

Marco Delmastro

(experimental) LHC physics

Lecture 2

- How do wet search for a new particle?
- Higgs boson: discovery and measurement
- Is there anything beyond the Standard Model?

How to search for a new particle and (possible find it!

Interesting processes are rare!

There is no Higgs-boson detector!

this is what we are looking for...

Step I: find events with the right ingredients

Step I: find events with the right ingredients

Step I: find events with the right ingredients

Signal and background

Irreducible background

The final state is exactly the same, but it does not come from the particle you are looking for

The final state looks like the same, but some f the particle fakes what you are looking for

Marco Delmastr

Selections

- Cut on particle properties to reduce reducible background
 - Shower shapes, track properties, ...
- Cut on event properties to distinguish signal from background
 - Particle kinematics, decay kinematics event shape, ...
- Try to keep signal while reducing background!

✓ Increase S/B...

Step 2: reconstruct properties of initial particle

• We have 4 particles...

with their energy (calorimeters), charge and momentum (tracker)

• Use pairs of opposite sign e^+e^- and $\mu^{+\mu-}$

• Reconstruct invariant mass from the 4 particles M=M

$$M = \sqrt{\left(\sum E_i\right)^2 - \left(\sum \vec{p_i}\right)^2}$$

$$M = \sqrt{\left(\sum E_i\right)^2 - \left(\sum \vec{p_i}\right)^2}$$

/ 0.5 GeV ATLAS Simulation 0.08 0.07 • m_H = 125 GeV Gaussian fit H→ZZ*→2µ2e/2e2µ √s = 8 TeV 0.04 - m = 124.23 ± 0.01 GeV σ = 2.17 \pm 0.01 GeV Fraction outside $\pm 2\sigma$: 17% 0.02 Without Z mass constraint 0.01 0 80 120 100 140 $m_{2\mu 2e/2e2\mu}$ [GeV]

> Events in real life do not come with a label! No way to distinguish signal from background on an event-by-event base...

Number of events

- Background gets estimated...
 - \checkmark ... from simulation (normalized to data)
 - directly from data ("control regions", enriched in background events)

How significant is an excess?

- p0: probability that the excess is due to a fluctuation of background
- Significance: $p_0 = 1 - \operatorname{Erf}\left(\frac{Z}{\sqrt{2}}\right)$ $Z \sim \frac{\sim}{\sqrt{R}}$ Convention:
 - 3σ is an evidence (p₀ = 0.27%) •
 - 5σ is a discovery (p₀ = 5.7.10⁻⁷) •

How significant is an excess?

⁽experimental) LHC physics

CERN Auditorium, July 4th 2012

110 115 120 125 130 135 140 146 1

Maximum excess observed at

Expected from SM Higgs my=126.5

Global significance: 4.1-4.3 a (for LEE a

ATLAST

104

108 100

experimen

 \bigcirc

III

Higgs boson

Standard Model Higgs decays

(experimental) LHC physics

Run Number: 204769, Event Number: 24947130

Date: 2012-06-10 08:17:12 UTC

Н→үү

"Higgs-like" signals on July 4th 2012 (in ATLAS)

Н→үү

H→4I

"Higgs-like" signals with all 7 and 8 TeV data...

H→4I

"Higgs-like" signals with 13 TeV data...

Н→үү

H→4I

Higgs production cross-section vs. c.o.m. energy

is it the Higgs boson?

What's a particle spin?

"An amount of rotation that is somehow quantized"

An electron has always an angular momentum of $\frac{1}{2}\hbar$ either in its direction of travel (+ $\frac{1}{2}\hbar$) or opposite to it (- $\frac{1}{2}\hbar$)

 $\hbar = 1.0545 \times 10^{-34} \text{ m}^2 \text{ kg} / \text{ s}$

What spin do particles have?

What can a spin 0 particle decay to?

What can a spin I particle decay to?

What can a spin 2 particle decay to?

So, what spin has our Higgs-like particle?

How can we recognize spin?

spin 0

spin I

spin 2

Spin-0 decays in all directions with equal probability; spin-1 prefers decaying toward or away from the direction of spin; spin-2 prefers the poles and the equator to the region in between. These pictures exaggerate the real distributions for clarity.

Marco Delmastro

(experimental) LHC physics

Spin with $H \rightarrow 41$ (& combination)

- Sensitive variables combined in BDT score
 - Intermediate boson masses: m_{Z1}, m_{Z2}
 - \checkmark Z₁ production angle: θ^*
 - \checkmark Z₁ decay plane angle: Φ_1
 - ✓ Angle between the Z_1 and Z_2 decay planes: Φ
 - ✓ Decay angles of negative leptons: θ_1 , θ_2

Marco Deimastro

The Higgs boson or a Higgs boson?

New results indicate that particle discovered at CERN is a Higgs boson

14 Mar 2013

Geneva, 14 March 2013. At the Moriond Conference today, the ATLAS and CMS collaborations at CERN¹'s Large Hadron Collider (LHC) presented preliminary new results that further elucidate the particle discovered last year. Having analysed two and a half times more data than was available for the discovery announcement in July, they find that the new particle is looking more and more like a Higgs boson, the particle linked to the mechanism that gives mass to elementary particles. It remains an open question, however, whether this is the Higgs boson of the Standard Model of particle physics, or possibly the lightest of several bosons predicted in some theories that go beyond the Standard Model. Finding the answer to this question will take time.

Many unanswered questions...

Why there are 3 families of particles? Are there more? Why is the top quark so heavy?

Why there's more matter then antimatter?

How do neutrinos get mass?

What keeps the Higgs mass so small?

How do we incorporate gravity?

What is Dark Matter?

Marco Delmastro

... as many possible answers to probe!

Super-symmetry?

 Standard particles
 SUSY particles

 U
 C
 1
 1

 d
 S
 b
 1

 d
 S
 b
 1

 V
 V
 V

 V
 V
 V

 V
 V
 V

 V
 V
 V

 V
 V
 V

 V
 V
 V

 V
 V
 V

 V
 V
 V

 V
 V
 V

 V
 V
 V

 V
 V
 V

 V
 V
 V

 V
 V
 V

 V
 V
 V

 V
 V
 V

 V
 V
 V

 V
 V
 V

 V
 V
 V

 V
 V
 V

 V
 V
 V

 V
 V
 V

 V
 V
 V

 V
 V
 V

 V
 V
 V

 V
 V
 V

 V
 V
 V

 V
 V
 V

 V
 V
 V

 V
 V

 V</t

New heavy bosons?

1 bilion years z=6

Dark Matter particles? \boldsymbol{g}

W

Ζ

b

 \mathcal{V}_{τ}

Any new theory

need to agree

with the SM!

S

d

Composite quark and leptons?

Large extradimensions? Black holes? Gravitons?

Extended

Higgs sector?

Example: search for a new gauge bosons $Z \rightarrow II$

It's the right time to join!

Hugely increased potential for discovery of heavy particles at 13 TeV Perfect occasion for young motivated physicists: join the search!

It's the right time to join!

Hugely increased potential for discovery of heavy particles at 13 TeV Perfect occasion for young motivated physicists: join the search!

The LHC will run for a long time...

Marco Delmastro

45

Marco Delmastro

"That's all Folks!"

Additional information

(I find you lack of faith disturbing)

Standard Model Higgs production at the LHC

Marco Delmastro

(experimental) LHC physics

Month in Year 49

ATLAS Exotics Searches* - 95% CL Upper Exclusion Limits

Status: July 2017

Extra dimensions

Gauge bosons

G

DM

ΓQ

Heavy quarks

Excited fermions

Other

100. 001y 2017					JL dt	= (3.2 - 37.0) fb ⁺	$\sqrt{s} = 8$, 13 lev
Model	<i>ℓ</i> ,γ	Jets†	E ^{miss} T	∫£ dt[fl	⁻¹] Limit		Reference
ADD $G_{KK} + g/q$ ADD non-resonant $\gamma\gamma$ ADD QBH ADD BH high $\sum p_T$ ADD BH multijet RS1 $G_{KK} \rightarrow \gamma\gamma$ Bulk RS $G_{KK} \rightarrow WW \rightarrow qq\ell\gamma$ 2UED / RPP	$0 e, \mu$ 2γ $-$ $\geq 1 e, \mu$ $-$ 2γ $1 e, \mu$ $1 e, \mu$	$1 - 4 j$ $-$ $2 j$ $\geq 2 j$ $\geq 3 j$ $-$ $1 J$ $\geq 2 b, \geq 3 j$	Yes – – – – Yes į Yes	36.1 36.7 37.0 3.2 3.6 36.7 36.1 13.2	MD 7.75 TeV Ms 8.6 Te Mth 8.9 Te Mth 8.2 TeV Mth 9.55 TeV G _{KK} mass 4.1 TeV GKK mass 1.75 TeV	$\begin{array}{l} n=2\\ n=3 \ \text{HLZ NLO}\\ n=6\\ n=6, M_D=3 \ \text{TeV, rot BH}\\ n=6, M_D=3 \ \text{TeV, rot BH}\\ k/\overline{M}_{Pl}=0.1\\ k/\overline{M}_{Pl}=1.0\\ \text{Tier }(1,1), \ \mathcal{B}(A^{(1,1)}\rightarrow tt)=1 \end{array}$	ATLAS-CONF-2017-060 CERN-EP-2017-132 1703.09217 1606.02265 1512.02586 CERN-EP-2017-132 ATLAS-CONF-2017-051 ATLAS-CONF-2016-104
$\begin{array}{l} \operatorname{SSM} Z' \to \ell\ell \\ \operatorname{SSM} Z' \to \tau\tau \\ \operatorname{Leptophobic} Z' \to bb \\ \operatorname{Leptophobic} Z' \to tt \\ \operatorname{SSM} W' \to \ell\nu \\ \operatorname{HVT} V' \to WV \to qqqq \mbox{ model} \\ \operatorname{HVT} V' \to WH/ZH \mbox{ model} \\ \operatorname{LRSM} W'_R \to tb \\ \operatorname{LRSM} W'_R \to tb \\ \end{array}$	$\begin{array}{c} 2 \ e, \mu \\ 2 \ \tau \\ - \\ 1 \ e, \mu \\ 1 \ e, \mu \\ I \ B \\ 0 \ e, \mu \\ \end{array}$ multi-channe \\ 1 \ e, \mu \\ 0 \ e, \mu \end{array}	- 2 b ≥ 1 b, ≥ 1J/2 - 2 J el 2 b, 0-1 j ≥ 1 b, 1 J	_ 2j Yes Yes _ Yes _	36.1 36.1 3.2 36.1 36.7 36.1 20.3 20.3	Z' mass 4.5 TeV Z' mass 2.4 TeV Z' mass 1.5 TeV Z' mass 2.0 TeV W' mass 5.1 TeV V' mass 3.5 TeV V' mass 2.93 TeV W' mass 1.92 TeV W' mass 1.76 TeV	$\Gamma/m = 3\%$ $g_V = 3$ $g_V = 3$	ATLAS-CONF-2017-027 ATLAS-CONF-2017-050 1603.08791 ATLAS-CONF-2016-014 1706.04786 CERN-EP-2017-147 ATLAS-CONF-2017-055 1410.4103 1408.0886
Cl qqqq Cl ℓℓqq Cl uutt	_ 2 e, μ 2(SS)/≥3 e,,	2 j _ µ ≥1 b, ≥1 j	_ _ Yes	37.0 36.1 20.3	Λ Λ Λ 4.9 TeV	21.8 TeV η_{LL}^- 40.1 TeV η_{LL}^- $ C_{RR} = 1$	1703.09217 ATLAS-CONF-2017-027 1504.04605
Axial-vector mediator (Dirac DM) Vector mediator (Dirac DM) $VV_{\chi\chi}$ EFT (Dirac DM)	1) 0 e, μ 0 e, μ, 1 γ 0 e, μ	$\begin{array}{c} 1-4 \ j \\ \leq 1 \ j \\ 1 \ J, \leq 1 \ j \end{array}$	Yes Yes Yes	36.1 36.1 3.2	mmmed 1.5 TeV mmmed 1.2 TeV M, 700 GeV	$\begin{array}{l} g_q {=}0.25, \ g_\chi {=}1.0, \ m(\chi) < 400 \ {\rm GeV} \\ g_q {=}0.25, \ g_\chi {=}1.0, \ m(\chi) < 480 \ {\rm GeV} \\ m(\chi) < 150 \ {\rm GeV} \end{array}$	ATLAS-CONF-2017-060 1704.03848 1608.02372
Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen	2 e 2 μ 1 e, μ	$ \begin{array}{c} \geq 2 \ j \\ \geq 2 \ j \\ \geq 1 \ b, \geq 3 \ j \end{array} $	– – Yes	3.2 3.2 20.3	LQ mass 1.1 TeV LQ mass 1.05 TeV LQ mass 640 GeV	$egin{array}{lll} eta = 1 \ eta = 1 \ eta = 1 \ eta = 0 \end{array}$	1605.06035 1605.06035 1508.04735
$ \begin{array}{l} VLQ \ TT \rightarrow Ht + X \\ VLQ \ TT \rightarrow Zt + X \\ VLQ \ TT \rightarrow Wb + X \\ VLQ \ BB \rightarrow Hb + X \\ VLQ \ BB \rightarrow Zb + X \\ VLQ \ BB \rightarrow Wt + X \\ VLQ \ QQ \rightarrow WqWq \end{array} $	0 or 1 e, µ 1 e, µ 1 e, µ 2/≥3 e, µ 1 e, µ 1 e, µ 1 e, µ	$ \begin{array}{l} \geq 2 \ b, \geq 3 \ j \\ \geq 1 \ b, \geq 3 \ j \\ \geq 1 \ b, \geq 2 \ J \\ \geq 2 \ b, \geq 3 \ j \\ \geq 2 \ b, \geq 3 \ j \\ \geq 2 / \geq 1 \ b \\ \geq 1 \ b, \geq 1 \ J / 2 \\ \geq 4 \ j \end{array} $	i Yes i Yes 2j Yes i Yes - 2j Yes Yes	13.2 36.1 36.1 20.3 20.3 36.1 20.3	T mass 1.2 TeV T mass 1.16 TeV T mass 1.35 TeV B mass 700 GeV B mass 790 GeV B mass 1.25 TeV Q mass 690 GeV	$\begin{split} \mathcal{B}(T \to Ht) &= 1\\ \mathcal{B}(T \to Zt) &= 1\\ \mathcal{B}(T \to Wb) &= 1\\ \mathcal{B}(B \to Hb) &= 1\\ \mathcal{B}(B \to Zb) &= 1\\ \mathcal{B}(B \to Wt) &= 1 \end{split}$	ATLAS-CONF-2016-104 1705.10751 CERN-EP-2017-094 1505.04306 1409.5500 CERN-EP-2017-094 1509.04261
Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $b^* \rightarrow bg$ Excited quark $b^* \rightarrow Wt$ Excited quark $b^* \rightarrow Wt$ Excited lepton t^*	- 1 γ - 1 or 2 e, μ 3 e, μ 3 e, μ, τ	2 j 1 j 1 b, 1 j 1 b, 2-0 j -	- - Yes -	37.0 36.7 13.3 20.3 20.3 20.3	q* mass 6.0 TeV q* mass 5.3 TeV b* mass 2.3 TeV b* mass 1.5 TeV /* mass 3.0 TeV v* mass 1.6 TeV	only u^* and d^* , $\Lambda = m(q^*)$ only u^* and d^* , $\Lambda = m(q^*)$ $f_g = f_L = f_R = 1$ $\Lambda = 3.0 \text{ TeV}$ $\Lambda = 1.6 \text{ TeV}$	1703.09127 CERN-EP-2017-148 ATLAS-CONF-2016-060 1510.02664 1411.2921 1411.2921
LRSM Majorana v Higgs triplet $H^{\pm\pm} \rightarrow \ell \ell$ Higgs triplet $H^{\pm\pm} \rightarrow \ell \tau$ Monotop (non-res prod) Multi-charged particles Magnetic monopoles	$2 e, \mu$ 2,3,4 e, μ (S3 3 e, μ , τ 1 e, μ - - - - $\sqrt{s} = 8 \text{ TeV}$	2 j S) - 1 b - - √s = 13	- Yes - - -	20.3 36.1 20.3 20.3 20.3 7.0	Nº mass 2.0 TeV H ^{±±} mass 870 GeV H ^{±±} mass 400 GeV spin-1 invisible particle mass 657 GeV multi-charged particle mass 785 GeV monopole mass 1.34 TeV 10 ⁻¹ 1	$m(W_R) = 2.4 \text{ TeV}, \text{ no mixing}$ DY production DY production, $\mathcal{B}(H_L^{\pm\pm} \to \ell \tau) = 1$ $a_{non-res} = 0.2$ DY production, $ q = 5e$ DY production, $ g = 1g_D$, spin 1/2	1506.06020 ATLAS-CONF-2017-053 1411.2921 1410.5404 1504.04188 1509.08059

10 Mass scale [TeV]

*Only a selection of the available mass limits on new states or phenomena is shown.

†Small-radius (large-radius) jets are denoted by the letter j (J).

(experimental) LHC physics

ATLAS Preliminary 10 T-V

~ 7

Selected CMS SUSY Results* - SMS Interpretation

ICHEP '16 - Moriond '17

Г

$pp \rightarrow \tilde{g} \tilde{g}, \tilde{g} \rightarrow qq \tilde{\chi}_{4}^{0}$	SUS-16-0	14 SUS-16-033 OI(N	ИНТ)								
$pp \rightarrow \tilde{g} \tilde{g}, \tilde{g} \rightarrow qq \tilde{\chi}_{q}^{*}$	SUS-16-0	15 SUS-16-036 OI(N	MT2)								_
pp → ĝ̃ĝ, ĝ → bb χ̃	SUS-16-0	14 SUS-16-033 OI(N	ИНТ)								
pp → ĝ̃ĝ̃, ĝ̃→ bb χ̃	SUS-16-0	15 SUS-16-036 OI(M	MT2)								
$pp \rightarrow g g, g \rightarrow bb \chi$	SUS-16-0	16 0I(α _τ)									
pp→gg,g→ttχ ~~~	SUS-16-0	14 SUS-16-033 UI(M									
$pp \rightarrow g g, g \rightarrow tt \chi$	SUS-16-0		vi12)								
$pp \rightarrow gg, g \rightarrow u\chi$	SUS-16-0	10 01(0 ₇)	۸ Å)								
	SUS-16-0	19 303-10-042 11(2 20 SUS-16-025 21 c	Δφ)								
$pp \rightarrow g g, g \rightarrow u \chi$	SUS-16-0	20 303-10-035 21 s	tilenton								
$pp \rightarrow g g, g \rightarrow \pi \chi$ $pp \rightarrow \tilde{g} \tilde{g}, \tilde{g} \rightarrow \pi \tilde{\chi}$	SUS-16-0	22 303-10-041 WU	linepton								
$pp \rightarrow \tilde{q} \tilde{q} \rightarrow tt \tilde{\gamma}^{0}$	SUS-16-0	37 1I(MJ)									
	SUS-16-0	30.01		(M - M.							
$pp \rightarrow \tilde{g} \tilde{g}, \tilde{g} \rightarrow tt \tilde{\chi}^{\pm}$	SUS-16-0	33 OI(MHT)		(M - M Los	= 5 GeV)						
$\widetilde{\chi}^{0}$ W $\widetilde{\chi}^{0}$ W $\widetilde{\chi}^{0}$	SUS-16-0	19 SUS-16-042 11(/	(φ) x=0.5	χ, m Lsp ·							
$pp \rightarrow \tilde{q} \tilde{q}, \tilde{q} \rightarrow qq \tilde{\chi}^{\frac{1}{2}} \rightarrow qq W \tilde{\chi}^{\frac{1}{2}}$	SUS-16-0	20 SUS-16-035 21 s	ame-sign x=0.5								
$pp \rightarrow \tilde{q} \tilde{q}, \tilde{q} \rightarrow qq \tilde{\chi}^{\frac{1}{2}} \rightarrow qq W \tilde{\chi}^{\frac{1}{2}}$	SUS-16-0	20 SUS-16-035 2l s	ame-sign	(M., - M.)	en = 20 GeV)						
$\tilde{a} \tilde{a}, \tilde{a} \rightarrow aa(\tilde{v}^{\pm}/\tilde{v}^{0}) \rightarrow aa(W/Z)\tilde{v}^{0}$	SUS-16-0	14 SUS-16-033 0I(M	MHT) x=0.5	Interm.	.sp						
$\tilde{g} \tilde{g}, \tilde{g} \rightarrow qq(\tilde{\chi}^{1}/\tilde{\chi}^{2}) \rightarrow qq(W/Z)\tilde{\chi}^{0}$	SUS-16-0	22 SUS-16-041 Mul	tilepton x=0.5								
11											
$pp \rightarrow \tilde{t} \tilde{t}, \tilde{t} \rightarrow t \tilde{\chi}^0$	SUS-16-0	14 SUS-16-033 OI(M	MHT)								
$pp \rightarrow \tilde{t} \tilde{t}, \tilde{t} \rightarrow t \tilde{\chi}$	SUS-16-0	15 SUS-16-036 OI(M	MT2)								
pp → t̃t, t̃→ t χ̃	SUS-16-0	16 0I(α _τ)									
pp →t̃t,t̃→t χ̃	SUS-16-0	27 SUS-17-001 2I o	pposite-sign								
pp → t̃t̃, t̃→t χ̃	SUS-16-0	28 SUS-16-051 1I									
pp→tt,t→t χ̃	SUS-16-0	29 SUS-16-049 0I									
$pp \rightarrow tt, t \rightarrow t\tilde{\chi}$	SUS-16-0	30 01									
pp →tt,t→c χ	SUS-16-0	32 0 1		(Max exclus	ion for M Nother - M Le	_{se} < 80 GeV)					
$pp \rightarrow \tilde{t} \tilde{t}, \tilde{t} \rightarrow c \tilde{\chi}$	SUS-16-0	36 OI(MT2)		(Max exclus	sion for M Mother - M LS	_{se} < 80 GeV)				Der a. 12	
$pp \rightarrow tt, t \rightarrow c\chi$	SUS-16-0	49 OI		(Max exclus	ion for M Mother - M LS	_{ap} < 80 GeV)			CIMS	reim	narv
$pp \rightarrow tt, t \rightarrow bff \chi$ (4-body)	SUS-16-0	25 SUS-16-048 2l s	soft	(Max exclus	tion for M _{Mother} - M _{LS}	_{SP} < 80 GeV)					
$pp \rightarrow tt, t \rightarrow bff \chi$ (4-body)	SUS-16-0	29 SUS-16-049 0		(Max excluse)	sion for M _{Mother} - M _{LS}	se < 80 GeV)					
$pp \rightarrow tt, t \rightarrow bft \chi$ (4-body)	SUS-10-0		-0 E	(Max exclus	Mother - IVI LS	_{SP} < 60 GeV)			$\sqrt{c} - 1$	2T~\/	
$pp \rightarrow tt, t \rightarrow \chi - b \rightarrow b W - \chi$	505-10-0		x=0.5						12 = 1	JIEV	
$pp \rightarrow tt, t \rightarrow \chi b \rightarrow b w \chi$	SUS-16-0	29 303-10-049 01	x=0.5								
$pp \rightarrow tt, t \rightarrow \chi b \rightarrow b w \chi$ $pp \rightarrow tt, t \rightarrow \chi^{\pm} b \rightarrow b W^{\pm} \chi^{\pm}$	SUS-17-0	1 21 opposite-sign	x=0.5						1 - 10 0 6	ь ⁻¹ 1 — ог о	sta ⁻¹
$pp \rightarrow p $	SUS-16-0	14 SUS-16-033 0I/M							L = 12.91	D = 33.9	
$pp \rightarrow bb, b \rightarrow b \overline{2}^{\dagger}$	SUS-16-0	15 SUS-16-036 0I(M	MT2)								
$pp \rightarrow \tilde{b} \tilde{b}, \tilde{b} \rightarrow b \tilde{\lambda}^{\dagger}$	SUS-16-0	$1601(\alpha)$,								
$pp \rightarrow \tilde{b} \tilde{b}, \tilde{b} \rightarrow b \tilde{\chi}^0$	SUS-16-0	32.01							-		
$pp \rightarrow \tilde{q} \tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}^{0}$	SUS-16-0	14 SUS-16-033 0I(M	инт)					$\tilde{q} + \tilde{q} (\tilde{u})$, d, c, s)		
pp →q̃q̃,q̃ → q χ̃	SUS-16-0	15 SUS-16-036 OI(M	MT2)						\tilde{q} + \tilde{q} (\tilde{u} , d , \tilde{c} , \tilde{s}	()	
'-									R L		
$pp \rightarrow \tilde{\chi}_{g}^{\circ} \tilde{\chi}_{1}^{\pm} \rightarrow III v \tilde{\chi}_{1}^{\circ} \tilde{\chi}_{1}^{\circ}$	SUS-16-0	24 SUS-16-039 Mul	Itilepton (flavour demo	ocratic) x=0.5							
pp → χຶ χ [±] → III v χຶ χຶ	SUS-16-0	39 Multilepton + 2I s	same-sign (flavour der	nocratic) x=0.9	j i						
$pp \rightarrow \tilde{\chi}_{\mu} \tilde{\chi}_{\pm}^{\pm} \rightarrow II \tau v \tilde{\chi}_{\mu} \tilde{\chi}_{\mu}^{\pm}$	SUS-16-0	39 Multilepton (tau e	enriched)	x=0.5							
$pp \rightarrow \tilde{\chi}_{2} \tilde{\chi}_{1}^{\pm} \rightarrow \tau \tau \tau v \tilde{\chi}_{1} \tilde{\chi}_{1}$	SUS-16-0	39 Multilepton (tau o	dominated)	x=0.5							
$pp \rightarrow \tilde{\chi} \tilde{\chi}^{\pm}_{1} \rightarrow W Z \tilde{\chi}^{\pm}_{1} \tilde{\chi}^{\pm}_{1}$	SUS-16-0	24 SUS-16-039 Mul	Itilepton					⊢or de	ecays with int	ermediate ma	SS,
$pp \rightarrow \chi \chi^* \rightarrow W H \chi \chi$	SUS-16-0	se multilepton		 .				m	– v . m	+(1-v)· m	
$\mathbf{p}\mathbf{p} \to \chi_2^- \chi_1^- \to \mathbf{W} \mathbf{Z} \chi_1^- \chi_1^-$	SUS-16-0	25 505-16-048 21 s	лоп	(Max exclus	HON TOT M Mother - M LS	_{SP} < 40 GeV)		Interme	ediate 🗕 🏠 🛄 Mo	ther LS	Ρ.
	0	200	400	600	800	1000	1200	1400	1600	1800	2000
	*				lation t '	aluala d				Mass S-	
	"Obser	ved limits at	t 95% C.L t	neory uncerta	inties not in	cluded				wass SC	ale [GeV]
	Only a	selection o	f available m	ass limits Pro	be *un to* t	he auoted ma	ass limit for m	an GeV un	less stated of	therwise	
	Chily 6								000 010100 0		

EWK Gauginos

(experimental) LHC physics