

Towards generic adiabatic elimination for bipartite open quantum systems

22ème conférence Claude Itzykson Manipulation of Simple Quantum Systems

Institut de Physique Théorique (IPhT) l'Orme des Merisiers, CEA Saclay. June 06-08, 2017.

Pierre Rouchon

Centre Automatique et Systèmes, Mines ParisTech, PSL Research University Quantic Research Team, Inria

Joint work with R. Azouit, F. Chittaro and A. Sarlette (arXiv.1704.00785)

Slow/fast bipartite master equations

Model reduction and geometric singular perturbations

Geometric singular perturbations for bipartite quantum systems

Lambda systems :

E. Brion, L.H. Pedersen, K. Mølmer : Adiabatic elimination in a lambda system Journal of Physics A : Mathematical and Theoretical, 2007, 40, 1033.

M. Mirrahimi, PR :. Singular perturbations and Lindblad-Kossakowski differential equations IEEE Trans. Automatic Control , 2009, 54, 1325-1329

F. Reiter, A. Sørensen : Effective operator formalism for open quantum systems Phys. Rev. A, 2012, 85, 032111-

Slow/fast Lindblad dynamics :

E.M. Kessler : Generalized Schrieffer-Wolff formalism for dissipative systems. Phys. Rev. A, 2012, 86, 012126-

D. Burgarth et al. : Non-Abelian Phases from a Quantum Zeno Dynamics. Phys. Rev. A 88, 042107 (2013) P. Zanardi, L. Campos Venuti : Coherent quantum dynamics in steady-state manifolds of strongly dissipative systems. Phys. Rev. Lett. 113, 240406 (2014)

K. Macieszczak, M. Guta, I. Lesanovsky, J.P. Garrahan : Towards a Theory of Metastability in Open Quantum Dynamics. Phys. Rev. Lett. 116, 240404 (2016)

L. Campos Venuti, P. Zanardi : Dynamical Response Theory for Driven-Dissipative Quantum Systems. Phys. Rev. A 93, 032101 (2016)

Quantum stochastic models :

J. Gough, R. van Handel : Singular perturbation of quantum stochastic differential equations with coupling through an oscillator model. J. Stat. Phys. 2007, 127 pp :575.

L. Bouten, A. Silberfarb : Adiabatic elimination in quantum stochastic model, Commun. Math. Phys., 283, 491-505 (2008)

L. Bouten, R. van Handel, A. Silberfarb : Approximation and limit theorems for quantum stochastic models with unbounded coefficients. Journal of Functional Analysis 254 (2008) 3123-3147.

O. Cernotik, D. Vasilyev, K. Hammerer : Adiabatic elimination of Gaussian subsystems from quantum dynamics under continuous measurement Phys. Rev. A, , 92, 012124 (2015)

Bipartite slow/fast open quantum systems

Lindblad-Gorini-Kossakowsi-Sudarshan master equation ¹ :

$$\frac{d}{dt}\rho = \mathcal{L}(\rho) = -i[\boldsymbol{H},\rho] + \sum_{\mu} \left(\boldsymbol{L}_{\mu}\rho\boldsymbol{L}_{\mu}^{\dagger} - \frac{1}{2} (\boldsymbol{L}_{\mu}^{\dagger}\boldsymbol{L}_{\mu}\rho + \rho\boldsymbol{L}_{\mu}^{\dagger}\boldsymbol{L}_{\mu}) \right)$$

with ρ , **H** and **L**_{μ} operators on the underlying Hilbert space \mathcal{H} .

Sub-system *A* with Hilbert space \mathcal{H}_A relaxing rapidly towards a unique equilibrium density operator $\overline{\rho}_A$ via the Lindbladian evolution :

$$rac{d}{dt}
ho_{\mathcal{A}} = \mathcal{L}_{\mathcal{A}}(
ho_{\mathcal{A}}) ext{ with } \lim_{t\mapsto+\infty}
ho_{\mathcal{A}}(t) = \overline{
ho}_{\mathcal{A}};$$

Sub-system *B* with Hilbert space \mathcal{H}_B having a slow Lindbladian evolution

$$rac{d}{dt}
ho_B = \epsilon \mathcal{L}_B(
ho_B)$$
 with $0 \leq \epsilon \ll 1$

• Weak (A, B) coupling via the Hamiltonian $\epsilon \sum_{k=1}^{m} A_k \otimes B_k^{\dagger}$ Repartite Hilbert space (A, B) with Hilbert space $\mathcal{U}_{k} = \mathcal{U}_{k} \otimes \mathcal{U}_{k}$ and der

Bipartite Hilbert space (A, B) with Hilbert space $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$ and density operator ρ governed by

$$\frac{d}{dt}\rho = \mathcal{L}_{\mathcal{A}}(\rho) - i\epsilon \left[\sum_{k=1}^{m} \mathcal{A}_{k} \otimes \mathcal{B}_{k}^{\dagger}, \rho\right] + \epsilon \mathcal{L}_{\mathcal{B}}(\rho)$$

1. Lindblad G : On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48 119-30 (1976) Gorini V, Kossakowsi A and Sudarshan E C G : Completely positive dynamical semigroups of N-level systems. J. Math. Phys. 17 821-5 (1976) Adiabatic elim. of fast qubit A dispersively coupled to slow qubit B^2

The slow/fast dynamics

$$\frac{d\rho}{dt} = u \left[\sigma_{+}^{A} - \sigma_{-}^{A}, \rho \right] + \kappa \left(\sigma_{-}^{A} \rho \sigma_{+}^{A} - \frac{\sigma_{+}^{A} \sigma_{-}^{A} \rho + \rho \sigma_{+}^{A} \sigma_{-}^{A}}{2} \right) - i \chi \left[\sigma_{z}^{A} \otimes \sigma_{z}^{B}, \rho \right]$$

Slow dynamics (second order versus $\epsilon = \chi/\kappa$) :

$$\frac{d\rho_s}{dt} = i_{\frac{\chi\kappa^2}{\kappa^2 + 8u^2}}[\sigma_z, \rho_s] + \frac{(64\kappa\chi^2 u^2)(\kappa^2 + 2u^2)}{(\kappa^2 + 8u^2)^3} (\sigma_z \rho_s \sigma_z - \rho_s)$$

Kraus (CPTP) map : $\rho = (I - i\mathbf{Q} \otimes \sigma_z)(\overline{\rho}_A \otimes \rho_s)(I + i\mathbf{Q}^{\dagger} \otimes \sigma_z)$ with $\overline{\rho}_A = \frac{4\kappa u}{\kappa^2 + 8u^2}\sigma_x - \frac{\kappa^2}{\kappa^2 + 8u^2}\sigma_z + \frac{1}{2}I$ and $\mathbf{Q} = \mathbf{\bullet}\sigma_x + \mathbf{\bullet}\sigma_y + \mathbf{\bullet}\sigma_z + \mathbf{\bullet}I$

2. R. Azouit, F. Chittaro, A. Sarlette, P.R., IFAC world congress 2017.

Two-photon pumping in super-conducting circuits³

M.H. Devoret. Dynamically protected cat-qubits : a new paradigm for universal quantum computation. New J. of Physics, 16 :045014, 2014.

Slow/fast bipartite master equations

Model reduction and geometric singular perturbations

Geometric singular perturbations for bipartite quantum systems

What is a dynamical reduced model for $\frac{d}{dt}x = v(x)$?

A possible answer :

restriction to an attractive invariant manifold Σ .

Slow/fast systems (coordinate free setting)

Geometric definition independent of coordinates due to Fenichel⁴:

- $x \mapsto v(x)$ close to $x \mapsto \overline{v}(x)$.

•
$$n_f = n - n_s$$
 eigenvalues of $\frac{\partial \overline{v}}{\partial x}\Big|_{\overline{\Sigma}}$ are stable (negative real parts).

4. N. Fenichel : Geometric singular perturbation theory for ordinary differential equations. J. Diff. Equations, 1979, 31, 53-98.

Any slow/fast system, can be put, after a suitable change of coordinates, in to a **quasi-vertical vector field** *v* :

$$\frac{d}{dt}x_s = v_s(x_s, x_f) = \epsilon \tilde{v}_s(x_s, x_f, \epsilon)$$
$$\frac{d}{dt}x_f = v_f(x_s, x_f)$$

with
$$0 < \epsilon \ll 1$$
.

The reduced system $\frac{d}{dt}x_s = v_s(x_s, x_f)$ with $0 = v_f(x_s, x_f)$ is correct if $\frac{d}{dt}\xi_f = v_f(x_s, \xi_f)$ hyperbolically stable for any fixed x_s .

In general, modeling variables *x* are **not** Tikhonov variables.

^{5.} See, e.g., F. Verhulst : Methods and Applications of Singular Perturbations : Boundary Layers and Multiple Timescale Dynamics. Springer, 2005

Model reduction with modeling variables

Example with the heuristic method :

$$\frac{d}{dt}x_s = 2(x_s - x_f) + \epsilon x_s \quad \frac{d}{dt}x_f = x_s - x_f$$

1- compute x_f versus x_s from $\frac{d}{dt}x_f = 0$; **2-** plug $x_f = x_s$ into $\frac{d}{dt}x_s$ to obtain $\frac{d}{dt}x_s = +\epsilon x_s$ (wrong slow model !)

The reduced model of $\frac{d}{dt}x_s = v_s(x_s, x_f, \epsilon)$, $\frac{d}{dt}x_f = v_f(x_s, x_f, \epsilon)$ is ⁶

$$\frac{d}{dt}x_s = \left(1 + \frac{\partial v_s}{\partial x_f} \left(\frac{\partial v_f}{\partial x_f}\right)^{-2} \frac{\partial v_f}{\partial x_s}\right)^{-1} v_s(x_s, x_f, \epsilon) + O(\epsilon^2), \quad v_f(x_s, x_f, \epsilon) = 0.$$

Same example with the correct method : with $\frac{\partial v_s}{\partial x_t} = -2$, $\frac{\partial v_t}{\partial x_s} = 1 = -\frac{\partial v_t}{\partial x_t}$, we get the correct slow model, $\frac{d}{dt} x_s = -\epsilon x_s$.

6. J. Carr : Application of Center Manifold Theory. Springer, 1981. P. Duchêne, P.R. : Kinetic scheme reduction via geometric singular perturbation techniques. Chem. Eng. Science, 1996, 51, 4661-4672.

Slow/fast bipartite master equations

Model reduction and geometric singular perturbations

Geometric singular perturbations for bipartite quantum systems

Geometric singular perturbations for bipartite open quantum systems⁷

Lindbladian slow dynamics in a copy \mathcal{H}_s of \mathcal{H}_B

$$\frac{d}{dt}\rho_{s} = \mathcal{L}_{s}(\rho_{s}) = \epsilon \mathcal{L}_{s,1}(\rho_{s}) + \epsilon^{2} \mathcal{L}_{s,2}(\rho_{s}) + \dots$$

with Kraus map to recover the physical density operator ρ from ρ_s :

$$\rho = \mathcal{K}(\rho_s) = \mathcal{K}_0(\rho_s) + \epsilon \mathcal{K}_1(\rho_s) + \dots$$

7. R. Azouit et al. IEEE CDC 2016.

An iterative procedure based on center manifold approximation

Plug
$$\rho = \mathcal{K}(\rho_s) = \overline{\rho}_A \otimes \rho_s + \epsilon \mathcal{K}_1(\rho_s) + \dots$$
 and
 $\frac{d}{dt}\rho_s = \mathcal{L}_s(\rho_s) = \epsilon \mathcal{L}_{s,1}(\rho_s) + \epsilon^2 \mathcal{L}_{s,2}(\rho_s) + \dots$ into invariance condition
 $\mathcal{L}_A(\mathcal{K}(\rho_s)) - \epsilon i [\mathbf{H}_{int}, \mathcal{K}(\rho_s)] + \epsilon \mathcal{L}_B(\mathcal{K}(\rho_s)) = \frac{d}{dt}\rho = \mathcal{K}(\mathcal{L}_s(\rho_s))$

and identify terms of same orders :

order 1 : $\mathcal{L}_{A}(\mathcal{K}_{1}(\rho_{s})) - i[\mathbf{H}_{int}, \mathcal{K}_{0}(\rho_{s})] + \mathcal{L}_{B}(\mathcal{K}_{0}(\rho_{s})) = \mathcal{K}_{0}(\mathcal{L}_{s,1}(\rho_{s}))$ order 2 : $\mathcal{L}_{A}(\mathcal{K}_{2}(\rho_{s})) - i[\mathbf{H}_{int}, \mathcal{K}_{1}(\rho_{s})] + \mathcal{L}_{B}(\mathcal{K}_{1}(\rho_{s})) = \mathcal{K}_{0}(\mathcal{L}_{s,2}(\rho_{s})) + \mathcal{K}_{1}(\mathcal{L}_{s,1}(\rho_{s}))$

At each order

- 1. take the trace versus A to get the correction to \mathcal{L}_s
- 2. compute the correction to \mathcal{K} via $-\mathcal{L}_{A}^{-1}$, a super operator for zero-trace operators \boldsymbol{W} on \mathcal{H}_{A}

$$-\mathcal{L}_{A}^{-1}(\boldsymbol{W}) = \int_{0}^{+\infty} \boldsymbol{e}^{t\mathcal{L}_{A}}(\boldsymbol{W}) dt$$

that coincides with the restriction to zero-trace operators of a completely positive (CP) map.

The full dynamics

$$rac{d}{dt}
ho = \mathcal{L}_{\mathcal{A}}(
ho) - i\epsilon \left[\sum_{k=1}^{m} oldsymbol{A}_k \otimes oldsymbol{B}_k^{\dagger} \ , \
ho
ight] + \epsilon \mathcal{L}_{\mathcal{B}}(
ho)$$

can be approximated by

$$\frac{d}{dt}\rho_{s} = -i\epsilon \left[\sum_{k=1}^{m} \operatorname{tr}(\boldsymbol{A}_{k}\overline{\rho}_{A})\boldsymbol{B}_{k}^{\dagger}, \rho_{s}\right] + \epsilon\mathcal{L}_{B}(\rho_{s}) + O(\epsilon^{2})$$
Zeno dynamics
$$\rho = \underbrace{(\boldsymbol{I} - \boldsymbol{i}\epsilon\boldsymbol{M}) \ (\overline{\rho}_{A} \otimes \rho_{s}) \ (\boldsymbol{I} + \boldsymbol{i}\epsilon\boldsymbol{M}^{\dagger})}_{\text{completely positive man} \triangleq "Zeno man"} + O(\epsilon^{2})$$

where $\boldsymbol{M} = \sum_{k=1}^{m} \boldsymbol{F}_k \otimes \boldsymbol{B}_k^{\dagger}$ with \boldsymbol{F}_k given by

$$\boldsymbol{F}_{k}\overline{\rho}_{A}=-\mathcal{L}_{A}^{-1}\left(\boldsymbol{A}_{k}\ \overline{\rho}_{A}\ -\operatorname{tr}(\boldsymbol{A}_{k}\ \overline{\rho}_{A})\overline{\rho}_{A}\right).$$

8. A. Azouit et al. arXiv.1704.00785

Second order dynamics⁹

The full dynamics

$$\frac{d}{dt}\rho = \mathcal{L}_{\mathcal{A}}(\rho) - i\epsilon \left[\sum_{k=1}^{m} \mathbf{A}_{k} \otimes \mathbf{B}_{k}^{\dagger}, \rho\right] + \epsilon \mathcal{L}_{\mathcal{B}}(\rho)$$

can be approximated by

$$\frac{d}{dt}\rho_{s} = -i\left[\epsilon\sum_{k} \operatorname{tr}(\boldsymbol{A}_{k}\overline{\rho}_{A})\boldsymbol{B}_{k} + \epsilon^{2}\sum_{k,j} y_{k,j} \boldsymbol{B}_{k}\boldsymbol{B}_{j}^{\dagger}, \rho_{s}\right] \\ + \epsilon\mathcal{L}_{B}(\rho_{s}) + \epsilon^{2}\sum_{k=1}^{m} \mathcal{D}_{L_{k}}(\rho_{s}) + O(\epsilon^{3}) \\ \rho = (\boldsymbol{I} - i\epsilon\boldsymbol{M}) (\overline{\rho}_{A} \otimes \rho_{s}) (\boldsymbol{I} + i\epsilon\boldsymbol{M}^{\dagger}) + O(\epsilon^{2})$$

where $\mathbf{M} = \sum_{k=1}^{m} \mathbf{F}_{k} \otimes \mathbf{B}_{k}^{\dagger}$ with $\mathbf{F}_{k}\overline{\rho}_{A} = -\mathcal{L}_{A}^{-1} \left(\mathbf{A}_{k} \overline{\rho}_{A} - \operatorname{tr}(\mathbf{A}_{k} \overline{\rho}_{A})\overline{\rho}_{A} \right)$ where $\mathbf{y}_{k,j} = \frac{1}{2i} \operatorname{tr} \left(\mathbf{F}_{j}\overline{\rho}_{A}\mathbf{A}_{k}^{\dagger} - \mathbf{A}_{j}\overline{\rho}_{A}\mathbf{F}_{k}^{\dagger} \right)$ and $\mathbf{L}_{k} = \sum_{j=1}^{m} \lambda_{j,k}\mathbf{B}_{j}$ with $\underline{\operatorname{matrix} \lambda \text{ given by } \lambda\lambda^{\dagger} = x \text{ and } x_{k,j} = \operatorname{tr} \left(\mathbf{F}_{j}\overline{\rho}_{A}\mathbf{A}_{k}^{\dagger} + \mathbf{A}_{j}\overline{\rho}_{A}\mathbf{F}_{k}^{\dagger} \right)$ 9. A. Azouit et al. arXiv.1704.00785

\blacksquare N = a^{\dagger}a, *u* drive amplitude, Δ detuning, $1/\kappa$ damping time :

$$\mathcal{L}_{\mathcal{A}}(\rho) = [u\boldsymbol{a}^{\dagger} - u^{*}\boldsymbol{a}, \rho] - i\Delta[\boldsymbol{N}, \rho] + \kappa \mathcal{D}_{\boldsymbol{a}}(\rho)$$

Steady state $\overline{\rho}_A = |\alpha\rangle \langle \alpha|$ with $\alpha = u/(\kappa/2 + i\Delta)$.

■ For any zero-trace operator \boldsymbol{W} , zero-trace solution \boldsymbol{X} of $-\mathcal{L}_{A}(\boldsymbol{X}) = \boldsymbol{W}$ is given by $\int_{0}^{+\infty} e^{t\mathcal{L}_{A}}(\boldsymbol{W}) dt$.

■ For
$$\boldsymbol{W} = \boldsymbol{A}\overline{\rho}_{A} - \operatorname{tr}(\boldsymbol{A}\overline{\rho}_{A})\overline{\rho}_{A}$$
 and with
 $\boldsymbol{e}^{t\mathcal{L}_{A}}(\boldsymbol{W}) =$
 $\sum_{n=0}^{+\infty} \left(\frac{(1-\boldsymbol{e}^{-\kappa t})^{n}}{n!}\right) \boldsymbol{D}_{\alpha} \left(\boldsymbol{e}^{-\left(\frac{\kappa}{2}+i\Delta\right)t\boldsymbol{N}}\boldsymbol{a}^{n}\right) \boldsymbol{D}_{-\alpha} \boldsymbol{W} \boldsymbol{D}_{\alpha} \left(\left(\boldsymbol{a}^{\dagger}\right)^{n} \boldsymbol{e}^{-\left(\frac{\kappa}{2}-i\Delta\right)t\boldsymbol{N}}\right) \boldsymbol{D}_{-\alpha},$

we get

$$-\mathcal{L}_{A}^{-1}\left(\boldsymbol{A}\overline{\rho}_{A}-\operatorname{tr}(\boldsymbol{A}\overline{\rho}_{A})\overline{\rho}_{A}\right)=\int_{0}^{+\infty}\left(\boldsymbol{D}_{\alpha}e^{-\left(\frac{\kappa}{2}+i\Delta\right)t\boldsymbol{N}}\boldsymbol{D}_{-\alpha}\boldsymbol{A}\overline{\rho}_{A}-\operatorname{tr}(\boldsymbol{A}\overline{\rho}_{A})\overline{\rho}_{A}\right)dt$$

Interest of such geometric adiabatic elimination preserving the quantum structure (Lindblad master equation, CPTP maps) :

- Some non Markovian dynamics can be modeled via a Lindbladian dynamics on a small Hilbert space combined with a CPTP map towards the physical Hilbert space of large dimension.
- Coherent feedback where the quantum controller admits a fast relaxation compared to the quantum system to be controlled (elimination of rapidly relaxing sub-system in quantum feedback networks described by (S, L, H)formalism of Gough/James).
 - Extension when $\mathcal{H} = \mathcal{H}_0 \oplus \mathcal{H}_\infty$ with $\mathcal{H}_\infty = \bigoplus_k \mathcal{H}_{A_k} \otimes \mathcal{H}_{B_k}$ and the slow manifold is parameterized via

$$\rho_{s} = \sum_{k} \overline{\rho}_{A_{k}} \otimes \rho_{s,k} \text{ with } \rho_{s,k} \ge 0 \text{ and } \operatorname{tr}(\rho_{s,k}) \in [0,1]$$

Conjecture : at any order it is always possible to obtain, up-to higher order terms, Lindbladian dynamics for ρ_s and CPTP maps relating ρ to ρ_s .

April 16th to July 13th, 2018

Organized by:

Etienne Brion, Université Paris-Sud, ENS Paris-Saclay, CNRS Eleni Diamanti, Université Pierre et Marie Curie & CNRS Alexei Ourjoumtsev, Collège de France & CNRS Pierre Rouchon, Mines ParisTech & Inria

11 rue Pierre et Marie Curie 75231 Paris Cedex os France

CARMIN

S PARIS

Measurement and control of quantum systems: theory and experiments

CIRM Pre-school at Marseille Modeling and control of open quantum systems April 16th- 20th 2018

Observability and estimation in quantum dynamics May 15th to 17th, 2018

Quantum control and feedback: foundations and applications June 5^{th} to 7^{th} , 2018

PRACQSYS 2018: Principles and Applications of Control in Quantum Systems July 2nd to 6th, 2018

Program coordinated by the Centre Emile Borel at IHP Participation of Postdocs and PhD Students is strongly encouraged Scientific program at: https://sites.google.com/view/mcqs2o18/home

Registration is free however mandatory at : www.lhp.fr Deadline for financial support : September 15th, 2017 Contact : mcqs2018@ihp.fr

Sylvie Lhermitte : CEB Manager

Hilbert space :

$$\mathcal{H}_{\mathcal{S}} = \left\{ \sum_{n \ge 0} \psi_n | n \rangle, \; (\psi_n)_{n \ge 0} \in l^2(\mathbb{C}) \right\} \equiv L^2(\mathbb{R}, \mathbb{C})$$

- Quantum state space : $\mathfrak{D} = \{ \rho \in \mathcal{L}(\mathcal{H}_{\mathcal{S}}), \rho^{\dagger} = \rho, \operatorname{tr}(\rho) = 1, \rho \ge 0 \} .$
- ► Operators and commutations : $a|n\rangle = \sqrt{n} |n-1\rangle$, $a^{\dagger} |n\rangle = \sqrt{n+1} |n+1\rangle$; $N = a^{\dagger}a$, $N|n\rangle = n|n\rangle$; $[a, a^{\dagger}] = I$, af(N) = f(N + I)a; $D_{\alpha} = e^{\alpha a^{\dagger} - \alpha^{\dagger}a}$. $a = X + iP = \frac{1}{\sqrt{2}} (x + \frac{\partial}{\partial x})$, [X, P] = iI/2.
- ► Hamiltonian : $H_S/\hbar = \omega_c a^{\dagger} a + u_c (a + a^{\dagger}).$ (associated classical dynamics : $\frac{dx}{dt} = \omega_c p, \ \frac{dp}{dt} = -\omega_c x - \sqrt{2}u_c).$
- Classical pure state \equiv coherent state $|\alpha\rangle$

$$\alpha \in \mathbb{C} : |\alpha\rangle = \sum_{n \ge 0} \left(e^{-|\alpha|^2/2} \frac{\alpha^n}{\sqrt{n!}} \right) |n\rangle; |\alpha\rangle \equiv \frac{1}{\pi^{1/4}} e^{i\sqrt{2}x\Im\alpha} e^{-\frac{(x-\sqrt{2}\Re\alpha)^2}{2}}$$
$$\boldsymbol{a} |\alpha\rangle = \alpha |\alpha\rangle, \, \boldsymbol{D}_{\alpha} |0\rangle = |\alpha\rangle.$$

 $|n\rangle$

Hilbert space :

$$\mathcal{H}_{M} = \mathbb{C}^{2} = \Big\{ \textit{c}_{g} \ket{g} + \textit{c}_{e} \ket{e}, \ \textit{c}_{g}, \textit{c}_{e} \in \mathbb{C} \Big\}.$$

- Quantum state space : $\mathfrak{D} = \{ \rho \in \mathcal{L}(\mathcal{H}_M), \rho^{\dagger} = \rho, \operatorname{tr}(\rho) = 1, \rho \ge 0 \} .$
- Operators and commutations : $\sigma_{z} = |g\rangle \langle e|, \sigma_{+} = \sigma_{-}^{\dagger} = |e\rangle \langle g|$ $\sigma_{x} = \sigma_{-} + \sigma_{+} = |g\rangle \langle e| + |e\rangle \langle g|;$ $\sigma_{y} = i\sigma_{-} - i\sigma_{+} = i|g\rangle \langle e| - i|e\rangle \langle g|;$ $\sigma_{z} = \sigma_{+}\sigma_{-} - \sigma_{-}\sigma_{+} = P_{e} - P_{g};$ $\sigma_{x}^{2} = I, \sigma_{x}\sigma_{y} = i\sigma_{z}, [\sigma_{x}, \sigma_{y}] = 2i\sigma_{z}, \dots$
- Hamiltonian : $H_M/\hbar = \omega_q \sigma_z/2 + u_q \sigma_x$.
- ► Bloch sphere representation : $\mathfrak{D} = \left\{ \frac{1}{2} \left(I + x \sigma_{x} + y \sigma_{y} + z \sigma_{z} \right) \mid (x, y, z) \in \mathbb{R}^{3}, \ x^{2} + y^{2} + z^{2} \leq 1 \right\}$

