard Xray and MeV gammas satisfied simultaneously with wide FoV, background rejection, and Imaging.
Both transient and persistent objects would be simultaneously observed.

- Balloon (SMILE-III ETCC ~30 cm^{2} @200 keV)
> Crab nebula ~ 12 \%, Cyg. X-1 ~ 16 \% (10hrs)
$>$ GRBs ~ 21% for $10^{-5} \mathrm{erg} / \mathrm{cm}^{2}$ (2-3 GRBs/month)
\square Satellite-ETCC ($\sim 200 \mathrm{~cm}^{2}, 10^{6} \mathrm{sec}$)
> $\sim 13 \mathrm{mCrab}$ MPD $\sim 10 \%$ in $10^{7} \mathrm{sec}$
$>$ GRBs $\left(>6 \times 10^{-6} \mathrm{~cm}^{-2}\right.$ MDP $10 \%=20 G R B s / y e a r$

