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Introduction

I Work in progress → arXiv hopefully soon
I Collaboration with Lajos Diósi (Wigner Research Centre, Budapest)

I Discussions with Luca Ferialdi (Ljubiana), Pierre Rouchon (Mines Paris) and
others
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What?

Measurement-based feedback
A quantum system is weakly measured, the
Hamiltonian depends on past measurements:

∂t |ψt〉 = −iH(xt1 , · · · xtn )|ψt〉,

with xti the measurement outcomes and tn < t.

A famous example:

Gleyzes et al. Nature 446, 297-300 (2007)
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What not?

Measurement-based feedback

6=

Coherent feedback

Lloyd ’00, fully unitary
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Why feedback?

1. For control:
I fast purification
I fast measurement
I state preparation/stabilization
I continuous quantum error correction

2. For fundamental hybrid quantum-classical dynamics

1509.08705 and 1706.01856
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Outline

1. Continuous measurements from repeated interactions
2. Markovian feedback
3. Non-Markovian feedback
4. Derivation of the formula
5. Conclusion & perspectives
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Repeated interactions

System |ψn〉 ∈Hs ⊗ Probe |+〉x ∈ C2

|ψn〉 ⊗ |+〉x
interaction−−−−−→ Ω̂+|ψn〉 ⊗ |+〉z + Ω̂−|ψn〉 ⊗ |−〉z

measurement−−−−−−−→ |ψn+1〉 = Ω̂±|ψn〉√
〈ψn|Ω†±Ω̂±|ψn〉

with
Ω̂†+Ω̂+ + Ω̂†−Ω̂− = 1

ρn = |ψn〉〈ψn|
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Quickly repeated soft interactions

Discrete quantum trajectories
A sequence |ψ〉n or ρn (random) and the corresponding
measurement results δn = ±1.

⇒ Make the interactions soft and frequent:

Ω± = 1√
2
(
1± N ε+ # ε2 + · · ·

)
Continuous quantum trajectories
A continuous process |ψ〉t or ρt (random) and the
corresponding measurement signal st ≈ dxt

dt :

xt ∝
√

∆t
t/∆t∑
n=1

δn
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Result

Stochastic master equation
State ρt :

dρt = −i [H, ρt ] dt +D[N](ρt) dt +H[N](ρt) dWt

Signal st ≈ dxt
dt with:

dxt = tr
[
(N + N†) ρt

]
dt + dWt

with:
I D[N](ρ) = NρN† − 1

2

(
N†Nρ+ ρN†N

)
decoherence and dissipation

I H[N](ρ) = Nρ+ ρN† − tr
[
(N + N†) ρ

]
ρ

acquisition of information
I Wt Wiener process

V. Belavkin

A. Barchielli

L. Diósi
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A bit of stochastic pedantry
Two possible definitions of stochastic integrals:

1. Itô integral: ∫ t

0
f (u) dWu = lim

∆t→0

n∑
k=1

f (tk ) [W (tk+1)−W (tk )]

2. Stratonovich integral:∫ t

0
f (u) ◦ dWu = lim

∆t→0

n∑
k=1

f (tk+1) + f (tk )
2 [W (tk+1)−W (tk )]

Principal characteristic:

I Itô: zero average

E

[∫ t

0
f (u) dWu

]
= 0

I Stratonovich: robust to smoothing (Wong-Zakäı theorem)∫ t

0
f (u)Ẇ ε

u du −→
ε→0

∫ t

0
f (u) ◦ dWu
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Comments

I The signal is a singular object:

st ≈ tr
[
(N + N†)ρt

]
+ dW

dt

only its integral is well defined → Markovian feedback subtle

I Taking the average ρ̄t = E[ρt ] simply removes the stochastic term

∂t ρ̄t = −i [H, ρ̄t ] +D[N](ρ̄t)

the magic of Itô calculus
I Coincides with stochastic filtering (Kushner-Stratonovich equation) for diagonal

density matrices
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Markovian feedback

Stochastic master equation with Markovian potential:

dρt = −i [H + V̂t , ρt ] dt +D[N](ρt) dt +H[N](ρt) dWt

Markovian feedback consists in adding an external potential V̂t proportionnal to the
real-time signal st :

V̂t ≈ Â st ≈ Â dxt

dt

× Can we just add directly V̂tdt = Â dxt? → would be incorrect (even in Strato!)
X It needs to act ε-after:

ρt + dρfeedback
t = e−iA dxt (ρt + dρt)e iA dxt ,

The correct result is obtained by expanding to second order using physicist’s Itô
rule dW dW = dt.
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Markovian feedback equations

Stochastic master equation

dρfeedback
t = dρt − i [A, ρt ] dWt +D[A](ρt) dt − i [A,Nρt + ρtN†] dt

Milburn & Wiseman ’93

Master equation

∂t ρ̄t = −i [H, ρ̄t ]
“free evol”

+D[N](ρ̄t)
measurement

+ D[A](ρ̄t)
feedback decoherence

−i [A,Nρ̄t + ρ̄tN†]
feedback dissipation

Caves & Milburn ’87

I if [N,A] 6= 0, feedback adds dissipation
I if [N,A] = 0, unitary + decoherence

→ Why is it useful?
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Decoherence and dissipation

Not all master equations containing a “dissipator” are dissipative:

Master equation in diagonal Lindblad form:

∂tρt = −i [H0, ρt ] +
∑

i

[
NiρtN†i −

1
2{N

†
i Ni , ρt}

]
Master equation in non-diagonal Kossakovski’s form:

∂tρt = −i [H0, ρt ] +
∑

i,j

Dij

[
AiρtAj −

1
2{AjAi , ρt}

]

1. A master equation is non-dissipative ⇔ D real ⇔ ∀ k, Nk = N†k .
2. Non-dissipative ⇔ pure classical noise:

d|ψt〉 = −iAk ◦ dW (k)
t |ψt〉

with dW (i)
t dW (j)

t = Dij dt. → not a resource
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Comments

Dissipation is a resource, decoherence is not

e.g.: Quantum computation and quantum-state
engineering driven by dissipation
Verstraete, Wolf & Cirac, (2009)

The alchemy of feedback:

Let ∂t ρ̄t = L (ρ̄t) be a generic dissipative
master equation. It can be obtained from
non-dissipative measurement + Markovian
feedback

The Alchemist in Search of the Philosopher’s Stone
Joseph Wright, 1771
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Markovian feedback

Advantage:
I Very simple
I Generates tunable dissipation

Limits:
I Physically unrealistic (neglects delays, filters, etc.)
I Mathematically subtle to define directly in the continuum
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non-Markovian feedback

Stochastic master equation with non-Markovian potential:

dρt = −i [H + V̂t , ρt ] dt +D[N](ρt) dt +H[N](ρt) dWt (1)

non-Markovian feedback consists in choosing V̂t :

V̂ = Ât

∫ t

−∞
K(t, τ) sτ dτ

= Ât

∫ t

−∞
K(t, τ) dxτ

where K can be anything

X The resulting stochastic master equation is trivial, it is just (1)!
× The master equation is not:

ρ̄t = E[ρt ] = ?

Question: can we write a master equation (even formal) for ρ̄t?

17 / 25



non-Markovian feedback

Stochastic master equation with non-Markovian potential:

dρt = −i [H + V̂t , ρt ] dt +D[N](ρt) dt +H[N](ρt) dWt (1)

non-Markovian feedback consists in choosing V̂t :

V̂ = Ât
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Master equation for non-Markovian feedback

Main result

In interaction representation:

ρ̄(t) = T exp
{∫ t

0

∫ t

0
dτ1 dτ2 L (τ1, τ2)

}
· ρ0

with

L (τ1, τ2) =D[N(τ1)] δ(τ1 − τ2)

− 1
2 A∆(τ1)(K ∗ K T )(τ1, τ2)A∆(τ2)

non-Markovian feedback decoherence
− iN+(τ1)K(τ2, τ1)A∆(τ2)

non-Markovian feedback dissipation

using the superoperator notations

B∆ · ρ = Bρ− ρB†

B+ · ρ = Bρ+ ρB†
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First comments

I Markovian limit: when K(τ1, τ2)→ δ(τ1, τ2):

L (τ1, τ2) −→
[
D[N(τ1)] − 1

2 A∆(τ1)A∆(τ2)− iN+(τ1)A∆(τ2)
]
δ(τ1 − τ2)

we get back Markovian feedback

I Inexplicit: time ordered exponentials with two times τ1, τ2 verify no simple
differential equation:

ρ̄(t) = T exp
{∫ t

0

∫ t

0
dτ1 dτ2 L (τ1, τ2)

}
· ρ0 ⇒ ∂t ρ̄(t) = ???

I Dyson expansion: The most immediate way to make sense of the formula is by
expanding the exponential.

I Trivial iif all the operators commute
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Aparté on Gaussian master equations
Consider the most general linear coupling with a continuum of harmonic oscillators

Hint(t) =
∑

k

Âk (t)⊗ φ̂k (t)

where φk (t) is whatever Hermitian linear combination of creation and annihilation
operators:

φk (t) =
∫

dω fkl (ω)e−iωta†l (ω) + h.c.

Gaussian master equation
The density matrix obeys the following formal master equation (Diósi & Ferialdi ’15)

ρ(t) = T exp
{∫ t

0

∫ t

0
dτ1dτ2 L (τ1, τ2)

}
· ρ(0)

with

L (τ1, τ2) = Dij (τ1, τ2)
(

AL
i (τ1)AR

j (τ2) +
θτ1,τ2 AL

i (τ1)AL
j (τ2) + θτ2,τ1 AR

i (τ1)AR
j (τ2)

2

)

operator notation of Feynman Vernon influence functional
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Master equation for non Markovian feedback

Our feedback equation is a special case of a Gaussian master equation:

We can import the standard techniques of open system theory
I Projection operator techniques
I Time convolutionless master equations
I Exact solutions in a few cases (Ferialdi ’16)
I For an exponential kernel → Immamoglu’s decaying oscillator technique is

numerically efficient
In any case, the difficulty is more algebraic than analytic
⇒ “feedback + Monte-Carlo” to solve hard open-system problems?

21 / 25



Derivation I

Idea: use linear trajectories
1. Write a linear stochastic differential equation for ρ` such that ρ = ρ`/tr[ρ`]
2. Pass the equation in Stratonovich form
3. Formally integrate as a time-ordered exponential
4. Use Girsanov’s theorem to change the probability measure
5. Finally average using Wick’s theorem

1. Equivalent linear stochastic master equation:

dρ`t = −[H + V̂t , ρ
`
t ] dt +D[N](ρ`t ) dt +

(
Nρ`t + ρ`t N†

)
dxt

2. Stratonovich form

dρ`t = −[H + V̂t , ρ
`
t ] dt +

(
Nρ`t + ρ`t N†

)
◦ dxt −

1
2
[
(N2 + N†N)ρ`t + ρ`t (N†2 + N†N)

]
dt
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Derivation II

2. Stratonovich form

dρ`t = −[H + V̂t , ρ
`
t ]dt +

(
Nρ`t + ρ`t N†

)
◦ dxt −

1
2
[
(N2 + N†N)ρ`t + ρ`t (N†2 + N†N)

]
dt

= A · ρ`t dt + B · ρ`t ◦ dxt

3. Formal integration
In interaction representation:

ρ`(t) = T exp
{∫ t

0
A(τ)dτ + B(τ)dxτ

}
· ρ0

= T exp {something linear in xt} · ρ0

→ would be possible to average if xt were Gaussian!

4. Change of measure
We want to compute:

ρ̄t = E[ρt ] = E[ρ`t · tr(ρ`t )−1]

Define Et [ · ] = E[ · tr(ρ`t )−1]. Girsanov’s theorem ⇒ xt is Gaussian for Et .

5. Average using either Wick’s (or Isserlis’) theorem or Gaussian functional integration

23 / 25
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Derivation II

2. Stratonovich form

dρ`t = −[H + V̂t , ρ
`
t ]dt +

(
Nρ`t + ρ`t N†

)
◦ dxt −

1
2
[
(N2 + N†N)ρ`t + ρ`t (N†2 + N†N)

]
dt

= A · ρ`t dt + B · ρ`t ◦ dxt

3. Formal integration
In interaction representation:

ρ`(t) = T exp
{∫ t

0
A(τ)dτ + B(τ)dxτ

}
· ρ0

= T exp {something linear in xt} · ρ0

→ would be possible to average if xt were Gaussian!

4. Change of measure
We want to compute:

ρ̄t = E[ρt ] = E[ρ`t · tr(ρ`t )−1]

Define Et [ · ] = E[ · tr(ρ`t )−1]. Girsanov’s theorem ⇒ xt is Gaussian for Et .

5. Average using either Wick’s (or Isserlis’) theorem or Gaussian functional integration

23 / 25



Master equation for non-Markovian feedback

Main result (reminder)

In interaction representation:

ρ̄(t) = T exp
{∫ t

0

∫ t

0
dτ1 dτ2 L (τ1, τ2)

}
· ρ0

with

L (τ1, τ2) =D[N(τ1)] δ(τ1 − τ2)

− 1
2 A∆(τ1)(K ∗ K T )(τ1, τ2)A∆(τ2)

non-Markovian feedback decoherence
− iN+(τ1)K(τ2, τ1)A∆(τ2)

non-Markovian feedback dissipation

using the superoperator notations

B∆ · ρ = Bρ− ρB†

B+ · ρ = Bρ+ ρB†
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Conclusion

Summary
I Markovian feedback is simple and can yield dissipation
I Non-Markovian feedback can be “solved” formally
I Same structure as general open-system evolutions

Options to go forward
I Compute non-Markovianity measures
I Estimate stationnary states
I non-Markovian measurement (repeated interactions with MPS????)
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