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Introduction

» Work in progress — arXiv hopefully soon

» Collaboration with Lajos Didsi (Wigner Research Centre, Budapest)

» Discussions with Luca Ferialdi (Ljubiana), Pierre Rouchon (Mines Paris) and
others



What?

Measurement-based feedback

A quantum system is weakly measured, the
Hamiltonian depends on past measurements:

Oelpe) = —iH(xey, - - - x2,)[Ye),

with x; the measurement outcomes and t, < t.
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Gleyzes et al. Nature 446, 297-300 (2007)

A famous example:
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What not?

Measurement-based feedback

Q-system
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Why feedback?

1. For control:
» fast purification
fast measurement
state preparation/stabilization
continuous quantum error correction
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Why feedback?

1. For control:

» fast purification

> fast measurement

> state preparation/stabilization

» continuous quantum error correction

2. For fundamental hybrid quantum-classical dynamics
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Outline

Continuous measurements from repeated interactions
Markovian feedback
Non-Markovian feedback

Derivation of the formula
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Conclusion & perspectives
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Repeated interactions

System |1),) € # ® Probe |4), € C?




Repeated interactions

System |1),) € # ® Probe |4), € C?

interaction A A Pn = |¢”><¢"|
|%n) ® |+)x Qi |vhn) @ [4)2 + Q- |¢hn) @ | )2
measurement |¢n+1> _ Qi'wr)
(ol QL 2t 1))
with

ala, +6 a0 —1



Quickly repeated soft interactions

Discrete quantum trajectories

A sequence [1)), or p, (random) and the corresponding
measurement results §, = +1.
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A sequence [1)), or p, (random) and the corresponding
measurement results §, = +1.
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Quickly repeated soft interactions

Discrete quantum trajectories

A sequence [1)), or p, (random) and the corresponding
measurement results §, = +1.

= Make the interactions soft and frequent:

1 2
Qr=—(1x£Ne+H#ec"+---
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Continuous quantum trajectories

A continuous process [¢)): or p; (random) and the
corresponding measurement signal s; ~ %:
t/At
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Result

Stochastic master equation 2

State p¢:

dpe = —i[H, pe] dt + DIN](p:) dt + H[N](pe) dWe

Signal s; ~ %f with:

V. Belavkin

dxe = tr [(N+ N') pe] dt +dW,

with:
» D[N](p) = NpN™ — 1 (NTNp+ pN'N)
decoherence and dissipation

> H[N](p) = Np+ pN" —tr [(N+ N")p] p
acquisition of information

» W,;: Wiener process

L. Diési



A bit of stochastic pedantry
Two possible definitions of stochastic integrals:

1. 1t6 integral:

t n
/ f(u)dW, = lim f(ti) [W(tes1) — W(tk)]
0 At—0
k=1
2. Stratonovich integral:
t n
/ Flu)odW, = tim S~ A ) e - ]
0 At—0 e 2



A bit of stochastic pedantry
Two possible definitions of stochastic integrals:

1. 1t6 integral:

n

/ AUy AW = fim > F(8) [Witeen) — W(s0)]
0 k=1

2. Stratonovich integral:
t n
/ Flu)odW, = tim S FE) ) gy - e
0 At—0 2

Principal characteristic:

» |t: zero average
t

E [/ f(u)dW,,} =0
0

» Stratonovich: robust to smoothing (Wong-Zakai theorem)

t

t
/f(u)v'vjdu—> f(u) odW,
0 e—0
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Comments

» The signal is a singular object:

dw

St & tr [(N + NT)pt} + ar

only its integral is well defined — Markovian feedback subtle
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» Taking the average p: = E[p:] simply removes the stochastic term
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the magic of It6 calculus



Comments

» The signal is a singular object:

ot (V-4 N)p] + g m

only its integral is well defined — Markovian feedback subtle

» Taking the average p: = E[p:] simply removes the stochastic term
Oepe = —i[H, pe] + D[N](p¢)

the magic of It6 calculus

» Coincides with stochastic filtering (Kushner-Stratonovich equation) for diagonal
density matrices



Markovian feedback

Stochastic master equation with Markovian potential:

dp: = —i[H + V4, pe] dt + D[N](p:) dt + H[N](p¢) dW,

Markovian feedback consists in adding an external potential V. proportionnal to the
real-time signal s;:
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Markovian feedback

Stochastic master equation with Markovian potential:

dp: = —i[H + V4, pe] dt + D[N](p:) dt + H[N](p¢) dW,

Markovian feedback consists in adding an external potential V. proportionnal to the
real-time signal s;:

x Can we just add directly V;dt = Adx;? — would be incorrect (even in Strato!)
v' It needs to act e-after:

feedback __

pt+dpt efiAdxt(pt_f_dpt)eiﬁtdx[7

The correct result is obtained by expanding to second order using physicist's 1t6
rule dWdW = dt.



Markovian feedback equations

Stochastic master equation

dpi®™ = dp, — i[A, pi] dW; + D[A](pe) dt — i[A, Np: + peNT] dt

Milburn & Wiseman '93

Master equation

depe = —i[H, pe] + DINI(5e) +  DIA(5:)  —i[A, Npe + peN']

“free evol” measurement feedback decoherence  feedback dissipation

Caves & Milburn '87

» if [N, A] # 0, feedback adds dissipation
» if [N, A] = 0, unitary + decoherence



Markovian feedback equations

Stochastic master equation

dpi®™ = dp, — i[A, pi] dW; + D[A](pe) dt — i[A, Np: + peNT] dt

Milburn & Wiseman '93

Master equation

depe = —i[H, pe] + DINI(5e) +  DIA(5:)  —i[A, Npe + peN']

“free evol” measurement feedback decoherence  feedback dissipation

Caves & Milburn '87

» if [N, A] # 0, feedback adds dissipation
» if [N, A] = 0, unitary + decoherence

— Why is it useful?



Decoherence and dissipation

Not all master equations containing a “dissipator” are dissipative:

Master equation in diagonal Lindblad form:
. 1
Oepr = —i[Ho, pe] + Z [NiPtN;T - E{N;tht}]

Master equation in non-diagonal Kossakovski's form:

. 1
Bepe = —ilHo,pd + > Dy [AfptAj — A, pt}]

J



Decoherence and dissipation

Not all master equations containing a “dissipator” are dissipative:

Master equation in diagonal Lindblad form:
. 1
Oepr = —i[Ho, pe] + Z [NiPtN;T - E{N;tht}]

Master equation in non-diagonal Kossakovski's form:

. 1
Bepe = —ilHo,pd + > Dy [AfptAj — A, pt}]

J

1. A master equation is non-dissipative < D real & Vk, Ny = NI.

2. Non-dissipative < pure classical noise:
die) = —iAk o dW [4)

with th(i)d Wt(j) = Djdt. — not a resource



Comments

Dissipation is a resource, decoherence is not

e.g.: Quantum computation and quantum-state
engineering driven by dissipation
Verstraete, Wolf & Cirac, (2009)



Comments

Dissipation is a resource, decoherence is not

e.g.: Quantum computation and quantum-state
engineering driven by dissipation
Verstraete, Wolf & Cirac, (2009)

The alchemy of feedback:

Let 9¢pr = Z(p:) be a generic dissipative
master equation. It can be obtained from
non-dissipative measurement + Markovian
feedback

The Alchemist in Search of the Philosopher’s Stone
Joseph Wright, 1771




Markovian feedback

Advantage:
» Very simple

» Generates tunable dissipation
Limits:

» Physically unrealistic (neglects delays, filters, etc.)

» Mathematically subtle to define directly in the continuum
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non-Markovian feedback

Stochastic master equation with non-Markovian potential:

dp: = —i[H + Vi, p] dt 4+ D[N](p:) dt + H[N](p:) dW,

non-Markovian feedback consists in choosing Ve:

t
V:At/ K(t,7)s-dr

t
:At/ K(t,T) de

where K can be anything

(1)
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non-Markovian feedback

Stochastic master equation with non-Markovian potential:

dp: = —i[H + Vi, p] dt 4+ D[N](p:) dt + H[N](p:) dW,

non-Markovian feedback consists in choosing Ve

t
V:At/ K(t,7)s-dr

t
= At/ K(t,T) qu-
where K can be anything

v" The resulting stochastic master equation is trivial, it is just (1)!

X The master equation is not:
pe=E[p] =7

Question: can we write a master equation (even formal) for p;?

(1)



Master equation for non-Markovian feedback

Main result

In interaction representation:

t t
ﬁ(t): Texp{// dri dm .,2”(7'1,7'2)} -+ Po
0J0

Z(11,7) =D[N(11)]6(11 — 12)

. AA(T1)(K * K )(Tl,TQ)AA(TQ) — iNg (1)K (12, 11)An(2)

non-Markovian feedback decoherence non-Markovian feedback dissipation

with

using the superoperator notations
Ba-p=Bp—pB'
Bi-p=Bp+pB'



First comments

» Markovian limit: when K(71,72) — 6(m1, 72):
L(r,m) — |:D[N(T1)] — %AA(TI)AA(T2) — iN+(T1)AA(Tz)] 3(m —72)

we get back Markovian feedback
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» Dyson expansion: The most immediate way to make sense of the formula is by
expanding the exponential.



First comments

» Markovian limit: when K(71,72) — 6(m1, 72):
L(m1,m2) — |:D[N(T1)] — %AA(TI)AA(T2) — iN+(T1)AA(Tz)] 3(m —72)

we get back Markovian feedback

» Inexplicit: time ordered exponentials with two times 71, 7 verify no simple
differential equation:

t t
p(t) = T exp {// dr dm f(ﬁ,rz)} “po = Op(t) =777
0Jo

» Dyson expansion: The most immediate way to make sense of the formula is by
expanding the exponential.

» Trivial iif all the operators commute



Aparté on Gaussian master equations
Consider the most general linear coupling with a continuum of harmonic oscillators

Hint t)_zAk ® di(t)

where ¢« (t) is whatever Hermitian linear combination of creation and annihilation
operators:

ok(t) = /dw fu(w)e “*al (w) + h.c.



Aparté on Gaussian master equations

Consider the most general linear coupling with a continuum of harmonic oscillators

Hint t)—ZAk ®<Z>k

where ¢« (t) is whatever Hermitian linear combination of creation and annihilation
operators:

or(t) = /dw fu(w)e “*al (w) + h.c.

Gaussian master equation

The density matrix obeys the following formal master equation (Diési & Ferialdi '15)
t t
t) = T exp {//dndrz i’(ﬁ,rz)} - p(0)
0Jo

Oy AL (1) AF (12) + 0,2,71A,’?(71)Af(72)>
2

with

L(11,m2) = Dj(11,m) <A.-L(71)Af(72) +

operator notation of Feynman Vernon influence functional



Master equation for non Markovian feedback

Our feedback equation is a special case of a Gaussian master equation:

Linear feedback
Markovian
non-dissipative

general
non-Markovian

We can import the standard techniques of open system theory
» Projection operator techniques
» Time convolutionless master equations
» Exact solutions in a few cases (Ferialdi '16)

» For an exponential kernel — Immamoglu’s decaying oscillator technique is
numerically efficient

In any case, the difficulty is more algebraic than analytic
= "“feedback 4+ Monte-Carlo” to solve hard open-system problems?



Derivation |

Idea: use linear trajectories

1. Write a linear stochastic differential equation for p* such that p = p/tr[p?]
. Pass the equation in Stratonovich form
. Formally integrate as a time-ordered exponential

. Use Girsanov’s theorem to change the probability measure

B, WN

. Finally average using Wick's theorem
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Derivation |

Idea: use linear trajectories

. Write a linear stochastic differential equation for p* such that p = p*/tr[p?]
. Pass the equation in Stratonovich form

. Formally integrate as a time-ordered exponential

. Use Girsanov's theorem to change the probability measure

A W -

. Finally average using Wick's theorem

1. Equivalent linear stochastic master equation:

dpt = —[H + Vi, pf]dt + D[N](pf) dt + (Npf + piNT) dx

2. Stratonovich form

. 1
dpt = —[H+ Ve, peldt + (Np; + peNT) o dxe — 5 [(N* + NTN)p; + pt (N + NTN)] dt



Derivation |l
2. Stratonovich form
A 1
dpt = —[H + Vi, peldt + (Np; + peNT) o dxe — 5 [(N* + NTN)p; + pe(N™ + NTN)] dt

=A-pldt+ B ptodx

3. Formal integration
In interaction representation:

t
p'(t) = Texp {/ A(r)dT + B(T)de} - po
0
= T exp {something linear in x;} - po

— would be possible to average if x; were Gaussian!



Derivation |l

2. Stratonovich form
A 1
dpt = —[H + Ve, pildt + (Npf + piN') o dxe — 5 [(N* + N'N)pt + pi (N + N'N)] dt

=A-ptdt+B-piodx

3. Formal integration
In interaction representation:

t
p'(t) = Texp {/ A(r)dT + B(T)dx,-} - po
0
= T exp {something linear in x;} - po
— would be possible to average if x; were Gaussian!

4. Change of measure

We want to compute:
- YA /N —
pe = Elpe] = Ep; - tr(py) ']

Define E;[-] = E[-tr(pf)"]. Girsanov's theorem = x; is Gaussian for .



Derivation |l

2. Stratonovich form
A 1
dpt = —[H + Ve, pildt + (Npf + piN') o dxe — 5 [(N* + N'N)pt + pi (N + N'N)] dt

=A-ptdt+B-piodx

3. Formal integration
In interaction representation:

t
p'(t) = Texp {/ A(r)dT + B(T)dx,-} - po
0
= T exp {something linear in x;} - po
— would be possible to average if x; were Gaussian!

4. Change of measure
We want to compute:

pe = Elp] = Ep; - tr(p) ']
Define E;[-] = E[-tr(pf)"]. Girsanov's theorem = x; is Gaussian for .

5. Average using either Wick's (or Isserlis’) theorem or Gaussian functional integration



Master equation for non-Markovian feedback

Main result (reminder)

In interaction representation:

t t
ﬁ(t): Texp{// dri dm .,(f(Tl,Tz)} -+ Po
0J0

Z(11,7) =D[N(11)]6(11 — 12)

. AA(T1)(K * K )(Tl,TQ)AA(TQ) — iNg (1)K (12, 11)An(2)

non-Markovian feedback decoherence non-Markovian feedback dissipation

with

using the superoperator notations
Ba-p=Bp—pB'
Bi-p=Bp+pB'



Conclusion

Summary
» Markovian feedback is simple and can yield dissipation
» Non-Markovian feedback can be “solved” formally

» Same structure as general open-system evolutions

Options to go forward
» Compute non-Markovianity measures
» Estimate stationnary states

» non-Markovian measurement (repeated interactions with MPS??777)



