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How to manipulate transport in simple, 1D quantum (classical) lattice systems?

simple? integrable.

How to switch between ballistic, diffusive, and anomalous transports?

What is the mechanism for normal diffusion in integrable systems?
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Three approaches to transport in Hamiltonian (conservative) systems:
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Three approaches to transport in Hamiltonian (conservative) systems:

o Green-Kubo formulae and equilibrium dynamical correlation functions

{(J(£)4(0))

@ Inhomogeneous initial states in infinite systems
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Aren't integrable systems always ballistic?

Green-Kubo formulae express the conductivities in terms of current a.c.f.

K(w) = lim lim ﬁ/tdt’eWJ(t’),J(O))B

t—oon—oo N 0
When d.c. conductivity diverges, one defines a Drude weight D
K(w) = 27D (w) + Kreg(w)

which in linear response expresses as

t

. . /B ’ ’
D= lim lim 2/, dt’ (J(t)J(0)) 5-

t—oo n—oo 2th
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Aren't integrable systems always ballistic?

Green-Kubo formulae express the conductivities in terms of current a.c.f.

k(w) = lim lim f/ dt'e™*( ), J(0)) 4

t—oon—o0 N
When d.c. conductivity diverges, one defines a Drude weight D
k(w) = 27 Dé(w) + Kreg(w)

which in linear response expresses as
t

D= lim lim 2= ' (J(¢')J(0)) -

t—oo n—oo 2tn

For integrable quantum systems, Zotos, Naef and Prelovsek (1997) suggested to
use Mazur/Suzuki (1969/1971) bound:

B Q™)
D2 Jim 50 2 o),

with conserved @™ chosen mutually orthogonal (Q(”’)Q("))ﬁ =0 for m # k.
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Mazur bound essentially follows from optimizing a trivial inequality

. 2
<</ dt' J(t) — ZamQ(’”)> > >0
0
m B
with respect to am.
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Mazur bound essentially follows from optimizing a trivial inequality

. 2
<</ dt' J(t) — ZamQ("’)> > >0
0 p= s
with respect to am.

But what happens when all QU™ are orthogonal to J, (JQ(’")>B =07
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Inhomogeneous initial states: Generalized hydrodynamics

Castro-Alvaredo, Doyon, Yoshimura, PRX 6, 041065 (2016)
Bertini, Collura, De Nardis, Fagotti, PRL 117, 207201 (2016)

Evolution of the initial state p(t = 0) = pL ® pr

NS /3 — 47+ N4
i Y - ]'(1/2/ i
02 F | S I
| N - 15//2/ i
~o01F ! x, !
01 ; N q07
~ 3

...

A A

0 frasssuaspoennsty st 42 e g O Cqoenenoed
i i
- - 1 L5
—~
a
g
T
<
sae @m/ b, |

Generalized Euler equations for density of carriers of charge Q™

(via String-Charge Duality, I1ievski et al JSTAT (2016) 063101)
along the ballistic rays { = x/t:

9tpe,m(A) + Ox(ve,m(M)pe,m(A)) = 0.
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n—1
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2 E (2050541 + 205 041 + Aokosss)
x=1
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n—1
H=1
4 x=1

2(20;0);1 + 205 0541 + Aororir)

Uq(sl2) Lax operator (A = cosn): L(p,s) = (

sin( +7S%)
(sinn)S+

(sinn)Ss
sin(¢ — 1S5)
«Or «Fr «=r « = =
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n—1
H=1
4

x=1

2(20;0);1 + 205 0541 + Aororir)

Uq(sl2) Lax operator (A = cosn): L(p,s) = (

Q(&S) _

sin(p + 1S%)
(sinn)SE

sin(¢ — 1S

<)
s
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n—1
1 — — z z
H= 7 XE=1(2J,J{0X+1 + 20, O'j;+1 + Acyori1)

Uq(sl2) Lax operator (A = cosn): L(p,s) = <

sin(¢ + 1S%) (sinn)Ss
(sinn)ST  sin(p — nS?)
Q®) = 85_1 log trauxL®""(<p, s)|9,=_;L

Z() = (sin ) ~"0s trauxL " (9, 5)|s0,

n/T€Q
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Canonical model: XXZ spin 1/2 chain and Z, symmetry

n—1
2 : + - - .+ z 7
(20’X Ox+1 + 2U)( Ox+1 + AU)(‘T)(Jrl)

x=1

1

H=->
4

Uq(sl2) Lax operator (A = cosn):  L(y,s) = (s”éf] ;)gis) sir(ii; 71)757;))

Unitary (compact) representations (s € 1Z) local s = 1 and quasi-local charges

Q1) = 9" log trausxl® (i, 5)] o1

Nonunitary (noncompact) representations (s € C) quasi-local charges J

Z(p) = (sin @) "5 trauxL ®*"(¢, s)ls=0, /7 € Q

Spin-reversal S =[] oX and spin current J =1i)_ (0f 01 —0x 0 1)
[H,5] =0, SJ=—Js,

[Q“7.5]=0, Z(¢)S=5Z(r—¢)".
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Canonical model: XXZ spin 1/2 chain and Z, symmetry

1 n—1 B B Y
H= 7 Z(Qa,faxﬂ + 205 041 + DoLob )

x=1

_ . _ (sin(e+nS3)  (sinm)Sy
Uq(sl2) Lax operator (A = cosn): L(yp,s) = < (sinm)S! sin(p — nS?)
Unitary (compact) representations (s € 37Z) local s = 1 and quasi-local charges

Q) = 957 log trauxL®"(,5)| o=z

Nonunitary (noncompact) representations (s € C) quasi-local charges

Z(p) = (sinp)"0s trauxl-®xn(90: s)|s=0, n/mE€Q

Spin-reversal S =T], o and spin current J =i (0} 0,,1 — 0x 0yiy):
[H,S] =0, SJ=—Js,

[Q"“?,S]=0, Z(¢)S =5Z(r— ).

Important consequence: (JQ“’”)B =0, (JZ(@))B #0.
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Fractal Drude weight

High temperature Mazur bound on spin Drude weight using charges {Z(p)}
D sin?(w//m) m . (27 wl
— > = —— _ — — = _
B~ bz sin?(/m) S T e A=cos| T

10
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0.0 0.2 0.4 0.6 0.8 1.0

TP, PRL 106 (2011); TP and Ilievski, PRL 111 (2013)

And is argued to agree with exact expression obtained from Generalized
Hydrodynamics (De Nardis and Ilievski, arXiv:1702.02930)
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What about spin transport for |A| > 17




Quench from an inhomogeneous partly magnetized state

p(t=0) = (1+ po”)*"? @ (1 - po*)*"?

A=1 A=2

! ) I ! I

0 0.1 02 03 0 0.1 02 03

Ljubotina, 7nidari& and TP, arXiv:1702.04210; to appear in Nature Comm. .
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Scaling of the total transported magnetization

t
As(t) = / Jxeny2(t)dt" oc £
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Scaling of magnetization profiles and diffusion equation

[a.u.]

Jx0) & Vs(x,0)

Curiously, for A = 1 we have an

drs(x, t) = Kd2s(x, t),
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Why is this tDMRG simulation working for such long times?
Anomalously slow increase of bi-partitie entanglement entropies:

a
2x100
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Lower bound on diffusion constant in terms of curvature of Drude weight

[Medenjak, Karrasch and TP, arXiv:1702.04677]
Finite-time T, finite-size n, fixed filling x, Drude weight and diffusion constant

" 8 [T s BT
Be) = g7 | At 07 D= [ e, )

in terms of a projector Py on a sector with fixed filling/magnetization m:

e _ (AP,
no <P,(,X+1)">ﬁ ’

where x is the static susceptibility.
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Lower bound on diffusion constant in terms of curvature of Drude weight

[Medenjak, Karrasch and TP, arXiv:1702.04677]
Finite-time T, finite-size n, fixed filling x, Drude weight and diffusion constant

T T
D(x) = % 7Tdt<Jn(t),J)f’X, D= %let<Jn(t)7J>f

in terms of a projector P;" on a sector with fixed filling/magnetization m:

<AP,(,X+1)H>B

(2 = .
<P'(1x+1)n>

n

B b)

n

where  is the static susceptibility.

Assume that Z> symmetry exists (e.g. spin-reversal) such that x = 0 represents

the symmetric sector, and
D(x) x x*.
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Lower bound on diffusion constant in terms of curvature of Drude weight

[Medenjak, Karrasch and TP, arXiv:1702.04677]
Finite-time T, finite-size n, fixed filling x, Drude weight and diffusion constant

D(x) = BT dt(Ja(t), 2>, D= BT dt(Jn(t), J)?

" 4nT T 4nx J_+
in terms of a projector P’ on a sector with fixed filling/magnetization m:
(x+1)n 8
=B,
n <P(x+1)n>6
n n

where x is the static susceptibility.
Assume that Zo symmetry exists (e.g. spin-reversal) such that x = 0 represents
the symmetric sector, and
D(x) o x*.
Key idea:
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Lower bound on diffusion constant in terms of curvature of Drude weight

[Medenjak, Karrasch and TP, arXiv:1702.04677]
Finite-time T, finite-size n, fixed filling x, Drude weight and diffusion constant

D(x) = BT dt(Ja(t), 2>, D= BT dt(Jn(t), J)?

" 4nT T 4nx J_+
in terms of a projector P’ on a sector with fixed filling/magnetization m:
(x+1)n 8
=B,
n <P(x+1)n>6
n n

where x is the static susceptibility.
Assume that Zo symmetry exists (e.g. spin-reversal) such that x = 0 represents
the symmetric sector, and
D(x) o x*.
Key idea:

o Write D = T 3 (PYHD™)D(x)

X
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Lower bound on diffusion constant in terms of curvature of Drude weight

[Medenjak, Karrasch and TP, arXiv:1702.04677]
Finite-time T, finite-size n, fixed filling x, Drude weight and diffusion constant

D(x) = BT dt(Ja(t), 2>, D= BT dt(Jn(t), J)?

" 4nT T 4nx J_+
in terms of a projector P’ on a sector with fixed filling/magnetization m:
(x+1)n 8
<A>,8,x _ <AP" >n
n P(x+1)n B’
< n >n

where x is the static susceptibility.
Assume that Zo symmetry exists (e.g. spin-reversal) such that x = 0 represents
the symmetric sector, and
D(x) o x*.

Key idea:

o Write D = I3 (PYHD™)2D(x)

@ Scale the size as n = vT, where v > vir (Lieb-Robinson velocity), and

consider large T asymptotics
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Lower bound on diffusion constant in terms of curvature of Drude weight

[Medenjak, Karrasch and TP, arXiv:1702.04677]
Finite-time T, finite-size n, fixed filling x, Drude weight and diffusion constant

D(x) = BT dt(Ja(t), 2>, D= BT dt(Jn(t), J)?

" 4nT T 4nx J_+
in terms of a projector P’ on a sector with fixed filling/magnetization m:
(x+1)n 8
<A>,8,x _ <AP" >n
n P(x+1)n B’
< n >n

where x is the static susceptibility.
Assume that Zo symmetry exists (e.g. spin-reversal) such that x = 0 represents
the symmetric sector, and
D(x) o x*.

Key idea:

o Write D = I3 (PYHD™)2D(x)

@ Scale the size as n = vT, where v > vir (Lieb-Robinson velocity), and

consider large T asymptotics
o Expand Drude weight as D(3) = D + 3D+ ...
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Lower bound on diffusion constant in terms of curvature of Drude weight

[Medenjak, Karrasch and TP, arXiv:1702.04677]
Finite-time T, finite-size n, fixed filling x, Drude weight and diffusion constant

D(x) = BT dt(Ja(t), 2>, D= BT dt(Jn(t), J)?

" 4nT T 4nx J_+
in terms of a projector P’ on a sector with fixed filling/magnetization m:
(x+1)n 8
<A>,8,x _ <AP" >n
n P(x+1)n B’
< n >n

where x is the static susceptibility.
Assume that Zo symmetry exists (e.g. spin-reversal) such that x = 0 represents
the symmetric sector, and
D(X) x x2.
Key idea:
o Write D = I3 (PYHD™)2D(x)
@ Scale the size as n = vT, where v > vir (Lieb-Robinson velocity), and
consider large T asymptotics
o Expand Drude weight as D(3) = D + 3D+ ...
@ Throw away the term with Dy which is strictly non-negative (D; agrees
with the definition of the Diffusion constant in the presence of convective .
terms, see e.g. (Spohn, 1991)).
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In the limit T — oo, considering optimal v = vir, the limits of D(x) and D
become the Drude weight and the diffusion constant, and we find:
D > o

—— 92D )
— 88xfvr (x) x=

. 1
f= Jim, g 0xFa(B: Xm0
where f is a second derivative of free energy density.
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In the limit T — oo, considering optimal v = vir, the limits of [7()() and D
become the Drude weight and the diffusion constant, and we find:

p>__1 a2D(x)|

o 1o
> e o f= lim 08 X0 J

where f is a second derivative of free energy density.
The bound is particularly simple at high temperature limit 5 — 0:

1

2
D> y 9xD(x).
XVLR
0.05
’ % A=15 N
. g
0.04 H :
¥
.
= 0.03 ¥
= Ld
B ¥
e .
R 002 5
‘ z g |es=1/2 es=2
.
0.01 = ¥ es=1 es5=5/2
0 8 16 24 32 s o 5=23/2 x tDMRG T = 200
0 ¢
0. 0.6 0.8 0.2 0.4 0.6
-
[m] [ = =
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dp
dt

= Lp:=—i[H, p1+Zj(2L,mLT {LlL p})

Canonical markovian master equation for the many-body density matrix
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Stochastic-boundary driven quantum chains

Canonical markovian master equation for the many-body density matrix:

The Lindblad (L-GKS) equation:

= =2p=—ilH, A+ (2LHpLL - {LLLH,p}> .

©w

o Bulk: Fully coherent, local interactions,e.g. H = ZZ;: Ay xt1.
@ Boundaries: Fully incoherent, ultra-local dissipation,
jump operators L, supported near boundaries x =1 or x = n.
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Nonequilbrium steady state (NESS)

Steady state Lindblad equation ﬁpoo =0:

ilH, poc] = 3 (2Lupoo Ll — {LhLus poc})

n
The XXZ Hamiltonian:
n—1
H= 2(20;0;“ + 205 041 + Dchob )
x=1

and symmetric boundary (ultra local) Lindblad jump operators:

1 1
Llf = E(l_ﬂ)a Ura LIR: 5(1+N)5 O’j7
5 1 . 1 _
L2 = 5(1+/,L)E g1 , L2 = 5(1—/,6)5 Op .

Two key boundary parameters:
@ ¢ System-bath coupling strength
@ 1 Non-equilibrium driving strength (bias)
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Cholesky decomposition of NESS and Matrix Product Ansatz (for pn = 1)

TP, PRL106(2011); PRL107(2011); Karevski, Popkov, Schiitz, PRL111(2013)
peo = (trR)'R, R=0QQf

Q= > (/A A, - A, [0)0™ @ 0% - @ 0™ = (0|L(p,s)*"|0)
(s1,---,8n)E{+,—,0}"
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Cholesky decomposition of NESS and Matrix Product Ansatz (for pn = 1)

TP, PRL106(2011); PRL107(2011); Karevski, Popkov, Schiitz, PRL111(2013)
peo = (trR)'R, R=0QQf

Q= Z <0|AS1A52 s As,.,‘O)O'sl ® g% ... ® o = <O‘L(tp,s)®x"|0>
(s1,---5 sp)E{+,—,0}n

Ao = > aplk)(kl,
k=0
Aco= el Py
k=0 0 1 2 3 4
Al = > a lk+1)(r],

>
II
o
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Cholesky decomposition of NESS and Matrix Product Ansatz (for pn = 1)

TP, PRL106(2011); PRL107(2011); Karevski, Popkov, Schiitz, PRL111(2013)
peo = (trR)'R, R=0QQf

Q=) (0AsAs - As[0)0% ® 0% 0™ = (OlL(g,5)"*"(0)
(s1,---,8n)E{+,—,0}"

Po = > aIk)kI,
k=0
Ac = Yaflkkrt, G S S
k=0 0 1 2 3 4
Al = D a lk+1)(r,
k=0
where (for symmetric driving):
T
¥=3 tan(ns) = 2isinm
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Cholesky decomposition of NESS and Matrix Product Ansatz (for pn = 1)

TP, PRL106(2011); PRL107(2011); Karevski, Popkov, Schiitz, PRL111(2013)
peo = (tr R) 'R, R=0QQ'
Q= 3 (0A4A, A, [0)0" © 0™ - ® o™ = (0|L(, 5)*"|0)
(s1,.--,sn)E{+,—,0}"

(oo}

Ao = > RIK)(KI,

>~
[=]

oo

Av = DAl e
k=0 0 1 2 3 4
(oo}

Al = D aglk+1)(r],

i
o

where (for symmetric driving):

=z tan(ns) == =
L ) Bising
Q(p,s) = (0|L(g,s)®*"|0) plays a role of a highest-weight transfer matrix cor-

responding to non-unitary representation of the Lax operator

[Q(‘pv 5)7 Q(wla 5/)] =0, Vs, S/, 2 ‘pl

Diffusive transport in integrable lattice systems
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Observables in NESS: From insulating to ballistic transport

e For |A| < 1, (J) ~ n® (ballistic)
@ For |A| > 1, (J) ~ exp(—constn) (insulating)

e For |A| =1, (J) ~ n~? (anomalous)

1.0 prse

01l \

(b)

05}

0.01

00/

I

5
05 0.001

-1.0 i 104
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Two-point spin-spin correlation function in NESS

for isotropic case A =1 (XXX)

1.0

&2

-0.5

nC(¢1.82)
-1.0

2
C&,&) = —%51(1 — &)sin(n&)sin(ré2), for & < &

(=)
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How important is quantum mechanics for undertstanding quantum transport?
or

What about the ballistic-diffusive transitions in classical integrable lattices?
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Example: Classical “XXZ" model — Lattice-Landau-Lifshitz

[TP and B. Zunkovi&, PRL 111, 040602 (2013)]

Locally interacting classical spin chain Hamiltonian
n
H= Z h(sxa 5x+1)7
x=1
where for Lattice-Landau-Lifshitz model, the energy density reads

h(5,5) = log|cosh(pSs) cosh(pS3) + coth®(pR) sinh(pS3) sinh(pS5)
+sinh 2 (pR)F(S3)F(S3)(5151 + $:53)|

and F(S) = \/(sinh®(pR) — sinh?(pS))/(R? — 5?).
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Example: Classical “XXZ" model — Lattice-Landau-Lifshitz

[TP and B. Zunkovi&, PRL 111, 040602 (2013)]

Locally interacting classical spin chain Hamiltonian
n
H= Z h(5x7 Sx+1)7
x=1
where for Lattice-Landau-Lifshitz model, the energy density reads

h(5,S') = log|cosh(pSs)cosh(pSs) + coth®(pR) sinh(pSs) sinh(pS3)
+sinh™2(pR)F(S3)F(S3)(515 + 5:.5%)|

and F(S) = \/(Sinhz(pf\’) —sinh?(pS))/(R? — S2).
Writing anisotropy parameter § = p? we study three cases:
@ 0 > 0, easy axis regime (Ising-like) diffusive!!!
@ § < 0, easy plane regime (XY-like) ballistic!!!

e § =0, isotropic regime (where h(S,S’) = log (1 + g’g/)) anomalous!!!
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Spatio-temporal current-current c.f. shown in log-scale with color scale
ranging from 107*® to 10! indicated in the bottom-right. In the upper panels
we show data averaged over ensembles of N ~ 10 initial conditions in
easy-axis (left; n = 5120), isotropic (center; n = 5120 ) and easy-plane (right;
n = 2560) regimes. Bottom: smaller n = 160, N = 600 where scars of solitons
emerging from local thermal fluctuations are still clearly visible.
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0.1

C(t)

0.01

0.1 1 10 100

C(t) in log-log scale for easy-plane regime (top curves, orange: n = 160, black:
n = 2560), isotropic regime (middle curves, yellow: n = 2560, blue: n = 5120)
and easy-axis regime (bottom curves, violet: n = 2560, green: n = 5120).
Shaded regions denote the estimated statistical error for ensemble averages over
N ~ 103 initial conditions. Dashed lines denote asymptotic behavior for large
time in the easy-plane regime (dark-blue) and isotropic, regime (light-blue).

Diffusive transport in integrable lattice systems
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Exactly solvable model of transport: Reversible cellular automaton
[Medenjak, Klobas and TP, arXiv:1705.04636]

Local deterministic scattering rule (with three states s € {0, +, —}):

¢X,X+1 : (®7@) A (®7@)7 (070‘) Ans (CX,@), (Ol, ﬂ) A (Oé,ﬂ).
¢ =¢°0 ¢,

Global propagator (s1,e11,S2,t415 -« -5 Sn,e+1) = P(S1,t, S2,¢5 -« - 5 Snyt):
¢’° = ¢1,2 O0--+0 ¢n—1,n,

¢e = ¢2’3 o--
Tomaz Prosen
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100

An example of dynamics starting from a typical initial condition:

75

+ 50

b

0 20 40 60 80 100 120 140 160 180 200
x

The model can be interpreted as a synchronized version of a hard-rod gas on R
where diffusion has been established (Jepsen, JMP 6, 405 (1965); Lebowitz,

Percus, Sykes PR 171, 224 (1968); 188, 487 (1969))

=}
Tomaz Prosen
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Charge density:

Current density

t t t
Gx = Sx + Sx41
+1/2
Ix

2( 1) (st+1/2
Continuity equation

1/2 1/2
S+ )
1/, .
6t - gk + 5 (A2 - Y?) =o.

A40O>» «4Fr «=)» (=) =



s € {0,+,—1}" with a local basis

Define a commutative multilicative algebra of functions over micro-states

[a]X(é) = 60‘x »Sx )

a€e{b,+,-},

[a1a2 cee ar]x = [a1]x[a2]x+1 T [ar]x+r—1-

«40O>» «4Fr «=)» « = =

v




Algebraic formulation of dynamics

Define a commutative multilicative algebra of functions over micro-states
s € {0,+,—1}" with a local basis

[a]x(§) = 60¢xv5x> a e {®7 +7 _}7

[oacs ... ar]x = [oa]x[oa)xrs - - - [or]xtr—1.

Dynamics, time-automorphism of algerba of observables:
a'(s) = U'a(s) = a(4'(s))

where
n/2 n/2

U=U°U° U°= H Usx—1,2¢, U° = H Uzx,2x11-
x=1 x=1
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Algebraic formulation of dynamics

Define a commutative multilicative algebra of functions over micro-states
s €{0,+,—1}" with a local basis

[a]x(§) = 5Otx,sx7 ac {Qv =+, 7}5

[raz ... ar]x = [aa]x[@2]xs1 -« - [ar]xtr—1-

Dynamics, time-automorphism of algerba of observables:

a'(s) = Uta(s) = a(4'(s))
where
n/2 n/2
U=U°U°, U° =[] Uzxor2x, U° =[] Uznznin.
x=1 x=1

Local scattering operator obeys Yang-Baxter equation

UxyUy 2Uxy = Uy 2 Uxy Uy 2.

Tomaz Prosen Diffusive transport in integrable lattice systems



Algebraic formulation of dynamics

Define a commutative multilicative algebra of functions over micro-states
s € {0,+,—1}" with a local basis

[a]x(§) = 50¢xV5x7 a € {07 +7 _}a

[oacs ... ar]x = [oa]x[oa)xrt - - - [or]xtr-1.

Dynamics, time-automorphism of algerba of observables:
a‘(s) = U'a(s) = a(¢"(s))

where
n/2 n/2

u=u°us, U° = H Uax—1,2¢, U° = H Uzx,2x+1.
x=1 x=1
Local scattering operator obeys Yang-Baxter equation

UsyUy,zUx,y = Uy,zUx,y Uy 2.

Model allows for a stochastic extension where charges + and — penetrate each
other with probability A

(£ F) = Q=& F) +AF5)

Now, A plays the role of spectral parameter.
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Set p(+) = L(p+ ), p(0) =1 — p =: p and define

(@), =>_als) [T r(s)




Set p(+) = L(p+ ), p(0) =1 — p =: p and define

(@),=>_a(s) [ p(s)-
p is invariant
(a), = (Ua),,.

v

«40O>» «4Fr «=)» « = =



Translationally invariant equilibrium state p(p, 1)

Set p(+) = 2(px ), p(0) =1 — p =: p and define

(@), =>_als) [T p(s)-

£

p is invariant
(a), = (Ua),,.

Useful local basis, orthonormal w.r.t. pl(p, u = 0):
O =M+ +[-1=1, [=H]-[-] [&=Z0-H-)

([A1B]) p(,0) = Fas-
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Translationally invariant equilibrium state p(p, 1)

Set p(+) = 2(pt 1), p(0) =1 — p =: p and define

(@), =>_als) [T p(sx)-

p is invariant
(a), = (Ua),,.
Useful local basis, orthonormal w.r.t. p/(p, u = 0):
O =0+ [+ +[-1=1 [l=H-[-] [P=Z0-H+-1-
([ABD) pp,0) = G-

Charge density and current density read

Gx = [10], +[01],, Jx =2(1 = p)(=1)* ([20], — [01], + [12], —[21],) -
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C(t) = (JUJ)

Nice properties of U in basis 012 allow for explicit computation of
c(t) [#*+p(2-p)
o= 2
8p g

22 4257 (1— 272 (

2

t=0,
of

t>1
«40O>» «4Fr «=)» « = =

p_H_

v




Explicit evaluation of current-current correlations and Green-Kubo transport

coefficients

Nice properties of U in basis 012 allow for explicit computation of
C(t) = (JUtJ)P:

c(t) {u2 +p(2—p); t=0,
o= Ty 2u? -3 2t—2 2\ .
85 22 4 2p%(1 - 2p)* (p—%), t>1.

This yields the conductivity and the Diffusion constant for u = 0

1 - 1
UZEC(O)—I—ZC(L‘):MI—p), p=2-2_1
~ X P

where x(p, p) = (qf)p = 4p — 12 is the static susceptibility.
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Explicit evaluation of current-current correlations and Green-Kubo transport

coefficients

Nice properties of U in basis 012 allow for explicit computation of
C(t) = (JU ),

I
~ o

c(r) [w+p2-p) t
8 { +2° (-2 (p— )5 2
This yields the conductivity and the Diffusion constant for p =0
1 = o 1
o= 5C(0)+ZC(t):4(lfp), D= =,

t=1

where x(p, 1) = (q,Z()P = 4p — pi? is the static susceptibility.
For charge imbalance 1 7 0 we find ballistic transport with Drude weight

D = C(c0) =16 (p71 -1) ue.

Tomaz Prosen Diffusive transport in integrable lattice systems



Explicit evaluation of current-current correlations and Green-Kubo transport

coefficients
Nice properties of U in basis 012 allow for explicit computation of

C(t) = (JU*J),:

c(t) [#*+p2-p) t=0

85 {"‘*f +253(1 — 2p)2 (p— “;) D ot>1

This yields the conductivity and the Diffusion constant for u = 0
1

a:;C(O)—I—iC(t):Ml—p), D:%:p—l

where x(p, p) = (qf)p = 4p — 1? is the static susceptibility.

For charge imbalance p # 0 we find ballistic transport with Drude weight
D=C(c0)=16(p " —1) p°.

Note that this simple model saturates the curvature inequality (note vir = 2)

- 1
4XVLR

9% D(p).

D
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Inhomogeneous quench

Using the nice algebra one can even completely solve the initial value problem
for u = pr, for x < n/2 and p = ugr for x > n/2:

f(X7 t) = <thn/2+2><—1>p7

?(f) = t'j‘;g(%fVi t) = (L + pr) + (Hrmr — p)erf (E) .

2y/p~1—1
08 [ my °
0.6 | 10
s
04 J
o7
< 02} /
& L6
o
= 0 -
=< —0. L,
—04 | J
43
0.6 | 1L,
—0.8 I L L L L L JL11
-8 -6 -4 -2 0 2 4 6 8
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Conclusions

@ No microscopic chaos needed for normal diffusion, extensive initial state
randomness (entropy) suffices
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Conclusions

@ No microscopic chaos needed for normal diffusion, extensive initial state
randomness (entropy) suffices

e For systems with Z> symmetries, such that the current is anti-symmetric,
diffusion constant can be lower bounded by the curvature of the
Drude-weight w.r.t. symmetry-breaking parameter (filling/magnetization).
This could suggest perhaps to split the diffusion constant into a ‘regular’
(lower bound) and 'chaotic’ (the rest) contributions.

The work supported by Slovenian Research Agency (ARRS) and

European Research Council
Established by the European Commission

Tomaz Prosen Diffusive transport in integrable lattice systems




Conclusions

@ No microscopic chaos needed for normal diffusion, extensive initial state
randomness (entropy) suffices

e For systems with Z> symmetries, such that the current is anti-symmetric,
diffusion constant can be lower bounded by the curvature of the
Drude-weight w.r.t. symmetry-breaking parameter (filling/magnetization).
This could suggest perhaps to split the diffusion constant into a ‘regular’
(lower bound) and 'chaotic’ (the rest) contributions.

@ No clue on the mechanism for anomalous diffusion in isotropic Heisenberg
model!?
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