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How to manipulate transport in simple, 1D quantum (classical) lattice systems?

simple? integrable.

How to switch between ballistic, diffusive, and anomalous transports?

What is the mechanism for normal diffusion in integrable systems?
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Three approaches to transport in Hamiltonian (conservative) systems:

Green-Kubo formulae and equilibrium dynamical correlation functions

〈J(t)J(0)〉

Inhomogeneous initial states in infinite systems
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Understanding the general principles underlying strongly interacting quantum states out of equi-
librium is one of the most important tasks of current theoretical physics. With experiments accessing
the intricate dynamics of many-body quantum systems, it is paramount to develop powerful methods
that encode the emergent physics. Up to now, the strong dichotomy observed between integrable
and non-integrable evolutions made an overarching theory difficult to build, especially for transport
phenomena where space-time profiles are drastically different. We present a novel framework for
studying transport in integrable systems: hydrodynamics with infinitely-many conservation laws.
This bridges the conceptual gap between integrable and non-integrable quantum dynamics, and
gives powerful tools for accurate studies of space-time profiles. We apply it to the description of
energy transport between heat baths, and provide a full description of the current-carrying non-
equilibrium steady state and the transition regions in a family of models including the Lieb-Liniger
model of interacting Bose gases, realized in experiments.

I. INTRODUCTION

Many-body quantum systems out of equilibrium give
rise to some of the most important challenges of modern
physics [1]. They have received a lot of attention recently,
with experiments on quantum heat flows [2, 3], general-
ized thermalization [4, 5] and light-cone effects [6]. The
leading principle underlying non-equilibrium dynamics
is that of local transport carried by conserved currents.
Deeper understanding can be gained from studying non-
equilibrium, current-carrying steady states, especially
those emerging from unitary dynamics [7]. This prin-
ciple gives rise to two seemingly disconnected paradigms
for many-body quantum dynamics. On the one hand,
taking into account only few conservation laws, emer-
gent hydrodynamics [8–12] offers a powerful description
where the physics of fluids dominates [13–18]. On the
other hand, in integrable systems, the infinite number of
conservation laws are known to lead to generalized ther-
malization [19–21] (there are many fundamental works
on the subject, see the review [22]), and the presence of
quasi-local charges has been shown to influence trans-
port [23, 24] (see the review [25]). However, except at
criticality [26, 27] (see the review [28]), no general many-
body emergent dynamics has been proposed in the in-
tegrable case; with the available frameworks, these two
paradigms seem difficult to bridge. The study of pre-
thermalization or pre-relaxation under small integrabil-
ity breaking [22, 28–30], the elusive quantum KAM theo-
rem [31, 32], the development of perturbation theory for
non-equilibrium states, and the exact treatment of non-
equilibrium steady states and of non-homogeneous quan-
tum dynamics in unitary interacting integrable models
remain difficult problems.
In this paper, using the recent advances on generalized

thermalization and developing further aspects of integra-
bility, we propose a solution to such problems by deriv-
ing a general theory of hydrodynamics with infinitely-
many conservation laws. The theory, applicable to a
large integrability class, is derived solely from the funda-

FIG. 1. The partitioning protocol. With ballistic transport,
a current emerges after a transient period. Dotted lines rep-
resent different values of � = x/t. If a maximal velocity exists
(e.g. due to the Lieb-Robinson bound), initial reservoirs are
unaffected beyond it (light-cone effect). The steady state lies
at � = 0.

mental tenet of emerging hydrodynamic: local entropy
maximization (often referred to as local thermodynamic
equilibrium) [33–37]. Focussing on quantum field theory
(QFT) in one space dimension, we then study a fam-
ily of models that include the paradigmatic Lieb-Liniger
model [38] for interacting Bose gases, explicitly realized
in experiments [4, 5, 39–41]. We concentrate on far-from-
equilibrium states driven by heat baths in the partition-
ing protocol [7, 26, 27, 42] (see Fig. 1). We provide
currents and full space-time profiles which are in prin-
ciple experimentally accessible, beyond linear response
and for arbitrary interaction strengths. We make con-
tact with the physics of rarefaction waves, and with the
concept of quasi-particle underlying integrable dynamics.

Note added: After a first version of this paper appeared
as a preprint, similar dynamical equations as those de-
rived here were independently obtained in the integrable
XXZ Heisenberg chain by assuming, in addition to local
entropy maximization, an underlying kinetic theory [43].
Solutions to these equations of the same type as those
considered here were constructed and confirmed by nu-
merical simulations.
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Aren’t integrable systems always ballistic?

Green-Kubo formulae express the conductivities in terms of current a.c.f.

κ(ω) = lim
t→∞

lim
n→∞

β

n

∫ t

0
dt′eiωt〈J(t′), J(0)〉β

When d.c. conductivity diverges, one defines a Drude weight D

κ(ω) = 2πDδ(ω) + κreg(ω)

which in linear response expresses as

D = lim
t→∞

lim
n→∞

β

2tn

∫ t

0
dt′〈J(t′)J(0)〉β .
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κ(ω) = lim
t→∞

lim
n→∞

β

n

∫ t

0
dt′eiωt〈J(t′), J(0)〉β

When d.c. conductivity diverges, one defines a Drude weight D

κ(ω) = 2πDδ(ω) + κreg(ω)

which in linear response expresses as

D = lim
t→∞

lim
n→∞

β

2tn

∫ t

0
dt′〈J(t′)J(0)〉β .

For integrable quantum systems, Zotos, Naef and Prelovšek (1997) suggested to
use Mazur/Suzuki (1969/1971) bound:

D ≥ lim
n→∞

β

2n

∑
m

〈JQ(m)〉2β
〈[Q(m)]2〉β

with conserved Q(m) chosen mutually orthogonal 〈Q(m)Q(k)〉β = 0 for m 6= k.
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Mazur bound essentially follows from optimizing a trivial inequality〈(∫ t

0
dt′J(t)−

∑
m

αmQ(m)

)2〉
β

≥ 0

with respect to αm.
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Mazur bound essentially follows from optimizing a trivial inequality〈(∫ t

0
dt′J(t)−

∑
m

αmQ(m)

)2〉
β

≥ 0

with respect to αm.
But what happens when all Q(m) are orthogonal to J, 〈JQ(m)〉β = 0?
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Inhomogeneous initial states: Generalized hydrodynamics

Castro-Alvaredo, Doyon, Yoshimura, PRX 6, 041065 (2016)
Bertini, Collura, De Nardis, Fagotti, PRL 117, 207201 (2016)

Evolution of the initial state ρ(t = 0) = ρL ⊗ ρR
4

a unique solution [41] we find

#⇣,k(�) = ✓h(v⇣,k(�) � ⇣)(#l
k(�) � #r

k(�)) + #r
k(�) . (16)

Here ✓h(x) is the step function which is nonzero and
equal to 1 only if x > 0. The functions #l

k(�) and #r
k(�)

are the boundary conditions: due to the Lieb-Robinson
bounds [42, 43], there exists a maximal velocity vmax such
that observables on rays |⇣| > vmax never receive infor-
mation about the inhomogeneity; as a result, #l

k(�) and
#r

k(�) describe the stationary states emerging indepen-
dently in the two, left and right, bulk parts of the system
(see also Fig. 3).

As v⇣,k(�) depends on #⇣,k(�), (16) is only an implicit
representation of the solution. In practice, one can solve

the problem by iteration, starting from an initial #
(0)
⇣,k(�),

computing the excitation velocities, and iterating again
until convergence is reached. The procedure is numeri-
cally very e�cient and converges after few iterations.
Example 1: Two temperatures. Let us consider the

transport problem par excellence: two chains prepared
at di↵erent temperatures and then joined together [16].

In Fig. 2 we report the rescaled profiles of a number
of charges and currents for di↵erent times t = 10, 15, 20
and interactions �. The rescaled numerical data are in
excellent agreement with the analytical predictions. This
strongly suggests that the solution of (12) fully charac-
terizes the state of the system at late times.

We note that at the edges of the light cone the pre-
dictions are not smooth, as the profiles are exactly flat
outside the light cone. This is an infinite-time property,
and indeed the numerical data are smooth at any time.
Moreover, contrary to the noninteracting case, the veloc-
ities also depend on the temperatures [39], as revealed by
the slight asymmetry of all the curves reported in Figs 2.

We mention that the conjecture put forward in [21]

for the energy current j
(1/2)
1,` at ⇣ = 0 is only in a fair

agreement with our results [37].
Example 2: Global quench. We now study the dynam-

ics after joining together two globally di↵erent pure states
which are not stationary. This is a genuine global quench
with nontrivial time evolution also outside the light cone.
As initial state we take the tensor product between the

Néel state |"# · · · "#i and the Bell state
N

j

|""ij�|##ijp
2

.

As explained before, the two boundary conditions #l,#r

are the gge’s corresponding to the quenches e�iHt |Néeli
and e�iHt |Belli (see the down panel of Fig. 3). Relax-
ation is slower than in the first example and the compar-
ison with the tebd data shown in Fig. 3 is jeopardised
by the smallness of the time reached, consequence of the
linear increase of the entropy both inside and outside the
light cone. Nevertheless, the agreement is fairly good.
Example 3: Domain wall. If the initial state is not

spin-flip invariant, the set {Q
(s)
n,`} is generally not suf-

ficient to fix the state. First of all, one has to include
the total spin along z, Sz, but also quasi-local charges
coming from non-unitary representations of the trans-
fer matrix [4] might play some role. Nonetheless, for a
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FIG. 3. up: Profiles of di↵erent charge densities and currents
for the quench of Example 2 with � = cos(⇡/3). Predictions of
Eq. (16) (lines) are compared with tebd data at time t = 10
(symbols) obtained in a 100-sites chain. Spatial oscillations
in the tebd data were smoothed out by taking a local spacial
average. The vertical dotted-dashed lines represent the light-

cone edges. down: Space-time density plot of hq(1/2)
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FIG. 4. Profiles of magnetization sz
` and spin-current j`[S

z]
evolving from a “domain-wall” state for three di↵erent values
of � = cos(�). Symbols are numerical data for a 120-sites
chain; full black lines are the predictions based on (16). The
inset shows the approach of j0[S

z] (full colored lines) to the
prediction (dashed lines).

domain-wall initial state [24] |" . . . "i⌦|# . . . #i, the com-
parison with numerics provides strong evidence that the

expectation values of q
(s)
n,`, sz

` , and the corresponding cur-
rents, can be obtained from the root densities solving the
continuity equation (12). The left boundary condition is
#l

j(�) = 0, while #r
j (�) corresponds to the state / eµSz

in the limit µ ! 1. Fig. 4 shows the only two measured
quantities exhibiting a non trivial behavior. Remarkably,
the e↵ective velocities of quasi-particles shrink to zero in
the limit � ! 1. A more careful analysis will be carried
out in a future work.

Conclusions. Using a “kinetic theory” of quasi-
particles excitations, we derived a continuity equation
(cf. (12)) describing the late time dynamics of the XXZ

Generalized Euler equations for density of carriers of charge Q(m)

(via String-Charge Duality, Ilievski et al JSTAT (2016) 063101)
along the ballistic rays ζ = x/t:

∂tρζ,m(λ) + ∂x(vζ,m(λ)ρζ,m(λ)) = 0.
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Canonical model: XXZ spin 1/2 chain and Z2 symmetry

H =
1
4

n−1∑
x=1

(2σ+
x σ
−
x+1 + 2σ−x σ

+
x+1 + ∆σz

xσ
z
x+1)
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Nonunitary (noncompact) representations (s ∈ C) quasi-local charges

Z(ϕ) = (sinϕ)−n∂s trauxL⊗xn(ϕ, s)|s=0, η/π ∈ Q

Spin-reversal S =
∏

x σ
x
x and spin current J = i

∑
x(σ+

x σ
−
x+1 − σ−x σ+

x+1):

[H, S ] = 0, SJ = −JS ,

[Q(`,s), S ] = 0, Z(ϕ)S = SZ(π − ϕ)†.
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Nonunitary (noncompact) representations (s ∈ C) quasi-local charges

Z(ϕ) = (sinϕ)−n∂s trauxL⊗xn(ϕ, s)|s=0, η/π ∈ Q

Spin-reversal S =
∏

x σ
x
x and spin current J = i

∑
x(σ+

x σ
−
x+1 − σ−x σ+

x+1):

[H, S ] = 0, SJ = −JS ,

[Q(`,s), S ] = 0, Z(ϕ)S = SZ(π − ϕ)†.

Important consequence: 〈JQ(`,s)〉β = 0, 〈JZ(ϕ)〉β 6= 0.
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Fractal Drude weight

High temperature Mazur bound on spin Drude weight using charges {Z(ϕ)}

D
β
≥ DZ :=

sin2(πl/m)

sin2(π/m)

(
1− m

2π
sin
(
2π
m

))
, ∆ = cos

(
πl
m

)
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And is argued to agree with exact expression obtained from Generalized
Hydrodynamics (De Nardis and Ilievski, arXiv:1702.02930)
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What about spin transport for |∆| ≥ 1?
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Quench from an inhomogeneous partly magnetized state

ρ(t = 0) = (1 + µσz)⊗n/2 ⊗ (1− µσz)⊗n/2
3

Figure 1. Dynamics of spin and current densities. Time evolution of spin density s(x, t) = tr(⇢(t)sz
x) (top row) and

current (bottom row) profile j(x, t) = tr(⇢(t)jx) for the isotropic point � = 1 (left column), and � = 2 (right column),
following an inhomogeneous quench. One can see that the spreading is much faster for � = 1, in both cases though it is slower
than ballistic. Dashed curves guide the eye towards scaling x ⇠ t2/3 in (a), and x ⇠ t1/2 in (b). Data are shown for n = 320
and small initial polarisation µ = ⇡/1800.

shown in the inset of Fig. 2(b). This comes as no surprise
in the di↵usive regime � > 1 where the scaling function
of the magnetisation (Fig. 3(b)) is simply the error func-
tion s(x, t) = �µ

2 erf(x/
p

4Dt). However, the same can
not be said for the isotropic point � = 1. Proportional-
ity between the magnetisation gradient and the current

profile (Fig.3(c)), this time with a time-dependent ratio
D ' K

3 t1/3, suggests a di↵usion equation in a scaled time

@s(x, t)

@⌧
=

K

4

@2s(x, t)

@x2
, where ⌧ = t4/3, (5)

which again yields error function profile with a di↵er-

Ljubotina, Žnidarič and TP, arXiv:1702.04210; to appear in Nature Comm.
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Scaling of the total transported magnetization

∆s(t) =

∫ t

0
jx=n/2(t′)dt′ ∝ tα.
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Figure 2. Scaling exponents. Scaling exponent ↵ of magnetisation spreading, �s ⇣ t↵. (a, b) Local exponent ↵(t) calculated
as a numerical log-derivative d log�s(t)/d log t for � = 1 (a) and � = 2 (b) (dashed lines indicate exponents 2/3 and 1/2,
resp., while dashed lines in the insets show best power-law fits to �s(t) – red curve), both for µ = ⇡/1800. (c) Conjecture for
the dependence ↵(�) at high temperatures and small µ. The inset shows the di↵usion constant obtained from Fick’s law for
various values of � in the di↵usive regime, converging to a finite value at large � (agreeing with Ref. [28]). (d) Dependence
on µ for � = 1 shows a small but significant change in the behaviour: for µ ⇡ 1 it is closer to ↵ = 3/5 while for small µ it
becomes significantly close to ↵ = 2/3 (dashed). For intermediate µ the error-bars (denoting the estimated standard deviation)
are larger since the simulation becomes less e�cient there (see Methods).

ent scaling variable s(x, t) = �µ
2 erf(K�1/2x/t2/3) with

K = 2.33 ± 0.03. In Fig.3(a) we compare numerical pro-
files with the error function, again finding good agree-
ment within accuracy of our simulations. Therefore, the
scaling function is, in both cases, � = 1 and � > 1, the
error function, the di↵erence being only in the scaling
variable which is x/t2/3 at the superdi↵usive isotropic
point. This result is surprising, as anomalous di↵usion
is usually associated with Levy processes and hence long
(non-Gaussian) tails in the profiles. Here it seems it all
amounts to a nonlinear rescaling of time. Theoretical
explanation of this e↵ect is urgent.

Entanglement entropy and simulation
complexity.– Lastly, we mention a numerical ob-
servation that explains why we can simulate dynamics
to such long times, and is an interesting property on
its own. We use a time-dependent density matrix
renormalisation group method (tDMRG), see Methods.
The e�ciency of tDMRG depends on the entanglement
entropy, i.e., for pure state evolution on the Von Neu-

mann entropy S = �tr[⇢A ln ⇢A] of the reduced state
⇢A = trA| ih |, whereas for mixed states evolution on
an analogous operator space entanglement entropy S#

[31] of a vectorised density operator ⇢. When starting
with a typical product initial state both entropies typ-
ically grow linearly with time, regardless of the system
being integrable or not [32, 33], causing exponentially
fast growth of complexity and with it a failure of these
numerical methods. In our case though, see Fig.4,
entropies grow much slower, namely in a power-law
fashion

S(#) ⇠ t� , (6)

with � being less than 1. The most e�cient simulations
have been possible with density operators for small µ
where the exponent � is typically between 0.3 and 0.5.
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Scaling of magnetization profiles and diffusion equation 5

Figure 3. Scaling profiles. Scaling of density and current profiles with x/t↵. In the top row we show the scaling of
magnetisation profiles, (a) for � = 1 using ↵ = 2/3, and (b) for � = 2 and using ↵ = 1/2 (note that the points for di↵erent
times overlap almost perfectly; the insets show the convergence of the relative root-mean-square di↵erence (in %) between data
s(x, t) and scaled erf-profiles (see text) as a function of time). Frames (c) and (d) show the emergence of Fick’s law at late
times (shown at t = 160), comparing current profiles (red) to gradients of spin density (blue) – both indistinguishable from
Gaussians, for � = 1 in (c) and � = 2 in (d). In all plots the system size is n = 320.

DISCUSSION

Our numerical results can be interpreted as an evi-
dence of normal spin-di↵usion and spin Fick’s law in the
easy-axis anisotropic Heisenberg chain (for anisotropy
� > 1), with spin-density satisfying the di↵usion equa-
tion on large scales. Besides the case � = 2 shown here,
we provide in Supplementary Information additional data
for � = 1.05, 1.1, 1.3, 1.5 demonstrating a clear con-
vergence of the di↵usive scaling exponents ↵ = 1/2 in
all massive cases (Supplementary Note 1), and data for
massless cases � = 0, 0.5, 0.7, 0.9 which indicate conver-
gence to ballistic exponent ↵ = 1 (Supplementary Note
2). While for generic, non-spin-reversal-symmetric initial
states, the dominant contribution to transport is ballistic
as determined by generalised hydrodynamics (or gener-
alised one-dimensional Euler’s equations) [8, 9, 13–15],
the next-to-leading term is now clearly predicted to be
di↵usive, as following from our work. However, a theo-
retical explanation, or even derivation of di↵usive con-
tribution to transport in an integrable system with a
macroscopic number of conservation laws is still pend-
ing. Even more surprising is the discovery of anomalous

super-ballistic transport in the isotropic case (� = 1)
with the scaling exponent equal to or very close to 2/3.
While this might suggest a behaviour described by KPZ
(Kardar-Parisi-Zhang) universality class, we find that
asymptotic spin density profiles obey the non-linearly
scaled di↵usion equation and are distinct from the KPZ
profiles. One might conjecture that the scaling exponent
2/3 is a consequence of SU(2) symmetry and not the fact
that the model there corresponds to the marginal critical
point � = 1. This would be consistent with observed
anomalous super-di↵usive scalings in SU(4) spin ladders
in the setup of driven steady state Lindblad dynamics
[34] where the scaling exponent appears to be ↵ = 3/5.
Curiously, all scaling exponents observed in this work
(1/1, 1/2, 2/3, 3/5) are ratios of subsequent Fibonacci
numbers [35].

METHODS

The time evolution is performed by means of the
tDMRG algorithm [36, 37]. In particular, for small
µ data (which is mostly reported here) the most e�-

Curiously, for ∆ = 1 we have an effective diffusion in non-linearly scaled time

∂τ s(x , t) = K∂2
x s(x , t), τ = t4/3.
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Why is this tDMRG simulation working for such long times?
Anomalously slow increase of bi-partitie entanglement entropies:

6

Figure 4. Simulation complexity. (a) Von Neumann
entanglement entropy S for the fully polarized initial state
(µ = 1) at the isotropic point. (b) Operator space entan-
glement entropy S# for � = 1 (blue) and � = 2 (green),
both for µ = ⇡/1800. Bipartition into two equal halves and a
system size of n = 320 are used.

cient was the matrix product density operator version
of tDMRG, with which we could reach times of the order
t ' 200 for system size n ' 2t using bond dimensions
50 � 200 resulting in relative truncation errors less than
1%. One the other hand, for µ ⇡ 1 (close to domain
wall pure state), the pure state version of tDMRG be-
comes more e�cient as the corresponding entanglement
entropy scaling exponents � are smaller. The two ap-
proaches appear to complement one another as can be
seen in Fig.2(d). Neither approach allows us to observe
long times in the intermediate region of µ, where the ex-
ponents � become closer to 1.

In order to simulate the desired density operator by
evolving pure states we define a set of initial states

| (t = 0)i =
O

x<0

| (µ,�x)i ⌦
O

x�0

| (�µ,�x)i

where | (µ,�)i =
p

(1 + µ)/2|"i + ei�
p

(1 � µ)/2|#i is
simply the Bloch sphere representation of a 2-level system
and the �x are uniform independent random numbers in
the range [0, 2⇡). The density matrix is then obtained as
an ensemble average over a set of such pure random states
⇢(t) = E(| (t)ih (t)|). It is clear that an increasingly
large set of random states is needed as the magnetisation
approaches µ ! 0, where the matrix product density
operator simulation is favourable anyway.

Data availability.– Data are available on request
from the authors.
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Lower bound on diffusion constant in terms of curvature of Drude weight

[Medenjak, Karrasch and TP, arXiv:1702.04677]
Finite-time T , finite-size n, fixed filling x , Drude weight and diffusion constant

D̃(x) =
β

4nT

∫ T

−T
dt〈Jn(t), J〉β,xn , D̃ =

β

4nχ

∫ T

−T
dt〈Jn(t), J〉βn

in terms of a projector Pm
n on a sector with fixed filling/magnetization m:

〈A〉β,xn =
〈AP(x+1)n

n 〉βn
〈P(x+1)n

n 〉βn
,

where χ is the static susceptibility.
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−T
dt〈Jn(t), J〉βn

in terms of a projector Pm
n on a sector with fixed filling/magnetization m:

〈A〉β,xn =
〈AP(x+1)n

n 〉βn
〈P(x+1)n

n 〉βn
,

where χ is the static susceptibility.
Assume that Z2 symmetry exists (e.g. spin-reversal) such that x = 0 represents
the symmetric sector, and

D̃(x) ∝ x2.
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Lower bound on diffusion constant in terms of curvature of Drude weight

[Medenjak, Karrasch and TP, arXiv:1702.04677]
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D̃(x) =
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∫ T

−T
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n on a sector with fixed filling/magnetization m:

〈A〉β,xn =
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n 〉βn
〈P(x+1)n

n 〉βn
,

where χ is the static susceptibility.
Assume that Z2 symmetry exists (e.g. spin-reversal) such that x = 0 represents
the symmetric sector, and

D̃(x) ∝ x2.

Key idea:
Write D̃ = T

χ

∑
x〈P

(x+1)n
n 〉βn D̃(x)

Scale the size as n = vT , where v > vLR (Lieb-Robinson velocity), and
consider large T asymptotics
Expand Drude weight as D̃(β) = D + 1

T D1 + . . .

Throw away the term with D1 which is strictly non-negative (D1 agrees
with the definition of the Diffusion constant in the presence of convective
terms, see e.g. (Spohn, 1991)).
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terms, see e.g. (Spohn, 1991)).
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Lower bound on diffusion constant in terms of curvature of Drude weight

[Medenjak, Karrasch and TP, arXiv:1702.04677]
Finite-time T , finite-size n, fixed filling x , Drude weight and diffusion constant

D̃(x) =
β

4nT

∫ T

−T
dt〈Jn(t), J〉β,xn , D̃ =

β

4nχ

∫ T

−T
dt〈Jn(t), J〉βn

in terms of a projector Pm
n on a sector with fixed filling/magnetization m:

〈A〉β,xn =
〈AP(x+1)n

n 〉βn
〈P(x+1)n

n 〉βn
,

where χ is the static susceptibility.
Assume that Z2 symmetry exists (e.g. spin-reversal) such that x = 0 represents
the symmetric sector, and

D̃(x) ∝ x2.

Key idea:
Write D̃ = T

χ

∑
x〈P

(x+1)n
n 〉βn D̃(x)

Scale the size as n = vT , where v > vLR (Lieb-Robinson velocity), and
consider large T asymptotics
Expand Drude weight as D̃(β) = D + 1

T D1 + . . .

Throw away the term with D1 which is strictly non-negative (D1 agrees
with the definition of the Diffusion constant in the presence of convective
terms, see e.g. (Spohn, 1991)).
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In the limit T →∞, considering optimal v = vLR, the limits of D̃(x) and D̃
become the Drude weight and the diffusion constant, and we find:

D ≥ 1
8βχfvLR

∂2
xD(x)

∣∣∣
x=0

, f = lim
n→∞

1
4n
∂2

xFn(β, x)|x=0

where f is a second derivative of free energy density.
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In the limit T →∞, considering optimal v = vLR, the limits of D̃(x) and D̃
become the Drude weight and the diffusion constant, and we find:

D ≥ 1
8βχfvLR

∂2
xD(x)

∣∣∣
x=0

, f = lim
n→∞

1
4n
∂2

xFn(β, x)|x=0

where f is a second derivative of free energy density.

The bound is particularly simple at high temperature limit β → 0:

D ≥ 1
4χvLR

∂2
xD(x).

3

FIG. 1. Optimized high-temperature Drude weight lower bound g(0, x) obtained from a finite number of quasilocal charges
for s = 1

2
up to s = 5

2
is plotted for � = 1 (a) and � = 1.5 (b). Results are compared to the finite time tDMRG result

of current-current autocorrelation function at temperature T = 200 (green crosses). Inset in the left figure shows real time
tDMRG data for � = 1 with filling x increasing from bottom to top, starting from half-filling.

This is a consequence of the Lieb-Robinson theorem [33–
35] and the clustering property of spatio-temporal au-
tocorrelation function [13] (see Sec. A of [36]). Setting
n ⌘ vT , and expanding the Drude weight for large times
D̃ = D(�, x) + 1

T D1(�, x) + ..., the scaling contribution
D1(�, x) and the ballistic contribution D(�, x) can be
identified. Note that D1(�, x) in fact takes a form of a
Green-Kubo expression for the di↵usion constant in the
presence of convective term [37], namely by the current

operator J(t) replaced by J̃(t) = J(t) � 1
2T

R T

�T
dt J(t),

before taking T ! 1, and can be shown to be man-
ifestly nonnegative. In what follows we take into ac-
count only the ballistic contribution to di↵usion con-
stant. For infinite temperature the statistical weights
can be calculated explicitly hPm

vT i0vT = 1
22vT

�
2vT
m

�
. Ex-

panding the Drude weight in the vicinity of half-filling
and taking into account only the leading contribution

D(0, x) ⇠ 1
2

@2

@x2 D(0, x)x2, the result

D(0) � 1

4�̃v

@2

@x2
D(1)(x), (10)

is obtained, with D(1)(x) = lim�!0
D(�,x)

� . Higher order

contributions can be shown to vanish (see Sec. B of [36]).
Obtaining the finite temperature bound is straight for-

ward, after making a few assumptions. First of all intro-
ducing the filling-dependent free energy function

�Fn(x,�) = � log tr (P (x+1)n
n e��Hn), (11)

disregarding the contributions to the free energy function
from the states that are su�ciently far away from half-
filling (see sec. C of [36]), the statistical weights of sectors

can be calculated as hP (x+1)n
n i�n / e�f1(�)x22n . Lastly,

a summation over filling sectors in expression (9) can be
replaced by integration yielding the main result (8) (for
details see Sec. C of [36]).

The dependence of the lower bound on the velocity v
might seem puzzling at first, since the di↵usion constant
D is independent of v, provided that v � vLR. How-
ever, one can quickly see that the scaling contributionP

x P
(x+1)vT
vT D1(�, x) to expression (9), which has been

disregarded in the lower bound, depends on the velocity
v as well. Note that in the limit v ! 1 this latter expres-
sion contains the entire di↵usion constant, so our lower
bound vanishes. We thus expect that the optimal bound,
without further considerations, is achieved for v = vLR.

Example: Heisenberg model.– Here we obtain a bound
on di↵usion constant in XXZ model, by employing the
Mazur inequality to lower bound the curvature of the
Drude weight. We begin by noting that a set of quasilocal
charges is generated by logarithmic derivatives of transfer
matrices Ts(�) [28, 29]

Xs(�) = @� log T+
s (�), (12)

where � is a spectral parameter, representation (spin)
parameter s takes half integer values, parameter shift is
denoted by f+(�) = f(� + i�2 ), and � > 0 parametrizes
the anisotropy as � = cosh(�). For simplicity we con-
sider here only the high temperature limit � = 0. To
obtain an optimal bound in the filling sector x we in-
troduce functions hx

s (�) expressing the quasilocal charge
Qx =

P
s

R
d� hx

s (�)Xs(�) and study the continuous ver-
sion of the least-square problem. An optimal function
hx

s (�) can be obtained by minimizing the expectation
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Stochastic-boundary driven quantum chains

Canonical markovian master equation for the many-body density matrix:

The Lindblad (L-GKS) equation:

dρ
dt

= L̂ρ := −i[H, ρ] +
∑
µ

(
2LµρL†µ − {L†µLµ, ρ}

)
.
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Stochastic-boundary driven quantum chains

Canonical markovian master equation for the many-body density matrix:

The Lindblad (L-GKS) equation:

dρ
dt

= L̂ρ := −i[H, ρ] +
∑
µ

(
2LµρL†µ − {L†µLµ, ρ}

)
.

Bulk: Fully coherent, local interactions,e.g. H =
∑n−1

x=1 hx,x+1.
Boundaries: Fully incoherent, ultra-local dissipation,
jump operators Lµ supported near boundaries x = 1 or x = n.
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Nonequilbrium steady state (NESS)

Steady state Lindblad equation L̂ρ∞ = 0:

i[H, ρ∞] =
∑
µ

(
2Lµρ∞L†µ − {L†µLµ, ρ∞}

)
The XXZ Hamiltonian:

H =
n−1∑
x=1

(2σ+
x σ
−
x+1 + 2σ−x σ

+
x+1 + ∆σz

xσ
z
x+1)

and symmetric boundary (ultra local) Lindblad jump operators:

LL
1 =

√
1
2

(1− µ)ε σ+
1 , LR

1 =

√
1
2

(1 + µ)ε σ+
n ,

LL
2 =

√
1
2

(1 + µ)ε σ−1 , LR
2 =

√
1
2

(1− µ)ε σ−n .

Two key boundary parameters:

ε System-bath coupling strength

µ Non-equilibrium driving strength (bias)
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Cholesky decomposition of NESS and Matrix Product Ansatz (for µ = 1)

TP, PRL106(2011); PRL107(2011); Karevski, Popkov, Schütz, PRL111(2013)

ρ∞ = ( tr R)−1R, R = ΩΩ†

Ω =
∑

(s1,...,sn)∈{+,−,0}n
〈0|As1As2 · · ·Asn |0〉σs1 ⊗ σs2 · · · ⊗ σsn = 〈0|L(ϕ, s)⊗xn|0〉

Tomaž Prosen Diffusive transport in integrable lattice systems



Cholesky decomposition of NESS and Matrix Product Ansatz (for µ = 1)

TP, PRL106(2011); PRL107(2011); Karevski, Popkov, Schütz, PRL111(2013)

ρ∞ = ( tr R)−1R, R = ΩΩ†

Ω =
∑

(s1,...,sn)∈{+,−,0}n
〈0|As1As2 · · ·Asn |0〉σs1 ⊗ σs2 · · · ⊗ σsn = 〈0|L(ϕ, s)⊗xn|0〉

A0 =
∞∑

k=0

a0
k |k〉〈k|,

A+ =
∞∑

k=0

a+k |k〉〈k+1|,

A− =
∞∑

k=0

a−k |k+1〉〈r |,

0 1 2 3 4
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Cholesky decomposition of NESS and Matrix Product Ansatz (for µ = 1)

TP, PRL106(2011); PRL107(2011); Karevski, Popkov, Schütz, PRL111(2013)

ρ∞ = ( tr R)−1R, R = ΩΩ†

Ω =
∑
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A0 =
∞∑

k=0

a0
k |k〉〈k|,

A+ =
∞∑

k=0

a+k |k〉〈k+1|,

A− =
∞∑

k=0

a−k |k+1〉〈r |,

0 1 2 3 4

where (for symmetric driving):

ϕ =
π

2
tan(ηs) :=

ε

2i sin η
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Cholesky decomposition of NESS and Matrix Product Ansatz (for µ = 1)

TP, PRL106(2011); PRL107(2011); Karevski, Popkov, Schütz, PRL111(2013)

ρ∞ = ( tr R)−1R, R = ΩΩ†

Ω =
∑

(s1,...,sn)∈{+,−,0}n
〈0|As1As2 · · ·Asn |0〉σs1 ⊗ σs2 · · · ⊗ σsn = 〈0|L(ϕ, s)⊗xn|0〉

A0 =
∞∑

k=0

a0
k |k〉〈k|,

A+ =
∞∑

k=0

a+k |k〉〈k+1|,

A− =
∞∑

k=0

a−k |k+1〉〈r |,

0 1 2 3 4

where (for symmetric driving):

ϕ =
π

2
tan(ηs) :=

ε

2i sin η

Ω(ϕ, s) = 〈0|L(ϕ, s)⊗xn|0〉 plays a role of a highest-weight transfer matrix cor-
responding to non-unitary representation of the Lax operator

[Ω(ϕ, s),Ω(ϕ′, s ′)] = 0, ∀s, s ′, ϕ, ϕ′
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Observables in NESS: From insulating to ballistic transport

For |∆| < 1, 〈J〉 ∼ n0 (ballistic)

For |∆| > 1, 〈J〉 ∼ exp(−constn) (insulating)

For |∆| = 1, 〈J〉 ∼ n−2 (anomalous)
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Two-point spin-spin correlation function in NESS

C
(x

n
,
y
n

)
= 〈σz

xσ
z
y 〉 − 〈σz

x〉〈σz
y 〉

for isotropic case ∆ = 1 (XXX )

C(ξ1, ξ2) = −π
2

2n
ξ1(1− ξ2) sin(πξ1) sin(πξ2), for ξ1 < ξ2

Tomaž Prosen Diffusive transport in integrable lattice systems



How important is quantum mechanics for undertstanding quantum transport?

or

What about the ballistic-diffusive transitions in classical integrable lattices?
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Example: Classical “XXZ” model — Lattice-Landau-Lifshitz

[TP and B. Žunkovič, PRL 111, 040602 (2013)]

Locally interacting classical spin chain Hamiltonian

H =
n∑

x=1

h(~Sx , ~Sx+1),

where for Lattice-Landau-Lifshitz model, the energy density reads

h(~S , ~S ′) = log
∣∣cosh(ρS3) cosh(ρS ′3) + coth2(ρR) sinh(ρS3) sinh(ρS ′3)

+ sinh−2(ρR)F (S3)F (S ′3)(S1S ′1 + S2S ′2)
∣∣

and F (S) ≡
√

(sinh2(ρR)− sinh2(ρS))/(R2 − S2).
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Example: Classical “XXZ” model — Lattice-Landau-Lifshitz

[TP and B. Žunkovič, PRL 111, 040602 (2013)]

Locally interacting classical spin chain Hamiltonian

H =
n∑

x=1

h(~Sx , ~Sx+1),

where for Lattice-Landau-Lifshitz model, the energy density reads

h(~S , ~S ′) = log
∣∣cosh(ρS3) cosh(ρS ′3) + coth2(ρR) sinh(ρS3) sinh(ρS ′3)

+ sinh−2(ρR)F (S3)F (S ′3)(S1S ′1 + S2S ′2)
∣∣

and F (S) ≡
√

(sinh2(ρR)− sinh2(ρS))/(R2 − S2).

Writing anisotropy parameter δ = ρ2 we study three cases:

δ > 0, easy axis regime (Ising-like) diffusive!!!
δ < 0, easy plane regime (XY -like) ballistic!!!

δ = 0, isotropic regime (where h(~S , ~S ′) = log
(
1 +

~S·~S′

R2

)
) anomalous!!!
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Spatio-temporal current-current c.f. shown in log-scale with color scale
ranging from 10−4.5 to 10−1 indicated in the bottom-right. In the upper panels
we show data averaged over ensembles of N ≈ 103 initial conditions in
easy-axis (left; n = 5120), isotropic (center; n = 5120 ) and easy-plane (right;
n = 2560) regimes. Bottom: smaller n = 160,N = 600 where scars of solitons
emerging from local thermal fluctuations are still clearly visible.
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C(t) in log-log scale for easy-plane regime (top curves, orange: n = 160, black:
n = 2560), isotropic regime (middle curves, yellow: n = 2560, blue: n = 5120)
and easy-axis regime (bottom curves, violet: n = 2560, green: n = 5120).
Shaded regions denote the estimated statistical error for ensemble averages over
N ≈ 103 initial conditions. Dashed lines denote asymptotic behavior for large
time in the easy-plane regime (dark-blue) and isotropic regime (light-blue).
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Exactly solvable model of transport: Reversible cellular automaton

[Medenjak, Klobas and TP, arXiv:1705.04636]
2

FIG. 2. Schematic representation of the model. Gray vertices
denote the sites to which the particles or vacanices (st

x) are
assigned, and green boxes where the particles scatter carry
local current. Particles can be imagined to move along green
lines. Pairs of sites (x � 1, x), (x + 1, x + 2),. . . are updated
between the time-slices t and t+ 1

2
, while the shifted pairs are

propagated in the following half-time step.

tion at time t, st = �(st�1), can be expressed in terms of
a two step propagator � = �o � �e given by sequences of
disjoint local mappings (1)

�o = �1,2 � · · · � �n�1,n, �e = �2,3 � · · · � �n,1, (2)

intertwining odd-even and even-odd sites respectively.
The dynamics of charges is induced by freely propagat-
ing vacancies, while the clustered particles remain com-
pletely frozen in time as illustrated in Fig. 1. The cel-
lular automaton admits a mechanical analogy in terms
of a two-species, synchronous hard-point gas if particles
at occupied sites x are attributed velocities 2(�1)x or
�2(�1)x, at odd or even steps, corresponding respec-
tively to integer or half-integer times [22].

We are interested in the dynamics of the charge qt
x

corresponding to sites x and x + 1 at time t,

qt
x = st

x + st
x+1, (3)

with st
x = ±1, if the site x is occupied by the posi-

tive/negative charge, and st
x = 0 otherwise. The total

charge Qt =
P

x qt
x, is a constant of motion. The corre-

sponding current J t =
P

x jt
x can be defined on the in-

termediate time steps (see Fig. 2) as

jt+1/2
x = 2 (�1)x(st+1/2

x � s
t+1/2
x+1 )(st+1/2

x + s
t+1/2
x+1 )2, (4)

where jx denotes the local density. The only configura-
tions that contribute to the current are (±, ;) and (;, ±).
One can check that the continuity equation holds:

qt+1
x � qt

x +
1

2

⇣
j

t+1/2
x+1 � j

t+1/2
x�1

⌘
= 0. (5)

To carry out the calculations we introduce a commu-
tative algebra of observables A (multiplicative algebra of
functions over the configuration space) with a local basis

[↵]x(s) = �↵x,sx
, ↵ 2 {;, +,�}, (6)

[↵1↵2 . . .↵r]x = [↵1]x[↵2]x+1 · · · [↵r]x+r�1. (7)

The subscript x will be dropped when the position is clear
from the context. The dynamics of observables at(s) ⌘
U ta(s) = a(�t(s)) is given by a 3n ⇥ 3n matrix U [23]
factorized as

U = UoU e, Uo =

n/2Y

x=1

U2x�1,2x, U e =

n/2Y

x=1

U2x,2x+1. (8)

Note that the local propagator obeys Yang-Baxter equa-
tion Ux,yUy,zUx,y = Uy,zUx,yUy,z. Additionally, it proves
useful to define the unnormalized maximum entropy state

hai =
X

s

a(s), (9)

in terms of which an expectation value in any probability
distribution (state) p can be expressed as haip = ha pi.
We introduce an alternative local basis and its dual

[0] = [;] + [+] + [�], [0]0 = (1 � ⇢)[;] +
⇢

2
([+] + [�]) ,

[1] = [+] � [�], [1]0 = 1
2 ([+] � [�]) , (10)

[2] = 1
1�⇢ [;] � [0], [2]0 = 1�⇢

2 (2[;] � [+] � [�]) ,

h[↵][�]0i = �↵,� , ↵,� 2 {0, 1, 2}. This basis has the fol-
lowing properties: [0] ⌘ 1 (identity in A), [1] corresponds
to the imbalance of charge, and h[2]ip = 0 for the class
of probability distributions p introduced below, with the
particle density ⇢. These properties enable us to study
the dynamics on the reduced space. The local charge and
current now read

qx = [10]x + [01]x, (11)

jx = 2(1 � ⇢)(�1)x ([10]x � [01]x + [12]x � [21]x) . (12)

Linear response.– According to Einstein’s relation
the di↵usion coe�cient D is connected to conductivity
as � = �D, � being the static susceptibility (i.e. the sec-
ond moment of charge Q). In the small constant electric
field, the conductivity takes the following form (Sect. A
of [24])

� =
1

2
C(0) +

1X

t=1

C(t), (13)

where C(t) = limn!1 1
n hJU tJip is the current correla-

tion function, with p being an equilibrium state, Up = p.
Another important transport coe�cient, corresponding
to the rate at which the conductivity diverges [25], is
the Drude weight, D = C(1).

We restrict the discussion to translationally invariant
product equilibrium states p = p(⇢, µ) =

Qn
x=1 px,

px = [0]0x + µ[1]0x, 0  ⇢  1, �⇢  µ  ⇢. (14)

Note that [0]0x depends on ⇢. The density ⇢ repre-
sents the probability of a lattice site being occupied by

Local deterministic scattering rule (with three states s ∈ {∅,+,−}):

φx,x+1 : (∅, ∅)↔ (∅, ∅), (∅, α)↔ (α, ∅), (α, β)↔ (α, β).

Global propagator (s1,t+1, s2,t+1, . . . , sn,t+1) = φ(s1,t , s2,t , . . . , sn,t):

φ = φo ◦ φe, φo = φ1,2 ◦ · · · ◦ φn−1,n, φe = φ2,3 ◦ · · · ◦ φn,1.
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An example of dynamics starting from a typical initial condition:

Di↵usion in deterministic interacting lattice systems

Marko Medenjak,1 Katja Klobas,1 and Tomaž Prosen1

1Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, SI-1000 Ljubljana, Slovenia

We study reversible deterministic dynamics of classical charged particles on a lattice with hard-
core interaction. It is rigorously shown that the system exhibits three types of transport phenomena,
ranging from ballistic, through di↵usive to insulating. By obtaining an exact expressions for the cur-
rent time-autocorrelation function we are able to calculate the linear response transport coe�cients,
such as the di↵usion constant and the Drude weight. Additionally, we calculate the long-time charge
profile after an inhomogeneous quench and obtain di↵usive profile with the Green-Kubo di↵usion
constant. Exact analytical results are corroborated by Monte-Carlo simulations.

Introduction.– Understanding out-of-equilibrium
phenomena has been at the forefront of condensed matter
physics of the last decade. Despite the e↵orts, we have
only recently gained a considerable insight into the micro-
scopic origins of the transport in interacting systems in
terms of an emerging field of generalized hydrodynamics
(GHD) [1–11]. While GHD provides a general framework
to analytically deal with the ballistic transport, in par-
ticular in integrable systems, it lacks an extension which
would enable us to study normal, di↵usive transport. In
this regard, there are only a few results on lower bound-
ing the di↵usion constant in terms of local, or bilocal
conserved charges [12, 13].

Since the integrable systems are characterized by bal-
listically propagating excitations [14], the question of
how the di↵usion, which is usually related to microscopic
chaos, arises in integrable, locally interacting, clean and
deterministic (i.e. non-disordered and non-dissipative)
systems is puzzling to say the least [15–20]. A great deal
of attention has been devoted to the study of inhomo-
geneous quench problems, where two chains in equilib-
rium with distinct temperatures or chemical potentials
are joined together and then let to evolve under a ho-
mogeneous Hamiltonian [1–9, 21]. In such situations,
non-equilibrium steady states typically emerge on ballis-
tic lines x = vt. However, for systems exhibiting parity-
like symmetries, with respect to which the initial quench
state is symmetric and the current anti-symmetric, the
ballistic transport channel may close and time-dependent
DMRG simulations clearly indicate that the steady state
arises along the di↵usive lines x = ⇠

p
t [15].

In this Letter we expound one possible general mecha-
nism for di↵usive behavior in interacting systems, which
as we show on an example, is connected to the inter-
play between freely propagating neutral degrees of free-
dom and insulating behavior of charge carrying ones.
The model in question is a simple, reversible cellular au-
tomaton, consisting of three types of particles: freely
moving vacancies, and hard-core interacting positive
and negative charges. Despite the integrability, obtain-
ing the full time dependence is usually intractable, ex-
cept for non-interacting systems. Typically this presents
an insurmountable barrier for calculation of transport

0 20 40 60 80 100 120 140 160 180 200
x

0
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100
t

FIG. 1. Time evolution of a random maximum entropy
configuration (⇢ = 2/3, µ = 0) for 200 sites. Particles +, �,
and vacancies ; are in blue, green, and white, respectively.

coe�cients. In our model, however, we explicitly com-
pute the time dependence of current time autocorrela-
tion functions in separable equilibrium states, and solve
the inhomogeneous quench problem with arbitrary initial
charge density bias resulting in a universal di↵usive error
function scaling profile. Depending on the density of va-
cancies and the imbalance of positive and negative charge
three di↵erent regimes are identified. The absence of va-
cancies renders the system insulating, while in a generic
case of the charge imbalance the system exhibits ideal
transport. The regime with a finite density of vacancies
and without the charge imbalance is especially interest-
ing, since it includes the maximum entropy state, and in
this regime the model exhibits purely di↵usive transport.

The model.– Consider a deterministic, reversible cel-
lular automaton defined on the chain with an even length
of n sites. Each site can be either vacant (state ;),
or occupied by a positively or negatively charged par-
ticle (state + or �). The dynamics of the lattice con-
figuration, s = (s1, . . . , sn), sx 2 {;, +,�}, can be ex-
pressed in terms of a local two site mapping �x,x+1(s) =
(s1, s2, . . . , s

0
x, s0x+1, . . . , sn), where the updated elements

(s0x, s0x+1) are obtained from the initial ones (sx, sx+1), by
a self-inverse transformation

(;, ;) $ (;, ;), (;,↵) $ (↵, ;), (↵,�) $ (↵,�), (1)

with ↵,� 2 {+,�}. The local process describes the elas-
tic scattering of charged particles. The lattice configura-

The model can be interpreted as a synchronized version of a hard-rod gas on R
where diffusion has been established (Jepsen, JMP 6, 405 (1965); Lebowitz,
Percus, Sykes PR 171, 224 (1968); 188, 487 (1969))
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Local conservation law

Charge density:
qt

x = st
x + st

x+1

Current density:

j t+1/2
x = 2 (−1)x(st+1/2

x − st+1/2
x+1 )(st+1/2

x + st+1/2
x+1 )2

Continuity equation:

qt+1
x − qt

x +
1
2

(
j t+1/2
x+1 − j t+1/2

x−1

)
= 0.
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Algebraic formulation of dynamics

Define a commutative multilicative algebra of functions over micro-states
s ∈ {∅,+,−1}n with a local basis

[α]x(s) = δαx ,sx , α ∈ {∅,+,−},
[α1α2 . . . αr ]x = [α1]x [α2]x+1 · · · [αr ]x+r−1.
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Algebraic formulation of dynamics

Define a commutative multilicative algebra of functions over micro-states
s ∈ {∅,+,−1}n with a local basis

[α]x(s) = δαx ,sx , α ∈ {∅,+,−},
[α1α2 . . . αr ]x = [α1]x [α2]x+1 · · · [αr ]x+r−1.

Dynamics, time-automorphism of algerba of observables:

at(s) ≡ Uta(s) = a(φt(s))

where

U = UoUe, Uo =

n/2∏
x=1

U2x−1,2x , Ue =

n/2∏
x=1

U2x,2x+1.
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Algebraic formulation of dynamics

Define a commutative multilicative algebra of functions over micro-states
s ∈ {∅,+,−1}n with a local basis

[α]x(s) = δαx ,sx , α ∈ {∅,+,−},
[α1α2 . . . αr ]x = [α1]x [α2]x+1 · · · [αr ]x+r−1.

Dynamics, time-automorphism of algerba of observables:

at(s) ≡ Uta(s) = a(φt(s))

where

U = UoUe, Uo =

n/2∏
x=1

U2x−1,2x , Ue =

n/2∏
x=1

U2x,2x+1.

Local scattering operator obeys Yang-Baxter equation

Ux,yUy,zUx,y = Uy,zUx,yUy,z .
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Algebraic formulation of dynamics

Define a commutative multilicative algebra of functions over micro-states
s ∈ {∅,+,−1}n with a local basis

[α]x(s) = δαx ,sx , α ∈ {∅,+,−},
[α1α2 . . . αr ]x = [α1]x [α2]x+1 · · · [αr ]x+r−1.

Dynamics, time-automorphism of algerba of observables:

at(s) ≡ Uta(s) = a(φt(s))

where

U = UoUe, Uo =

n/2∏
x=1

U2x−1,2x , Ue =

n/2∏
x=1

U2x,2x+1.

Local scattering operator obeys Yang-Baxter equation

Ux,yUy,zUx,y = Uy,zUx,yUy,z .

Model allows for a stochastic extension where charges + and − penetrate each
other with probability λ

(±,∓)→ (1− λ)(±,∓) + λ(∓,±).

Now, λ plays the role of spectral parameter.
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Translationally invariant equilibrium state p(ρ, µ)

Set p(±) = 1
2 (ρ± µ), p(∅) = 1− ρ =: ρ̄ and define

〈a〉p =
∑

s

a(s)
∏
x

p(sx).
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Translationally invariant equilibrium state p(ρ, µ)

Set p(±) = 1
2 (ρ± µ), p(∅) = 1− ρ =: ρ̄ and define

〈a〉p =
∑

s

a(s)
∏
x

p(sx).

p is invariant
〈a〉p = 〈Ua〉p.
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Translationally invariant equilibrium state p(ρ, µ)

Set p(±) = 1
2 (ρ± µ), p(∅) = 1− ρ =: ρ̄ and define

〈a〉p =
∑

s

a(s)
∏
x

p(sx).

p is invariant
〈a〉p = 〈Ua〉p.

Useful local basis, orthonormal w.r.t. pI (ρ, µ = 0):

[0] = [∅] + [+] + [−] ≡ 1, [1] = [+]− [−], [2] = ρ
1−ρ [∅]− [+]− [−],

〈[α][β]〉p(ρ,0) = δα,β .
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Translationally invariant equilibrium state p(ρ, µ)

Set p(±) = 1
2 (ρ± µ), p(∅) = 1− ρ =: ρ̄ and define

〈a〉p =
∑

s

a(s)
∏
x

p(sx).

p is invariant
〈a〉p = 〈Ua〉p.

Useful local basis, orthonormal w.r.t. pI (ρ, µ = 0):

[0] = [∅] + [+] + [−] ≡ 1, [1] = [+]− [−], [2] = ρ
1−ρ [∅]− [+]− [−],

〈[α][β]〉p(ρ,0) = δα,β .

Charge density and current density read

qx = [10]x + [01]x , jx = 2(1− ρ)(−1)x ([10]x − [01]x + [12]x − [21]x
)
.
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Explicit evaluation of current-current correlations and Green-Kubo transport
coefficients

Nice properties of U in basis 012 allow for explicit computation of
C(t) = 〈JUtJ〉p:

C(t)

8ρ̄
=

{
µ2 + ρ(2− ρ); t = 0,
2µ2
ρ

+ 2ρ̄3(1− 2ρ)2t−2
(
ρ− µ2

ρ

)
; t ≥ 1.
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Explicit evaluation of current-current correlations and Green-Kubo transport
coefficients

Nice properties of U in basis 012 allow for explicit computation of
C(t) = 〈JUtJ〉p:

C(t)

8ρ̄
=

{
µ2 + ρ(2− ρ); t = 0,
2µ2
ρ

+ 2ρ̄3(1− 2ρ)2t−2
(
ρ− µ2

ρ

)
; t ≥ 1.

This yields the conductivity and the Diffusion constant for µ = 0

σ =
1
2
C(0) +

∞∑
t=1

C(t) = 4(1− ρ), D =
σ

χ
=

1
ρ
− 1

where χ(ρ, µ) = 〈q2
x 〉p = 4ρ− µ2 is the static susceptibility.
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Explicit evaluation of current-current correlations and Green-Kubo transport
coefficients

Nice properties of U in basis 012 allow for explicit computation of
C(t) = 〈JUtJ〉p:

C(t)

8ρ̄
=

{
µ2 + ρ(2− ρ); t = 0,
2µ2
ρ

+ 2ρ̄3(1− 2ρ)2t−2
(
ρ− µ2

ρ

)
; t ≥ 1.

This yields the conductivity and the Diffusion constant for µ = 0

σ =
1
2
C(0) +

∞∑
t=1

C(t) = 4(1− ρ), D =
σ

χ
=

1
ρ
− 1

where χ(ρ, µ) = 〈q2
x 〉p = 4ρ− µ2 is the static susceptibility.

For charge imbalance µ 6= 0 we find ballistic transport with Drude weight

D = C(∞) = 16
(
ρ−1 − 1

)
µ2.
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Explicit evaluation of current-current correlations and Green-Kubo transport
coefficients

Nice properties of U in basis 012 allow for explicit computation of
C(t) = 〈JUtJ〉p:

C(t)

8ρ̄
=

{
µ2 + ρ(2− ρ); t = 0,
2µ2
ρ

+ 2ρ̄3(1− 2ρ)2t−2
(
ρ− µ2

ρ

)
; t ≥ 1.

This yields the conductivity and the Diffusion constant for µ = 0

σ =
1
2
C(0) +

∞∑
t=1

C(t) = 4(1− ρ), D =
σ

χ
=

1
ρ
− 1

where χ(ρ, µ) = 〈q2
x 〉p = 4ρ− µ2 is the static susceptibility.

For charge imbalance µ 6= 0 we find ballistic transport with Drude weight

D = C(∞) = 16
(
ρ−1 − 1

)
µ2.

Note that this simple model saturates the curvature inequality (note vLR = 2)

D =
1

4χvLR
∂2
µD(µ).
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Inhomogeneous quench

Using the nice algebra one can even completely solve the initial value problem
for µ = µL for x ≤ n/2 and µ = µR for x > n/2:

f (x , t) = 〈Utqn/2+2x−1〉p,

f̃ (ξ) = lim
t→∞

(
1
2
ξ
√

t, t) = (µL + µR) + (µrmR − µL)erf

(
ξ

2
√
ρ−1 − 1

)
.
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FIG. 4. Charge profiles f(⇠
p

t/2, t) after the inhomoge-
neous quench. Curves with di↵erent colors correspond to dif-
ferent times t. The profiles converge to the estimated asymp-
totic profiles (dashed lines) given by Eq. (27). The parame-
ters (⇢, µ1, µ2) are (1/4,�0.36, 0.16) and (1/3,�0.4, 0.4).

Due to the conservation of the number of ↵j = 1 in the
adjoint time evolution U�tp expressed in the dual basis
[↵]0, the initial state p can be replaced by

p̃ =

n
2X

x=�n
2 +1

µxex, where ex = [0 . . . 0| {z }
n
2 +x�1

1 0 . . . 0| {z }
n
2 �x

]0. (24)

Here we use the dual space version of the argument
used in the computation of correlation functions. After
half of the time step the time propagated charge density
(24) consists of the terms including a single occurrence
of [1]0 and combinations of [1]0 and [2]0 on neighboring
sites on the background of [0 . . . 0]0. Using the argument
of the freely propagating [2]0, namely U1,2[02]0 = [20]0,
U1,2[20]0 = [02]0, we can conclude that the terms con-
taining [2]0 can be disregarded at all time steps due to
the orthogonality to charge densities qx. The complete
time propagation on the relevant subspace, spanned by
{ex}, is described by a cyclic block three-diagonal matrix

U =

2
66664

. . .
. . .

. . .

c a b
c a b

. . .
. . .

. . .

3
77775

, (25)

where a, b, c are 2 ⇥ 2 blocks. The projected initial
state (24) reads p =

Ln
x=1 µx�n/2. Assuming that

n � 8 t + 2, the charge profile (23) inside of the light
cone no longer depends on n. Thus the limit n ! 1
can be applied and an infinite matrix U can be diago-
nalized using the block Fourier transform, yielding two
bands of eigenvalues �1,2(k), k 2 [�⇡,⇡] and Bloch eigen-
vectors !1,2(k) =

L
x2Z v1,2(k)eikx (see Sect. C of [24]

for details). Additionally note that hqxU�teyi = 0, if
|x � y| > 2t, so the charge density profile can finally be

expressed as a Fourier integral

f(x, t) =
x+tX

y=x�t

µ2y

Z ⇡

�⇡

dk eik(x�y)
2X

j=1

(�1)j�t
j(k)↵̃j(k),

(26)
where ↵̃1,2(k) = ↵1,2(k)

�
[1, 1] · v1,2(k)

�
, and ↵1,2(k) are

the coe�cients expressing the vector [1, 1] in terms of
Bloch vectors v1,2(k) (details in Sect. C of [24]). We
are interested in the behavior of f(x, t) on the di↵u-
sive lines 2x = ⇠

p
t in the large time limit f̃(⇠) =

limt!1 f(⇠
p

t/2, t). In this limit, the contribution from
the term proportional to �2(k)t can be disregarded,
since supk|�2(k)| < 1. Additionally, one should note
that �1(0) = 1, therefore large t asymptotics of (26)
can be obtained by expanding �1(k) around k = 0,

�1(k)t ' e��k2t, � = 1�⇢
4⇢ . Introducing a new variable

h = k
p

t the integral (26) can be calculated exactly in
the scalling limit x, t ! 1 with x/

p
t fixed, yielding

f̃(⇠) = (µR + µL) + (µR � µL) erf

✓
⇠

4
p
�

◆
. (27)

The agreement between the exact and numerical result
can be seen in Fig 4. Since the solution of the di↵usion

equation @
@tf(x, t) = D @2

@x2 f(x, t) for a step initial data
reads f(x, t) ⇠ erf( xp

4Dt
), the di↵usion constant is D =

4� = ⇢�1 � 1.
Interestingly enough, our inhomogeneous quench does

not excite any ballistic transport for the specific class of
initial states considered (22) even for µL +µR 6= 0, unlike
the linear response result which has a finite Drude weight
for µ 6= 0. The reason is simple: inhomogeneous quench
does not excite any imbalance of vacancy momentum,
which is a conserved quantity. However, in the perturba-
tive linear-potential quench derivation of linear response
coe�cients (Sect. A of [24]) one has a natural vacancy
momentum bias which generates the Drude weight.

Discussion.– We have studied transport properties
of a simple reversible and deterministic cellular automa-
ton. Despite its simplicity the model exhibits a large
variety of transport phenomena, including charge di↵u-
sion, and o↵ers an analytical handle on the calculation
of transport coe�cients as well as exactly solving inter-
esting initial value problems. The algebraic structure of
the model enables the indetification of microscopic mech-
anisms behind its various transport regimes. Specifically,
the ballistic behavior of certain degrees of freedom can
induce the di↵usive transport of charge carriers, which
are completely frozen in their absence.

Our results open many interesting questions. Firstly,
it should be clarified whether the many body determin-
istic di↵usion mechanism disclosed here applies to other
integrable models, in particular to quantum lattice mod-
els such as XXZ. A promising idea in this direction is a
formulation of quantum transport in terms of classical-
like soliton gas [11]. Secondly, our exactly solvable model
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Conclusions

No microscopic chaos needed for normal diffusion, extensive initial state
randomness (entropy) suffices

For systems with Z2 symmetries, such that the current is anti-symmetric,
diffusion constant can be lower bounded by the curvature of the
Drude-weight w.r.t. symmetry-breaking parameter (filling/magnetization).
This could suggest perhaps to split the diffusion constant into a ‘regular’
(lower bound) and ’chaotic’ (the rest) contributions.

No clue on the mechanism for anomalous diffusion in isotropic Heisenberg
model!?

The work supported by Slovenian Research Agency (ARRS) and
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