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Trapped ions and photons

•  Trapped photons

D.J. Wineland and S. Haroche

•  Trapped ions

H. Dehmelt, JOSAB 1986 

➙ Observation of quantum jumps in a single realization of an experiment

C. Gerlin et al. Nature 2007 



I. General state reconstruction methods



Quantum state reconstruction

on 

on 

off 

0 -1 +1 

System Meter 

•  Generalized measurement scheme:

Coherent 
interaction

Irreversible 
projectionρ̂S ρ̂M

ρ̂S ⊗ ρ̂M ρ̂S+M Result m

ρ̂S/mρ̂S
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The measurement result provides (partial) information on S
General state reconstruction problem: 
- optimize the amount of information extracted on S 
- get the best estimate of the state after a measurement



Quantum state reconstruction and time evolution
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Quantum state reconstruction and time evolution

time
t
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…
•  Reconstruct          given a large number of identical preparation 

➙ quantum state tomography

•  Estimate          in a given realization knowing measurement 
results before t0  ➙ quantum trajectory reconstruction

"standard approach"
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Optimal quantum state reconstruction and time evolution

time
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•  Reconstruct          given a large number of identical preparation 

➙ quantum state tomography

•  Estimate          in a given realization knowing measurement 
results before t0  ➙ quantum trajectory reconstruction

"standard approach"
•  Estimate          in a given realization knowing measurement 
results before and after t0  ➙ "Past quantum state" (Mölmer PRL 2013)
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➙ describes any evolution:
- any measurement
- unitary: only one operator  
- relaxation can be seen as unread measurement in some 
environment 

Generalized quantum measurement
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off 
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System Meter 
Coherent 
interaction Irreversible 

projectionρ̂S

ρ̂S

•  Operators          : set of operators of S such that                    .
•  Proba of result m: 

ρ̂S/m =
M̂mρ̂SM̂m

+

Norm

M̂m{ } M̂m
+M̂m

m
∑ = 1̂

M̂ 0 = Û t0,t( )

P m( ) = tr M̂mρ̂SM̂m
+



Quantum trajectory reconstruction: "standard approach"

With           one can describe the results of any 
measurement           performed at time t. 
➙ one gets the probability of the measurement result oi 
conditional to previous measurements

ρ̂S t( ) M MMM M Mρ̂S 0( )

time
tjt1       … tj+1      …

mjm1       … mj+1      …

ρ̂S/ mj{ }

Ôi{ }

O
ρ̂S t( ) = ρ̂S/ mj{ } =

M̂mj
... M̂m0

ρ̂S 0( )M̂m0
+ ... M̂mj

+

Norm

t

P oi ,t / m1... j{ }( ) =
tr Ôi ρ̂S t j( ) Ôi

+

Norm



The "effect" matrix         is similar to        , it involves the same 
measurement operators but in a different order.

The "past quantum state approach"

ρ̂S t( ) M MMM M Mρ̂S 0( )

time
tjt1       … tj+1       …        tk

mjm1       … mj+1      …

We are now interested in another conditional probability: 
description of the measurement of          knowing 
the past and future measurement results.

Ôi{ }

O

ÊS t( ) =
M̂mj+1

+ ...M̂mk

+ 1̂ M̂mk
...M̂mj+1

Norm
ρ̂S t( ) = ρ̂S/ mk{ } =

M̂mj
...M̂m0

ρ̂S 0( ) M̂m0
+ ...M̂mj

+

Norm

P oi, t / m1...k{ }( ) =
tr Ôi ρ̂S t( ) Ôi

+ ÊS t( )
Norm

Mölmer 
PRL 2013
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II. Cavity QED implementation: QND photon 
counting

The SPIN: 
One atom, two levels 

The SPRING: 
One high Q cavity mode 
as an harmonic oscillator 

M. Brune and J.M. Raimond, EPL 110, 20001 (2015): 
"Trapped quantum light".



The “Spin”
•  Photon box 

n = 51 
level e 

n = 50 
level g 

51 GHz 

•  Photon probes 
Circular Rydberg atoms   

ωcav 

δ 

- Large dipole 1500 au 
- Long lifetime: 30ms 
- detected une by one 
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The "spring": a photon box
Superconducting cavity 

resonance:  νcav = 51 GHz 
   

- Q factor = 4.2 ⋅ 1010  

- finesse= 4. 109 

Photons running for 39 000 km  
in the box before dying! 



Experimental setup: an atomic clock

•  An atomic clock (Ramsey setup) made of Rydberg for probing 
light-shifts induced  by “trapped” photons 

•  State selective detection of atoms by field ionization: 
   Atoms detected on “e” or “g” one by one 

“e” or “g” 
detection 
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QND detection of photons: the tools
•  Photon box 
Superconducting cavity   

•  Photon probes 
Circular Rydberg atoms  
•  Non-resonant interaction 
⇒  light shifts  

Atoms used as clock 
for counting n by 

measuring light shifts 



QND measurement of photon number

1. Trigger of the atom clock: 
resonant π/2 pulse 

π
2
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QND measurement of photon number

1. Trigger of the atom clock: 
resonant π/2 pulse 

π
2

2. Dephasing of the clock: 
interaction with the cavity field 
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QND measurement of photon number

1. Trigger of the atom clock: 
resonant π/2 pulse 

π 
2 

π
2

2. Dephasing of the clock: 
interaction with the cavity field 

3. Measurement of the clock:  
second π/2 pulse & state detection 

phase 
φR 

Pseudo-spin measurement  
in arbitrary direction: 

n=2 
n=0 

n=1 

n=3 

n=4 n=5 
n=6 

n=7 

phase 
φR 

Re gP P φσ− =

e-g 
detection 

0 4πΦ =



Field measurement operators

•  Measurement result: j = e,g
•  Transformation of the field density matrix ρS after 

a measurement with result j:

φr : variable Ramsey interferometer phase
φ0 : phase shift per photon

ρ̂S/ j =
M̂ j ρ̂SM̂ j

+

tr M̂ j ρ̂SM̂ j
+

M̂ g = sin
φR +φ0N̂

2

"

#
$

%

&
'

M̂e = cos
φR +φ0N̂

2

"

#
$

%

&
'

•  Assume ρS initially diagonal 
➙simplified measurement description in term of  P(n)= ρ̂S n,n



Information acquisition by detecting 1 atom
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Bayes law: 

Measurement result:  
j = e or g 

Pafter (n)= P(n / j,φR )= Pbefore(n).
P( j, /n,φR )
P( j /φR )
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 P(
n/
e)

photon number n
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Probability of n that are 
incompatible with the 

measurement result j are 
cancelled. 



Information acquisition by detecting 1 atom
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photon number n

φR = 0

Bayes law: 

Repeating the measurement with 
other values of the  

measurement phase ϕ 
decimates other photon numbers 
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Measurement result:  
j = e or g 

Pafter (n)= P(n / j,φR )= Pbefore(n).
P( j, /n,φR )
P( j /φR )



Progressive collapse of 
the field state on n=5 

 
Measurement of a 

coherent field 
<n>=3.7 (±0.008) 

 

Initial knowledge of 
the photon number 
distribution is not 

needed 

Atom by atom analysis of the measurement process 

For each detected atom, one projects the field state according to the 
measurement result e or g 

C. Guerlin, J. Bernu, S. Deléglise, C. Sayrin, S. Gleyzes, S. Kuhr, M. Brune, J.M. R., S. H. Nature  448, 889 (07) 
Convergence analysis: M. Bauer, D. Bernard. PRA 84, 044103 (2011) 



Reconstructing the photon number statistics

Coherent field at measurement time  
3.4 0.008n = ±



III. Following a quantum trajectory 
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Following a quantum trajectory
S. Gammelmak et al. PRL 111, 160401(2013) 

 Apply to photon number operator           : Ô = N̂ Ôn = n n

 ➙only diagonal matrix elements 

P oi, t / mk{ }( ) =
tr Ôi ρ̂S t( ) Ôi

+ ÊS t( )
Norm

P n,t / mk{ }( ) =
tr n n ρ̂S t( ) n n ÊS t( )

Norm

P n,t / mk{ }( ) =
ρ̂n,n
S t( ) Ên,n

S t( )
Norm



Following a quantum trajectory

P n,t / mk{ }( ) =
tr ρ̂n,n

S t( ) Ên,n
S t( )

Norm

➙Photon number distributions: 

•  Forward estimation:  
standard calculation of the density matrix ρ(t) taking into account  

 - projection at measurement 
 - relaxation between measurements 

 
•  Backward estimation:  
calculation effect matrix E(t):

q  Flat distribution at final time T: describes an unknown final state 
q  Same measurement operators as forward 
q  ‘inverse’ relaxation (annihilation and creation operators exchanged) 

➙  Exponential growth of the photon number in "backward time" 

 

P f n, t( ) = ρ̂n,nS t( )

Pb n,t( ) = Ên,n
S t( )



Following a quantum trajectory

P n,t / mk{ }( ) =
tr ρ̂n,n

S t( ) Ên,n
S t( )

Norm

➙Photon number distributions: 

•  Forward estimation:  
 
•  Backward estimation:  
 
•  Past quantum state / forward-backward estimation 

 

P f n, t( ) = ρ̂n,nS t( )

Pb n,t( ) = Ên,n
S t( )

➙ P(n) is the product of two photon number distributions computed 
forward and backward in time. 
In our case PQS reduces to the "forward/backward smoothing algorithm", 
which can be safely used in this quantum context 

P fb n, t( ) =
P f n, t( ). P b n, t( )

Norm
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Repeated measurements: 
Forward photon number distribution

•  Exhibits all features of quantum theory of measurement: 
q  State collapse / Random result / repeatability 

Progressive 
state 

projection 
onto n=5 

Repeated measurements 
confirm the n=5 result 

Quantum jumps corresponding 
to field damping 

Field evolution due to cavity damping: not to QND measurement 

P f n,t( )



P f n,t( )
T. Rybarczyk, et al.  Phy Rev A 91, 062116  (2015) 

Quantum trajectory for a larger initial field
•  Forward estimation of the field at time t 

 
 
Obvious limitations 

➙  Noise due to statistical fluctuations of atomic detections 
➙  Initial ambiguity in the photon number due to the periodicity of 

the measurement operators 
–  Absurd photon number jumps (from 0 to 7) 



Forward and backward estimations

P f n,t( )

Pb n,t( )

P fb n,t( )

T. Rybarczyk, et al.  Phy Rev A 91, 062116  (2015) 

➙  Noise due to statistical fluctuations of atomic detections 
➙  Final ambiguity in the photon number due flat distribution at T  
and to the periodicity of the measurement operators 
➙  "Reverse" relaxation makes a good job! 



Forward and backward estimations

P f n,t( )

Pb n,t( )

- Measurement ambiguities lifted 
- Considerable noise reduction: 

All estimations take into 
account ALL available 
information 

P fb n,t( )

T. Rybarczyk, et al.  Phy Rev A 91, 062116  (2015) 



PQS estimation of a single-photon  
quantum jump

•  A single photon is emitted by a resonant atom at t=0
•  The estimator only knows QND measurement results 

q  Less noise
q  Faithful estimate of the photon number jump time

T. Rybarczyk, et al.  Phy Rev A 91, 062116  (2015) 
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Average over 3000 
trajectories 



Application: lifetime measurement  
of photon number states

•  Analysis of average time between jumps   

 
➙ An impossible feat with forward estimation only due to spurious 
noise-induced jumps  (Brune et al. PRL 101 240402)

T. Rybarczyk, et al.  
Phy Rev A 91, 062116  (2015) 



Past Quantum State: take home message

•  PQS analysis is a fruitful tool for quantum state 
estimation 
q  Also, for spin 1/2-like systems  

➙  Gammelmark et al., PRA 89, 043839 
➙  Armen et al., PRL 103, 173601 
➙  Kerkhoff et al. Opt. Expr. 19, 6478 
➙  Tan et al., PRL 114, 040903 

 

•  Cannot be used for real-time estimations 
q  For instance in quantum feedback processes  
(C. Sayrin et al. Nature 477, 73; X.X. Zhou et al., PRL 108, 243602) 

 



The future: combining PQS and state tomography

time
t

ρ̂S t( ) M MM
ρ̂S t( ) M MM
ρ̂S t( ) M MM

…
•  Reconstruct          given a large number of identical preparation 

➙ quantum state tomography

•  Generalization: 
    Reconstruct          by using all measurements performed after 
state preparation

ρ̂S t( )

State preparation

State preparation

State preparation

ρ̂S t( )

…

Six, P …. P. Rouchon, 
PHYSICAL REVIEW A 93 012109  (2016)



CQED with two cavities

➙ alive-here-and-dead-there state



Slow atoms cavity QED set-up
•  Limitation of present 

experiments: 
Atom-cavity interaction time 
100 µs << 30 ms, 0.13 s 

•  Achieving long interaction 
times: 

A set-up with a nearly stationary 
Rydberg  

 atom in a cavity 
q  Interaction time: 10 ms range 
q  Large cats, metrology of 

decoherence 
q  Quantum Zeno dynamics 
 
q  Reservoir engineering 

 

J.M. Raimond et al PRL 105, 213601 (2010) 

A. Sarlette, A. et al. PRL  107, 010402 (2011)  
Dressed states 
spectroscopy 

V=10 m/s 
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