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Main questions in the field

→ Source of cosmic rays

→ Origin of non-thermal emissions

→ Dark matter indirect detection

mailto:dmaurin@lpsc.in2p3.fr


  

H.E.S.S. telescopesMountain altitude < 5 km EGRET onboard ‏CGRO

19801910 1930

CR‏
discovery de-, e+ n

20001950

Diffuse g
TeV

astronomy

Cosmic rays‏

Particle physics
= + astroparticle physics

Astrophysics

Particle physics

p ?
Extensive
showers

Cosmic ray physics milestones‏



  

   1) Introduction: projections and coordinates

   2) The gamma-ray sky

   3) Interactions in the atmosphere and showers

   4) Fermi-LAT and H.E.S.S.

Constraints on dark matter from γ-rays‏ (5   



  
Question: what projection is best for astronomical use and why?  

Hammer-AïtoffMercator

1. Introduction

Mapping the 2D sphere to the Euclidian space



  
Representations of celestial coordinates in FITS
Calabretta & Greisen, A&A 395, 1077 (2002)‏

Mapping the 2D sphere to the Euclidian space

Hammer-Aitoff and Mollweide are equal area projections:
   → phenomena per unit area are shown in correct proportion
   → distorts shapes more than many maps that are not equal-area

1. Introduction

http://adsabs.harvard.edu/abs/2002A&A...395.1077C


  

Galactic coordinates: the Milky Way

1. Introduction

Milky Way ID

Stars ~1011→  5.1010 M
⊙

Gas ~ 10% → 5.109 M
⊙

Total mass → 2.1012 M
⊙

D
G‏C-⊙

~ 8 kpc

R
MW

 ~ 15 kpc

R
DM

 ~ 300 kpc

Artist’s view of the Milky Way – NASA/JPL-‏Caltech/R. Hurt

Unit conversion
Mass
1 M

⊙
~ 1057 GeV

~ 2.1030 kg
~ 3.105 M

⊕

Distance
1 pc ~ 3.1016 m

~ 2.105 AU
~ 3.26 ly

You are here



  

Galactic coordinates: ‘d’, l (longitude), b (latitude)

1. Introduction

(from Wikipedia)

Questions
- how would you define the galactic centre? 
- at what precision do you think D

G‏C-⊙ 
is known?

Galactic coordinates (l,b) 
Gal. ‏Center:   G‏C = (    0°,  0°)   

Gal. Anticenter:   GA = (180°,  0°)   
Gal. North Pole: GNP = (    0°,90°)   



  

Galactic coordinates: ‘d’, l (longitude), b (latitude)

1. Introduction

(from Wikipedia)

Remarks:
- still a challenge to define accurately MW properties
- coordinate system changes with time!

→ IAU (International Astronomical Union) standards for coordinates systems
→ FITS (Flexible Image Transport System) standards for archival storage 

Galactic coordinates (l,b) 
Gal. ‏Center:   G‏C = (    0°,  0°)   

Gal. Anticenter:   GA = (180°,  0°)   
Gal. North Pole: GNP = (    0°,90°)   



  

   1) Introduction: projections and coordinates

   2) The gamma-ray sky

   3) Interactions in the atmosphere and showers

   4) Fermi-LAT and H.E.S.S.

Constraints on dark matter from γ-rays‏ (5   

Motivation 
→ Diffuse emission and origin

→ Sources of non-thermal emissions
→ GeV vs TeV sky



  

OSO-3 (>100 MeV)
[16 months, then failure of the 2nd spacecraft tape recorder]

Kraushaar et al., ApJ 177, 341 (1972)

2. The γ-ray sky

Diffuse emission: first detection >100 MeV

Question: can you guess what is the origin of the emission?



  

OSO-3 (>100 MeV)
[16 months, then failure of the 2nd spacecraft tape recorder]

Kraushaar et al., ApJ 177, 341 (1972)

2. The γ-ray sky

Diffuse emission: first detection >100 MeV

Question: can you guess what is the origin of the emission?

ISM
(H, He)

CRs‏
(p, He)

π0 π±
γ-rays

g He

e-

_
p

e+

p

Beischer et al. 
(2009)



  

OSO-3 (>100 MeV)
[16 months, then failure of the 2nd spacecraft tape recorder]

Kraushaar et al., ApJ 177, 341 (1972)

2. The γ-ray sky

Diffuse emission: first detection >100 MeV

Question: can you guess what is the origin of the emission?

g He

e-

_
p

e+

p

Beischer et al. 
(2009)

ISM
(H, He)

CRs‏
(p, He)

π0 π±
γ-rays

Diffuse emission in the disk = galactic origin

→ Distribution proportional to column density at 21cm (H
I
)

→ Absolute intensity accounted for by p0 production
(N.B.: there also exists an isotropic extragalactic diffuse emission)



  

COS-B (70-150 MeV)
[4 years of data]

Mayer-Hasselwander et al., A&A 105, 164 (1982)

Diffuse emission: a closer look

2. The γ-ray sky

Question: Why do we have peaks? Origin of broadened latitudinal emission?



  

COS-B (70-150 MeV)
[4 years of data]

Mayer-Hasselwander et al., A&A 105, 164 (1982)

Diffuse emission: a closer look

2. The γ-ray sky

Question: Why do we have peaks? Origin of broadened latitudinal emission?

→ New correlations found: Perseus arm (l=100°-140°), spiral arm in ‏Carina (l=285°)



  

COS-B (70-150 MeV)
[4 years of data]

Mayer-Hasselwander et al., A&A 105, 164 (1982)

Diffuse emission: a closer look

2. The γ-ray sky

Question: Why do we have peaks? Origin of broadened latitudinal emission?

→ New correlations found: Perseus arm (l=100°-140°), spiral arm in ‏Carina (l=285°)
→ Require additional leptonic emission (inverse ‏Compton mostly, and synchrotron)

g He

e-

_
p

e+

p

Beischer et al. 
(2009)

electron

radio
waves

B



  

Work with the multi-wavelength sky!
https://mwmw.gsfc.nasa.gov

2. The γ-ray sky

https://mwmw.gsfc.nasa.gov/


  

By the way: how to get the diffuse emission?

 Count the number of photons‏ (1)
(photons-instrument background)

(2) Subtract point sources

- =

EGRET 
(>100 MeV)

What remains 
should be the 

diffuse 
emission

2. The γ-ray sky

In real life
(i) Source intrinsic properties

-  point-like sources (e.g., SN remnants, AGN...)
-  extended emission (e.g. plerions, GM‏C in the vicinity of a source...)
-  diffuse-like emission (DE from the galactic disk, ridge, extragalactic DE...)

(ii) Analysis method and/or assumptions
2008: new EGRET analysis, 188  sources instead of 271!  [‏Casandjian & Grenier, A&A 489, 849]

(iii) Angular resolution and/or sensitivity of the instrument
1999: OSSE find that 50% DE for soft g-ray (<300 keV)     [Kinzer et al., ApJ 515, 215]

2000: Hint at unresolved point sources HIREGS [Boggs et al.] + OSSE&RXTE [Valinia et al.]
2004: INTEGRAL find almost no diffuse emission [Lebrun, Terrier et al., Nature 428, 293]

→ Identifying the truly diffuse emission is always a very difficult task



  

Fermi-LAT (> 1 GeV, 60 month results)

2. The γ-ray sky

Indirect dark matter detection =
search for dark matter signature in this (astrophysical) mess



  

Fermi-LAT (> 1 GeV, 60 month results)

2. The γ-ray sky

Pulsars
[rapidly rotating neutron stars]



  

Fermi-LAT (> 1 GeV, 60 month results)

2. The γ-ray sky

Active galaxies and blazars
[powered by 106 M

⊙
 black holes]



  

Fermi-LAT (> 1 GeV, 60 month results)

2. The γ-ray sky

Normal  and
starburst galaxies



  

Fermi-LAT (> 1 GeV, 60 month results)

2. The γ-ray sky

Supernova remnants
(and high mass binary systems, 

globular clusters...)



  

Comparison with H.E.S.S. survey (> 1 TeV, 10 years)‏

2. The γ-ray sky

TeV sky ≠ GeV sky
→ less diffuse emission(?)



  

Photon Intensity 
 
(E,l,b)

   - Morphology (2D) → skymap for each energy
   - Spectrum (1D) → spectrum in each direction

Modelling
   - 3D+1: need gas, ‏CR, B distributions
   - 3D+2: and sometimes need t in models

Morphology and spectral information

Ackermann et al., ApJ 799, 86 (2015)

Models from the Fermi-LAT collaboration

2. The γ-ray sky

http://adsabs.harvard.edu/abs/2015ApJ...799...86A


  

   1) Introduction: projections and coordinates

   2) The gamma-ray sky

   3) Interactions in the atmosphere and showers

   4) Fermi-LAT and H.E.S.S.
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Motivation
→ Take advantage of atmosphere as a calorimeter

→ Electromagnetic vs hadronic showers
→ Detector types using atmospheric showers

→ Rejection and calibration



  

High-energy photon interaction

Dominant 
mechanism 
GeV-TeV

is pair 
production

3. Interactions/showers



  

High energy lepton interaction

→ About same interaction length as pair production

Bremsstrahlung emission
(in ‏Coulomb field of the nucleus)

3. Interactions/showers



  

Electromagnetic air shower

Electromagnetic radiation length X
0

~ 40 g/cm2 in dry air

Calorimeter thicknesses
Particle physics @ LH‏C: ~25 X

0

γ-ray satellites: ~10 X
0

Atmosphere: ~27 X
0

Depth of shower maximum z
max

Homogeneous calorimeter ∝ log(E
0
)

Atmosphere: ~ 9 km – 8.4 km × log 
(log (E

0
/1 TeV)

And additional processes, mainly at low energy
→ multiple scattering off charged particles (shower broadening)
→ E losses by ionisation and atomic excitation (shower extinction below 83 MeV in the air)
→ Electron scattering and positron annihilation (10% electron excess → radio signal)
→ Earth’s magnetic field (shower broadening in the East-West direction)

Hütten, PhD thesis (2016)

3. Interactions/showers



  

Hadronic air shower

Hütten, PhD thesis (2016)

No simple description:

- nuclear interaction length

- decay lengths for unstable particles

- radiation length

→  no universal scaling

Sub-showers:

- Hadronic (n, π and K mesons)

- Electromagnetic (π0 decay)

and particles:

- High energy μ (π± and K± decay)

- Atmospheric ν (π±, K± and μ± decay)

3. Interactions/showers



  

Leptonic vs hadronic shower (1)

3. Interactions/showers



  

Leptonic vs hadronic shower (2)
De Naurois & Mazin, arXiv:1511.00463

Illustration of the intrinsic variability of 
shower development.

Simulation of 10 showers (300 GeV γ-rays)

Simulation of 10 showers (300 GeV protons)

→ larger transverse momentum transfers, 
larger fluctuations

3. Interactions/showers

https://arxiv.org/abs/1511.00463


  

Detection techniques (using Earth’s atmosphere)

Water pond 
[MILAGRO, HAW‏C]

- timing information (direction)
- EM and hadronic showers (energy)

Hybrid detectors 
[AUGER]

- 4 fluorescence telescopes
- 1660 surface detectors

Cerenkov detectors 
[H.E.S.S, ‏CTA]

Cerenkov light (energy)‏ -
- stereoscopy (direction)

3. Interactions/showers

Obviously, depends on
- Particle nature
- Particle flux (hence E)

g He

e-

_
p

e+

p

Beischer et al. (2009)

Goal
- Energy of the primary particle
- Direction of the primary particle
- Primary particle nature



  

Rejection factor

Question: How can you reduce the background in space/ground detector?

3. Interactions/showers



  

Energy and position calibration

Question: what generic procedures can you think of to ensure 
→ E

measured
 =  E

true
?

→ correct source reconstruction

● Pre-flight calibration
→ Test beams (e.g., @ ‏CERN)
→ Monte ‏Carlo simulation

● In-flight (on-line) calibration
→ Use specific data samples with known properties
→ Use reference source (‏Crab nebula)
Calibrate position from bright sources‏ →

● Inter-calibration
→ Internal calibration system (e.g., diodes)
→ Hybrid detectors (e.g., AUGER)

3. Interactions/showers
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Constraints on dark matter from γ-rays‏ (5   

Motivation 
→ Ground and satellite γ-ray detectors

→ Important experimental aspects to keep in mind
→ Research activities in a collaboration



  

Cerenkov telescopes‏

H.E.S.S.: ~ 13 countries, 45 institutes, 250 researchers

4. HESS/Fermi-LAT



  

Cerenkov light pool‏
N.B.: ‏Cerenkov flash ≾10 ns (beware of NSB)

→ ultrafast PMTs and electronic readout

4. HESS/Fermi-LAT



  

Shower image on the camera

VERITAS (499 PMTs)

Ellipse in the shower gives ellipse on the camera

→ Image shape parameters to reconstruct energy
→ Image shape to veto hadrons

(require good granularity of camera)

Hütten, PhD thesis (2016)

4. HESS/Fermi-LAT



  

Stereoscopic observation: principle

→ Better accuracy for source position, energy reconstruction
→ Better background rejection 4. HESS/Fermi-LAT



  

Fermi satellite and Fermi-LAT

Fermi: ~ 12 countries, 90 institutes, 400 researchers

Segmented electromagnetic calorimeter
→ reconstruct e- and e+ direction in tracker

→  reconstruct total energy from calorimeter
→ charged particles vetoed by anticoincidence

4. HESS/Fermi-LAT



  

Many crucial notions not covered...

→ Field of view
→ Duty cycle
→ Sensitivity

→ Effective area/acceptance/rejection capabilities
→ Angular/energy resolution

Question: how would you explain the difference between
Fermi-LAT and H.E.S.S. coverages (first light ~10 years ago for both)?

4. HESS/Fermi-LAT



  

… in any case, γ-ray astronomy has a bright future

4. HESS/Fermi-LAT

De Naurois & Mazin, arXiv:1511.00463

→ Field of view
→ Duty cycle
→ Sensitivity

→ Effective area/acceptance/rejection capabilities
→ Angular/energy resolution

https://arxiv.org/abs/1511.00463


  

Associated research activities...

Question: what do you think we are doing (at the various stages of experiments)?

Before starting a new project
● Scientific goal and expected return (must involve large enough community)
● Proof of concept (+validation by Monte ‏Carlo)
● Design (mechanics, electronics…), computing resources, cost evaluation

→ Go to funding agencies

During construction
● Build sub-detectors, sub-systems
● Design software analysis
● Supervise integration
● ...

Starting/during exploitation
● Monitor stability of instrument
● (Carlo‏ more Monte) Calibration‏
● Design analysis methods/software for your physics problem/specific source
● Collaborate/compete with your colleagues/community‏
● Write papers, give talks (collaboration and/or international meetings)

→ Exciting science and fun for everyone’s taste!

4. HESS/Fermi-LAT
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Motivation 
Connect theoretical/experimental lectures‏ →

→ Dark matter distributions and targets
Current limits from DM indirect detection‏ →



  

Content of the Universe (CMB, SNe...)

● Radiation

● Cold dark matter

● Cosmological constant

Planck CMB results (arXiv 1502.01589): today

● Dark Energy ~ 68%  (accelerating expansion of the Universe)

● Dark Matter ~ 27%   (hierarchical structure formation)

● Ordinary Matter ~ 5%

LCDM

What is dark matter (DM)? ‏Can we detect it (other than gravitationally)?

 CDM‏Cosmological model: L‏

5. γ-rays and dark matter

https://arxiv.org/abs/1502.01589


  

SM particle

SM particle

WIMP

WIMP

New physics: a possible candidate, 
Weakly Interactive Massive Particle 

● Mass: GeV to TeV (m
p
=1GeV)

● Interaction strength: weak

● Relic density: must satisfy Planck data

® <sv> ~ 3 ´ 10-26 cm3 s-1

Standard model of particle physics 
● Particles: electrons, n, quarks

● Interactions: electromag., weak, strong

● Carriers (bosons): g, (W,,Z), gluons

Schematic view of interactions

® SuperSymmetry (SUSY) 
naturally leads to this value 

(“WIMP miracle”)

N.B.: many other theories, candidates at different masses (e.g., axions), etc. 

Dark matter candidate: WIMP scenario

5. γ-rays and dark matter



  

Direct detection
(underground experiments)

SM particle

SM particle

WIMP

WIMP

Production – LHC 

Indirect detection

Photons (and neutrinos)→ g-ray (and n) astronomy
Fermi-LAT, HESS, MAGI‏C, ‏CTA...

Charged particles → galactic cosmic rays‏
PAMELA, AMS-02...

ATLAS

AMS-02

CDMS

Dark matter indirect detection

5. γ-rays and dark matter
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Millenium run – Springel et al. (2005)

Age = 0.21 Gyr

Age = 4.7 Gyr

Age = 13.6 Gyr, now 

DM distribution: hierarchical structure formation

Numerical simulations 

- Start from primordial density fluctuations

- Let evolve under gravity

- Stop after 13.6 Gyr

→ look at resulting density map at scales of interest

Galaxy clusters
size~Mpc, masse~1015 M

⊙

5. γ-rays and dark matter



  

~300 kpc
8 kpc

ΔΩ

Galactic centre

Dark micro-halos (no 
visible counterparts)

Dwarf spheroidal galaxies
(orbiting the MW)

Galaxy 
clusters

Dense (~ ∫ ρ2)    –    ‏Close (1/d2)    –    No astrophysical background

5. γ-rays and dark matter

DM distribution in the Milky Way

Question: what target would you pick?
How does the signal skymap look like?



  

From DM density to g-ray skymap

Synthetic skymap from
public tool ‏CLUMPY: 

http://lpsc.in2p3.fr/clumpy

5. γ-rays and dark matter

http://lpsc.in2p3.fr/clumpy


  

Dark matter-induced signal strength

Particle physics

From numerical
simulations or data

Astrophysics

5. γ-rays and dark matter

  Weakly Interacting 
Massive Particles

m 
WIMP

~ 0.1 – 100 TeV



  

Particle physics ConstrainedInstrumental sensitivity‏

Fermi-LAT (since 2008)

● Space-borne
● 30 MeV – 300 GeV
● Resolution: 1° – 0.1°
● Fullsky
● Signal limited

H.E.S.S. + CTA

● Ground based
● 100 GeV → 100 TeV
● Resolution: 0.2° – 0.02°
● Pointed instrument
● Background limited

Array of Cerenkov telescopes Satellite

Limit on DM annihilation cross-section <sv>

5. γ-rays and dark matter



  

Exclusion plots: Fermi-LAT and ‏CTA

→ After ~30 years of effort,
WIMP dark matter may be within reach 

5. γ-rays and dark matter

Hütten et al. (2016)
[CTA prospects‏]

Ackermann et al. (2014, 2015)
[15 dSphs combined, 70 months]

http://adsabs.harvard.edu/abs/2016JCAP...09..047H
http://adsabs.harvard.edu/abs/2015PhRvL.115w1301A


  

Comparison/complementarity of indirect detection targets‏

Conrad & Reimer, Nature 13, 224 (2017)

→ γ-rays from dSphs and antiprotons provide best targets for DM searches

5. γ-rays and dark matter

https://www.nature.com/nphys/journal/v13/n3/pdf/nphys4049.pdf


  

Conclusions‏

High precision era

→ Astroparticle physics lively field of research

→ New instruments online soon

→ Big questions might be solve tomorrow

→ Plenty of research activities in which to have fun
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