Studying Atmospheric Muons:

From neutrino physics to archaeological applications

Héctor Gomez

Astroparticule et Cosmologie (APC – Paris)

hgomez@apc.univ-paris7.fr

USPPC Université Sorbonne Paris Cité

Research experience

All about synergies

Outline

- Atmospheric muons
 - Main features
 - Background on Particle Physics: How to deal with them?
- Atmospheric muons and Reactor Neutrino experiments
 - The Double Chooz case
 - Muon characterization
 - Experimental data and Monte Carlo simulations
 - Annual modulation: Effective temperature coefficient
 - Outlook
- Taking advantage of muons
 - The muon tomography
 - Arche project
 - Feasibility studies
- \rightarrow Summary and conclusions

Atmospheric muons

Simulation of the air-shower produced by a 1 TeV proton interacting in the atmosphere @ 20 km

- Muons produced in the Atmosphere by the interaction of cosmic-rays (also referred as cosmic-ray muons)
 - Main component of the air-shower (together with the associated v_{μ} , e[±] and π^{\pm}).
 - Most of them produced high in the atmosphere
 - @ Earth's surface
 - E and angular distribution (θ) at surface is driven by:
 - Production spectrum
 - Energy loss along the path in the atmosphere
 - Muon decay
 - Mean energy 4 GeV
 - Constant number below 1 GeV
 - Steepens along energy

March 2017

Spectrum of muons for $\theta = 0^{\circ}$ and 75° obtained from different measurements (markers) and from the Gaisser parametrization (line) PDG. Chin. Phys. C, 40, 100001 (2016)

> Muon flux @ surface (full θ range) $\phi_{\mu} \sim 1.3 \ 10^{-2} \ \mathrm{cm}^{-2} \ \mathrm{s}^{-1}$

- Atmospheric muons themselves and other muon-induced particles represent one of the most important background for Particle Physics experiments
- · Ways to reduce / deal with this background

Passive methods

Shielding: Mines, mountains...

Active methods

Dedicated detectors, tagging...

• In a nutshell (short baseline):

1

• Determination of θ_{13} by measuring the *deficit of detected anti-neutrinos* coming from the nuclear reactor

$$P(\bar{\mathbf{v}}_{e} \rightarrow \bar{\mathbf{v}}_{e}) = 1 - \sin^{2}(2\theta_{13}) \sin^{2}\left(\frac{\Delta m_{13}^{2} L}{4 E_{v}}\right) + o(10^{-3}) \begin{cases} L[m] / E[MeV] \le 1 \\ No \text{ matter effects} \end{cases}$$

- In a nutshell (short baseline):
 - Determination of θ_{13} by measuring the *deficit of detected anti-neutrinos* coming from the nuclear reactor
 - Anti-neutrinos detection (E_v < 10 MeV) via *Inverse Beta Decay* process (IBD)

$$\overline{v}_e + p \rightarrow e^+ + n$$

- Expected signal: Delayed coincidence
 - **Prompt Signal:** positron ionisation and annihilation
 - E(e^+) ~ E($\bar{\nu}_e$) 0.8 MeV
 - Localized energy deposit
 - Delayed signal: nuclear neutron capture
 - Features depending on the nucleus
 - Energy released, delay time

- In a nutshell (short baseline):
 - Determination of θ_{13} by measuring the *deficit of detected anti-neutrinos* coming from the nuclear reactor
 - Anti-neutrinos detection (E_v < 10 MeV) via *Inverse Beta Decay* process (IBD)
 - Three main experiments in the world: Daya Bay, *Double Chooz* and Reno

The Double Chooz case

March 2017

The Double Chooz case

March 2017

Héctor Gomez – Muon studies

LAYOUT:

v – Target	10.3 m ³ liquid scintillator, doped with 1 g/l of Gd in an 8 mm thick acrylic vessel.
Gamma Catcher	22.6 m ³ liquid scintillator in a 12 mm thick acrylic vessel
Buffer	110 m ³ of mineral oil (non-scintillating) in a 3 mm thick Stainless Steel vessel. It holds 390 <i>PMTs (10 inches)</i> working as readout
Inner Veto	90 m ³ liquid scintillator in a 10 mm thick Stainless Steel vessel equipped with 78 PMTs (8 inches)
Upper Shielding	15 cm thick steel plates
Outer Veto	Plastic scintillator panels

LAYOUT:

v – Target	10.3 m ³ liquid scintillator, doped with 1 g/l of Gd in an 8 mm thick acrylic vessel.
Gamma Catcher	22.6 m ³ liquid scintillator in a 12 mm thick acrylic vessel
Buffer	110 m ³ of mineral oil (non-scintillating) in a 3 mm thick Stainless Steel vessel. It holds 390 PMTs (10 inches) working as readout
Inner Veto	90 m ³ liquid scintillator in a 10 mm thick Stainless Steel vessel equipped with 78 PMTs (8 inches)
Upper Shielding	15 cm thick steel plates
Outer Veto	Plastic scintillator panels

Signal

- *Two* antineutrino identification *channels* (both based on IBD)
 - Neutron capture by **Gd** nuclei (baseline)
 - Delayed signal: *E* ~ 8 MeV; Δt ~ 30 μs
 - ✓ Well above natural background
 - **×** Limited fiducial volume (v target)
 - Neutron capture by *H* nuclei
 - Delayed singal: *E* ~ 2.2 MeV; Δt ~ 200 μs
 - \checkmark Increase of the sensitive volume (v target + gamma catcher)
 - * More background expected
 - Natural background
 - ★ Accidentals (bigger delay) → Additional background rejection tools required

$\overline{v}_e + p \rightarrow e^+ + n$

The Double Chooz case

The Double Chooz case

Backgrounds

March 2017

Héctor Gomez – Muon studies

Backgrounds

Cut	Information used	Target of cut	
μ veto	1 ms veto after μ μ , cosmogenics		
Multiplicity	Uniqueness condition Multiple n's		
FV veto	Vertex likelihood	Chimney stopping μ	
IV veto	IV activity	Fast n, stopping μ, γ scattering	
OV veto	OV activity	Fast n, stopping μ	
Li veto	Li Likelihood	Cosmogenics	
LN cut	PMT hit pattern Light emission and time from PMT		
ANN	$E_{delayed}$, ΔT , ΔR	Accidentals	
MPS veto	Pulses start time	Fast n	
CPS veto	Chimney likelihood	Stopping μ	
Q ratio	Max. Q / Tot. Q	ND Buffer stopping μ	

Only applied in n - H analysis Only applied in the multi-detector analysis

Only applied in n – H analysis Only applied in the multi-detector analysis

Tagging Muons → Rate

• Muons deposit large amounts of energy (if compared with other particles) when they traverse the sensitive volumes of Double Chooz detectors i.e. Inner Detector and Inner Veto

Tagging Muons → Rate

• Muons deposit large amounts of energy (if compared with other particles) when they traverse the sensitive volumes of Double Chooz detectors i.e. Inner Detector and Inner Veto

Standard selection (deposited energy in scinitillating volumes) 1: Evis-IV > 25 MeV 2: Evis-ID > 30 MeV and Evis-IV > 5 MeV

Mean Muon Rate*:

Near detector: $< R_{\mu} > = 242.75 \pm 4.81 \text{ Hz}$ Far detector: $< R_{\mu} > = 46.16 \pm 1.04 \text{ Hz}$

*Mean rate for all the analysed data: ~151 and ~673 days for the near and far detectors respectively

Tagging Muons \rightarrow **Angular Distributions**

• Muon track reconstruction based on time information of the Inner Detector and the Inner Veto and the spatial information of the Outer Veto. *Nucl. Instrum. Meth. A* 764 (2014) 330

March 2017

Héctor Gomez – Muon studies

March 2017

Héctor Gomez – Muon studies

Tagging Muons → Muon Flux

• Flux reconstructed via the so-called "sphere method" which uses the muon identification itself and the track information (minimum track distance to detector centre)

$$\phi_{\mu} = \frac{\langle R_{\mu} \rangle}{S_{eff}}$$

- For a cylindrical detector, S_{eff} is a function of θ and ϕ \rightarrow More difficult to compute
- For a spherical detector, $S_{eff} = \pi R^2$ for all directions
 - \rightarrow Simpler and with lower uncertainties

- Selecting μ crossing at a radial distance smaller than $R \rightarrow S_{eff} = \pi R^2$
- This radial distance can be computed from the track reconstruction algorithm

Tagging Muons → Muon Flux

March 2017

Héctor Gomez – Muon studies

Tagging Muons → Muon Flux

- Simulations have been performed using the MUSIC simulation package Astroparticle Physics 7 (1997) 357 – 368
 - ✓ Faster than other simulations packages (e.g. Geant 4) \rightarrow Specially for long μ paths
 - ✓ Versatile: Easy to implement overburden profiles
 - ***** Not possible to define internal structures/anomalies
 - * Not possible to include detector performance (to do "offline")

Overburden Profile and Composition

Muon Distribution at Surface

 $N_{\mu} (E_{\mu}, \theta, \phi)$

- Simulations have been performed using the MUSIC simulation package Astroparticle Physics 7 (1997) 357 – 368
 - ✓ Faster than other simulations packages (e.g. Geant 4) \rightarrow Specially for long μ paths
 - ✓ Versatile: Easy to implement overburden profiles
 - ***** Not possible to define internal structures/anomalies
 - * Not possible to include detector performance (to do "offline")

Overburden Profile and Composition

Muon Distribution at Surface

N_u (Ε_u, θ,φ)

- Due to the low overburden (120 and 300 m.w.e.) muons down to 20 and 40 GeV respectively are able to reach the detectors
 - → It is for low energies where muon models present more differences
- Comparing simulations between them and w.r.t experimental data would allow to validate these models

CRY generation: **Extended Gaisser parametrization: Reyna parametrization:** http://nuclear.llnl.gov/simulation/doc cry v1. Phys. Rev. D 74 (2006) 053007 arXiv:hep-ph/0604145 7/crv.pdf ✓ Analytical formula from different Based on Gaisser analytical Generated from data tables of formula ($E_{\mu} > 100/cos(\theta)$ GeV) measurements **MCNPX 2.5.0** ✓ Valid in the 1 - 4000 GeV energy Originally not valid for low energy; X Discretization effects range valid extension? Validated with experimental measurements in the 4 – 3000 GeV energy range

Nucl. Part. Phys. 10 (1984) 1609

- Due to the low overburden (120 and 300 m.w.e.) muons down to 20 and 40 GeV respectively are able to reach the detectors
 - → It is for low energies where muon models present more differences
- Comparing simulations between them and w.r.t experimental data would allow to validate these models

March 2017

- Due to the low overburden (120 and 300 m.w.e.) muons down to 20 and 40 GeV respectively are able to reach the detectors
 - → It is for low energies where muon models present more differences
- Comparing simulations between them and w.r.t experimental data would allow to validate these models

θ

Simulating muons → Angular distributions

Simulating muons → Data/MC comparison

Near detector

Data:
$$\phi_{\mu} = 3.64 \pm 0.04 \ 10^{-4} \ cm^{-2} \ s^{-1}$$

Simulations: $\phi_{\mu} = 3.47 \pm 0.12 \ 10^{-5} \ cm^{-2} \ s^{-1}$

Differences due to:

- Uncertainties in the low energy muon parametrization
- Lower precision in the profile digitization for Near Detector

Simulating muons → Data/MC comparison

Far detector

Data:
$$\phi_{\mu} = 7.00 \pm 0.05 \ 10^{-4} \ cm^{-2} \ s^{-1}$$

Simulations: $\phi_{\mu} = 7.24 \pm 0.33 \ 10^{-5} \ cm^{-2} \ s^{-1}$

Differences due to:

- Uncertainties in the low energy muon parametrization
- Lower precision in the profile digitization for Near Detector

- Even if (don't forget) *Double Chooz* was conceived as a *neutrino detector experiment*
- Muon characterization has revealed:
 - Muons are efficiently detected
 - Corresponding tracks has been successfully reconstructed
 - Simulation framework has been performed and cross-checked with experimental data
- Moreover:
 - Double Chooz has been (it is being actually) operated from 2011 \rightarrow High muon statistics
 - Simulation provides additional information not available from experimental data

• Annual modulation on the detected muon flux is expected:

- pN → Mesons (mostly π but also K)
 Decay to muons
- Muons loose energy along their path through the atmosphere (and the rock over the detector)
- Deeper detectors → Higher E_u required
- Fraction of mesons decaying to muons depends on the air density:
- → Higher temperature
 - \rightarrow Lower density
 - \rightarrow Mesons mean free path longer
 - → Higher fraction of mesons decaying (to muons) before interacting
 - → Higher muon rate

• Ingredients to study the annual modulation:

Muon Rate Double Chooz detectors

$$T_{\text{eff}} = \frac{\sum_{n=0}^{N-1} \Delta X_n \cdot T(X_n) (W_{\pi}(X_n) + W_K(X_n))}{\sum_{n=0}^{N} \Delta X_n (W_{\pi}(X_n) + W_K(X_n))}$$

$$W_{\pi,K}(X) = \frac{(1 - X/\Lambda'_{\pi,K})^2 e^{-X/\Lambda_{\pi,K}} A_{\pi,K}^1}{\gamma + (\gamma + 1) B_{\pi,K}^1 K_{\pi,K}(X) (\langle E_{\text{thr}} \cos \theta \rangle / \epsilon_{\pi,K})^2}$$
$$K_{\pi,K}(X) = \frac{(1 - X/\Lambda'_{\pi,K})^2}{(1 - e^{-X/\Lambda'_{\pi,K}}) \Lambda'_{\pi,K}/X}$$

• Ingredients to study the annual modulation:

Muon Rate Double Chooz detectors

Initial Muon spectrum @ Near Detector

$$T_{\text{eff}} = \frac{\sum_{n=0}^{N-1} \Delta X_n \cdot T(X_n) (W_{\pi}(X_n) + W_K(X_n))}{\sum_{n=0}^{N} \Delta X_n (W_{\pi}(X_n) + W_K(X_n))}$$

$$W_{\pi,K}(X) = \frac{(1 - X/\Lambda'_{\pi,K})^2 e^{-X/\Lambda_{\pi,K}} A_{\pi,K}^1}{\gamma + (\gamma + 1) B_{\pi,K}^1 K_{\pi,K} (X) ((E_{\text{thr}} \cos \theta) \epsilon_{\pi,K})^2}$$
$$K_{\pi,K}(X) = \frac{(1 - X/\Lambda'_{\pi,K})^2}{(1 - e^{-X/\Lambda'_{\pi,K}}) \Lambda'_{\pi,K}/X}$$

Near detector $\langle E_{thr} \cos \theta \rangle = 22.3 \pm 4.8 \text{ GeV}$ Far detector $\langle E_{thr} \cos \theta \rangle = 46.0 \pm 10.0 \text{ GeV}$

March 2017

Héctor Gomez – Muon studies

Effective temperature coefficient (α_{T}) :

$$\frac{\Delta R_{\mu}}{\langle R_{\mu} \rangle} = \alpha_{T} \frac{\Delta T_{eff}}{\langle T_{eff} \rangle}$$

Effective temperature coefficient (α_{T}) :

Near detector:	$\alpha_{\rm T}$ = 0.212 ± 0.013 (stat) ± 0.011 (sys)	Correlation (R_{μ} , T_{eff}) = 0.855
Far detector:	$\alpha_{\rm T}$ = 0.355 ± 0.002 (stat) ± 0.017 (sys)	Correlation (R_{μ} , T_{eff}) = 0.923

• Double Chooz results for α_r can be used to compare / validate theoretical models

$$\alpha_T^{\text{Theo}} = \frac{1}{D_\pi} \frac{1/\epsilon_K + A_K^1 (D_\pi/D_K)^2 / \epsilon_\pi}{1/\epsilon_K + A_K^1 (D_\pi/D_K) / \epsilon_\pi}$$
$$D_{K,\pi} = \frac{\gamma}{\gamma + 1} \frac{\epsilon_{K,\pi}}{1.1 \langle E_{\text{thr}} \cos \theta \rangle} + 1$$

It depends, via A_{κ}^{1} , of the assumed Pion to Kaon ratio

 $r_{K/\pi} = 0.149 \pm 0.060$ T.K. Gaisser, Cosmic rays and particle physics, Cambridge University Press, Cambridge U.K., (1990)

- Double Chooz measurements in agreement with theoretical model
- One of the first validations for low values of $\langle E_{thr} \cos \theta \rangle$

- Focused on reactor neutrino experiments, muon understanding in future projects is a must:
 - Background identification and control
 - Use them for calibration
 - Long term data taking \rightarrow Annual modulation studies for different <E_{thr} cos θ > value

- Focused on reactor neutrino experiments, muon understanding in future projects is a must:
 - Background identification and control
 - Use them for calibration
 - Long term data taking \rightarrow Annual modulation studies for different <E_{thr} cos θ > value

- Rejects and identify muons by:
 - ~1900 m.w.e. overburden (it should be considered underground physics)
 - Active muon veto
 - Water Cherenkov
 - Top tracker (from OPERA)
 - $< R_{\mu} > \sim o(10)$ Hz expected

Outlook

- Focused on reactor neutrino experiments, muon understanding in future projects is a must:
 - Background identification and control
 - Use them for calibration
 - Long term data taking \rightarrow Annual modulation studies for different <E_{thr} cos θ > value

At Surface!!

- Rejection by active muon veto
 - Stereo → Water Cherenkov
 - Solid → Track identification
 - ✓ Detector Calibration

Outlook

- Focused on reactor neutrino experiments, muon understanding in future projects is a must:
 - Background identification and control
 - Use them for calibration
 - Long term data taking \rightarrow Annual modulation studies for different <E_{thr} cos θ > value

At Surface!!

- Rejection by active muon veto
 - Stereo → Water Cherenkov
 - Solid → Track identification
 - ✓ Detector Calibration

Héctor Gomez – Muon studies

- Focused on reactor neutrino experiments, muon understanding in future projects is a must:
 - Background identification and control
 - Use them for calibration
 - Long term data taking \rightarrow Annual modulation studies for different <E_{thr} cos θ > value

Outlook

Taking advantage of muons

- Atmospheric muons as radioactive source:
 - ✓ Natural Non human risky
 - ✓ Free
 - Rather intense ۲
 - Extended and deep penetrating
 - Fairly well understood and parametrized ۲

- Ratio between initial and final fluxes is directly related with Linear Density
- Differences in final flux (after normalization) for different directions also points to Linear Density differences
- Muon deflection could also imply the existence of high density anomalies

• 1970: L.W. Alvarez (1968 Physics Nobel Prize)

- Scanning of Chefren Pyramid looking for internal vaults
- Nothing found
- Alvarez, L.W. (1970). "Search for hidden chambers in the pyramids using cosmic rays". Science 167: 832

Fig. 6 (left). The equipment in place in the Belzoni Chamber under the pyramid. Fig. 7 (right). The detection apparatus containing the spark chambers.

Héctor Gomez – Muon studies

The origins

Volcano Tomography

Archaeology

Nuclear control and safety

Merchandise scanning

ARISTOTLE UNIVERSITY OF THESSALONIKI

Archéologie avec des Rayons Cosmiques, pour sonder les tumuli HElléniques

Feasibility studies by *Monte Carlo simulations* First deployment and measurements in the *Apollonia Tumulus* (near Thesalonikki – Greece)

Expected Spring 2017

Preparation of the *"muon telescope"*

Muon telescope

- Already used for volcano scanning
 - www.diaphane-muons.com
 - Constructed to be:
 - Autonomous
 - Robust
 - Light and Portable
 - Coincidence of the 3 pixelized scintillator planes
 - → Reconstruction of the μ trajectory

March 2017

Héctor Gomez – Muon studies

Muon tomography

- Already used for volcano scanning
 - www.diaphane-muons.com
- Constructed to be:
 - Autonomous
 - Robust
 - Light and Portable
- Coincidence of the 3 pixelized scintillator planes
 - → Reconstruction of the μ trajectory

- **Double Chooz** work demonstrated the reliability of the MUSIC software and extended Gaisser muon parametrization down to 20 GeV muons.
- Due to tumulus dimensions, muons in the [1 100] GeV energy window are the most interesting for the scanning.
- **MUSIC** simulations have some limitations but can provide an idea about the potential of the technique.

Journal of Physics: Conference Series 718 (2016) 052016

AIP Conference Proceedings 1672 (2015) 140004

- New Geant4 framework has been performed:
 - More precise definition of the tumulus geometry and the internal structures
 - Possibility to include detector performance (efficiency, pixelization, angular acceptance...)

- New Geant4 framework has been performed:
 - More precise definition of the tumulus geometry and the internal structures
 - Possibility to include detector performance (efficiency, pixelization, angular acceptance...)

Detector response @ open air

Angular distribution at detector

- New Geant4 framework has been performed:
 - More precise definition of the tumulus geometry and the internal structures
 - Possibility to include detector performance (efficiency, pixelization, angular acceptance...)

Normalized tomography

- New Geant4 framework has been performed:
 - More precise definition of the tumulus geometry and the internal structures
 - Possibility to include detector performance (efficiency, pixelization, angular acceptance...)

- New Geant4 framework has been performed:
 - More precise definition of the tumulus geometry and the internal structures
 - Possibility to include detector performance (efficiency, pixelization, angular acceptance...)

Summary and Conclusions

- Atmospheric muons is the main component of the air shower reaching the Earth's Surface.
 - They represent themselves, or by muon-induced events, one of the main background for particle physics
 - Reactor neutrino experiments
 - Going underground
 - Active vetoes
- Double Chooz has performed a full muon characterization combining data analysis and Monte Carlo simulations
 - Muon Rate and Flux, Angular distributions
 - Also annual modulation phenomenon \rightarrow Validation of the theoretical models
- However, atmospheric muons represent an interesting radiation source utilisable for other applications
 - *Muon tomography* is a non-invasive exploration technique suitable for big objects
 - Arche project studies the feasibility of muon tomography for archaeological applications
 - First detector deployment expected next spring

Studying Atmospheric Muons:

From neutrino physics to archaeological applications

Héctor Gomez

Astroparticule et Cosmologie (APC – Paris)

hgomez@apc.univ-paris7.fr

USPPC Université Sorbonne Paris Cité

Back-up

Annual Modulation

$$T_{\text{eff}} = \frac{\sum_{n=0}^{N-1} \Delta X_n \cdot T(X_n) (W_{\pi}(X_n) + W_K(X_n))}{\sum_{n=0}^{N} \Delta X_n (W_{\pi}(X_n) + W_K(X_n))}$$

 $\Delta X_n \rightarrow$ Difference of pressure between two adjunct levels

 $T(X_n) \rightarrow$ Temperature @ X_n pressure

 W_{π} and $W_{k} \rightarrow$ Weighting functions for μ production

$$W_{\pi,K}(X) = \frac{(1 - X/\Lambda'_{\pi,K})^2 e^{-X/\Lambda_{\pi,K}} A_{\pi,K}^1}{\gamma + (\gamma + 1) B_{\pi,K}^1 K_{\pi,K}(X) (\langle E_{\text{thr}} \cos \theta \rangle / \epsilon_{\pi,K})^2} K_{\pi,K}(X) = \frac{(1 - X/\Lambda'_{\pi,K})^2}{(1 - e^{-X/\Lambda'_{\pi,K}}) \Lambda'_{\pi,K}/X}$$

 $\begin{array}{l} A^{1}_{_{\pi k}} \ \rightarrow \ Inclusive \ meson \ production \ + \ masses \ of \ mesons \\ and \ \mu \ + \ \mu \ spectral \ index \end{array}$

 $B^{1}_{\pi k} \rightarrow Relative atmospheric attenuation of mesons$

 $\varepsilon_{\pi}, \varepsilon_{k} \rightarrow$ Mesons critical energy

 $\gamma \rightarrow \mu$ sppectral index

 $\Lambda_{_{N}}, \Lambda_{_{\pi}}, \Lambda_{_{k}} \rightarrow$ Attenuation lengths

 $1/\Lambda'_{\pi,k} = 1/\Lambda_N - 1/\Lambda_{\pi,k}$

Parameter	Value	Unit
A^1_{π}	1	-
A_K^1	$0.38 imes r_{K/\pi}$	-
$r_{K/\pi}$	$0.149 {\pm} 0.060$	-
B^1_{π}	$1.460 {\pm} 0.007$	-
B_K^1	$1.740 {\pm} 0.028$	-
ϵ_{π}	114 ± 3	GeV
ϵ_K	851 ± 14	GeV
γ	$1.7 {\pm} 0.1$	-
Λ_N	120	$\rm g/cm^2$
Λ_{π}	180	$\rm g/cm^2$
Λ_K	160	$ m g/cm^2$

Phys. Rev. D 81 (2010) 012001