EXPERIMENTAL ASTROPARTICLES 1

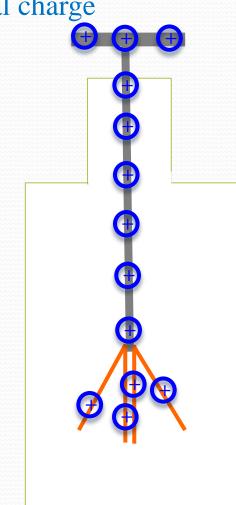
24 July 2017

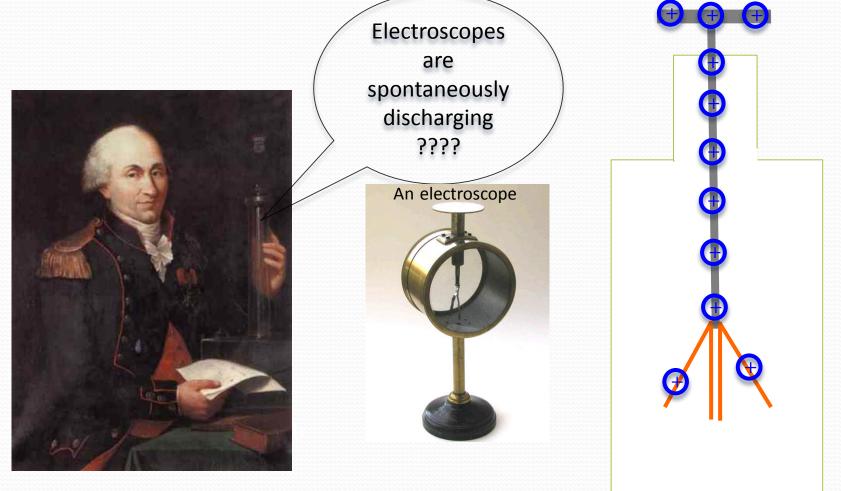
Vincent Poireau, LAPP Annecy

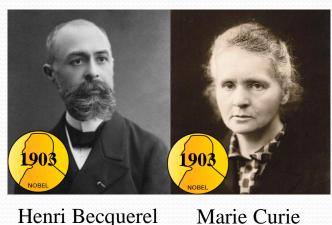
- Experimental astroparticles 1
 - Cosmic rays
 - Indirect search for dark matter
 - Some experiments
 - AMS-02: detailing a modern experiment
 - Recent results on cosmic rays and their implications

• Experimental astroparticles 2

- This afternoon, presented by David Maurin
- The gamma-ray sky
- Interactions in a detector/atmosphere
- Ground vs space detectors
- Fermi-LAT and H.E.S.S. (and Auger)
- Recent results and constraints on dark matter

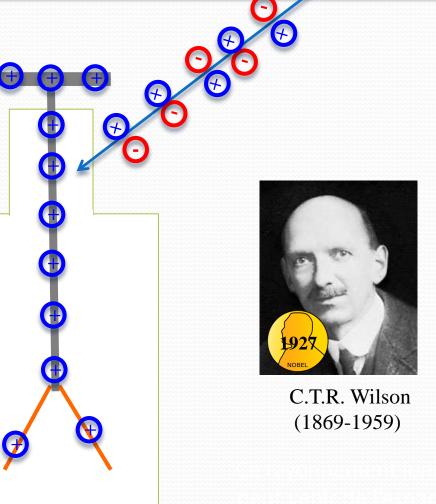

COSMIC RAYS


• 1736 – 1806 : Charles Augustin de Coulomb observed that a sphere initially charged and isolated loses its electrical charge



• 1736 – 1806 : Charles Augustin de Coulomb observed that a sphere initially charged and isolated loses its electrical charge

Beginning of 20th century

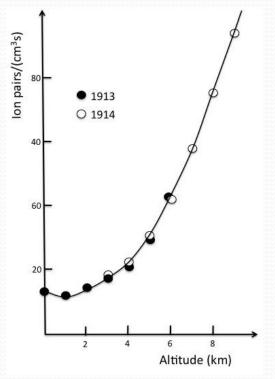


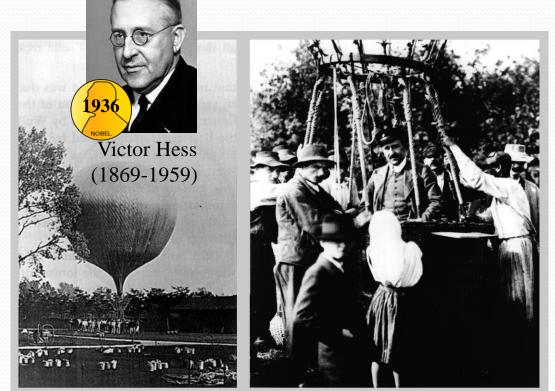
(1867-1934)

Henri Becquerel (1852-1908)

Ground

The radioactivity could explain the spontaneous discharge

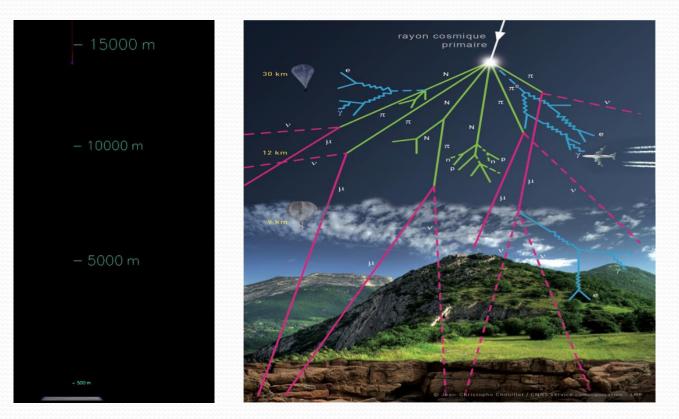



Space

???

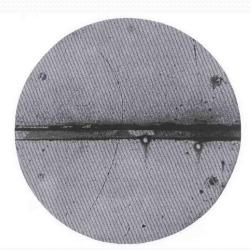
 1912: Victor Hess measures the atmospheric ionization with electroscopes during balloon flights at various altitudes: the ionization increases

• This ionization comes from space!



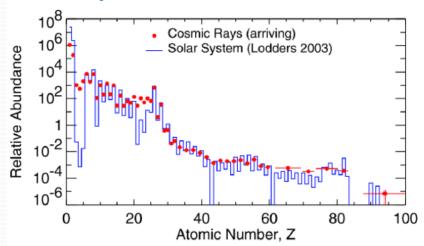
• From what are they composed? The debate is passionate in the 1920's

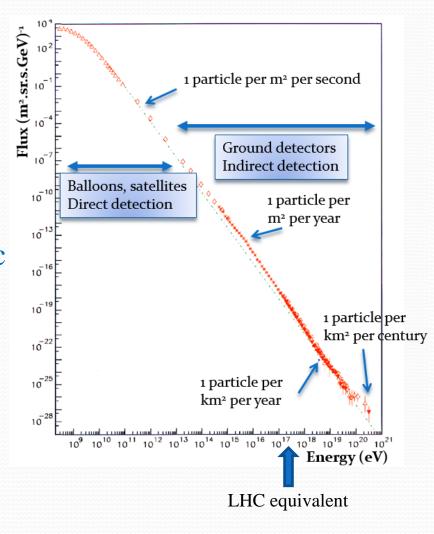
- Their intensity varies depending on where we are on Earth...
- Cosmic rays are charged particles!
 - More particle from the western direction: **positively charged**

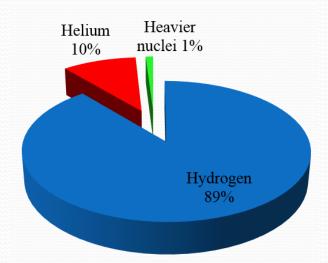

- 1937: Pierre Auger positions three Geiger counters separated of 70 m at le pic du midi
- Cosmic rays arrive in group: atmospheric shower

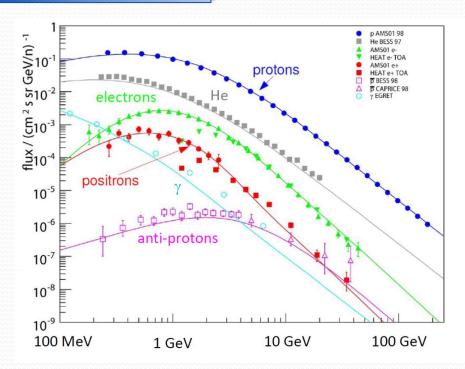
Pierre Victor Auger (1899-1993)

- Many new particles discovered in the cosmic rays
 - 1932: positron e⁺ (first observation of antimatter)
 - 1936: muon μ
 - 1949: pion π
 - 1949: kaon K
 - 1949: lambda Λ
 - 1952: xi Ξ
 - 1953: sigma Σ



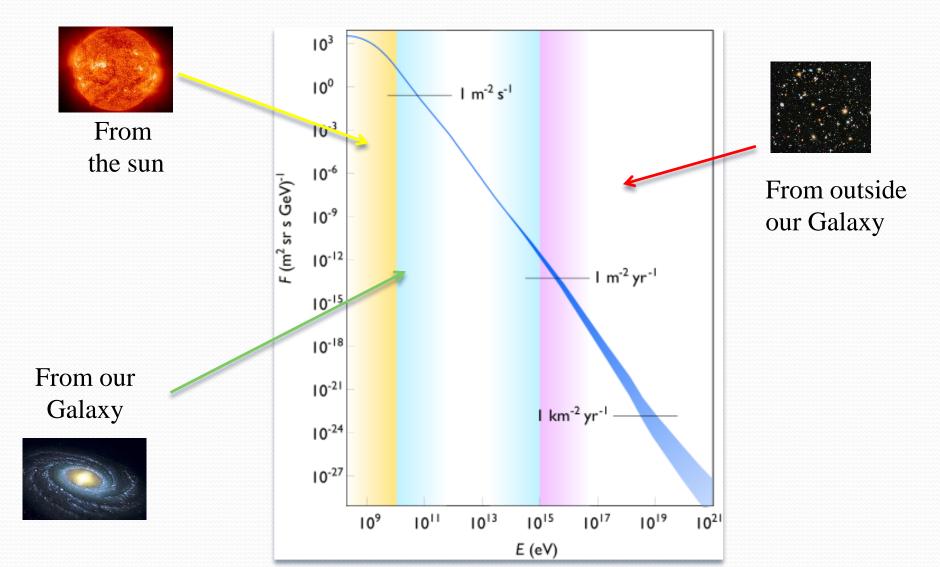

- Birth of a new science: particle physics!
- Cosmic rays are replaced by accelerators where particles are artificially produced


- Cosmic rays
 - 12 orders in energy
 - 100 MeV to 10²⁰ eV
 - 30 orders in **flux**
 - Isotropic flux
- Abondance of nuclei in the cosmic rays similar to the one from the solar system



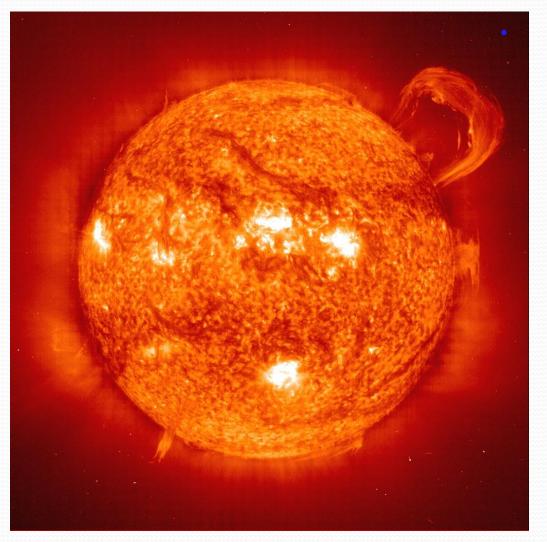
COSMIC RAYS

- Composition
 - Charged : electrons, protons, nuclei
 - Neutral : photons, neutrinos
- Charged cosmic rays



• Power law spectrum $1/E^{\gamma}$, $\gamma = 2.7-3.5$

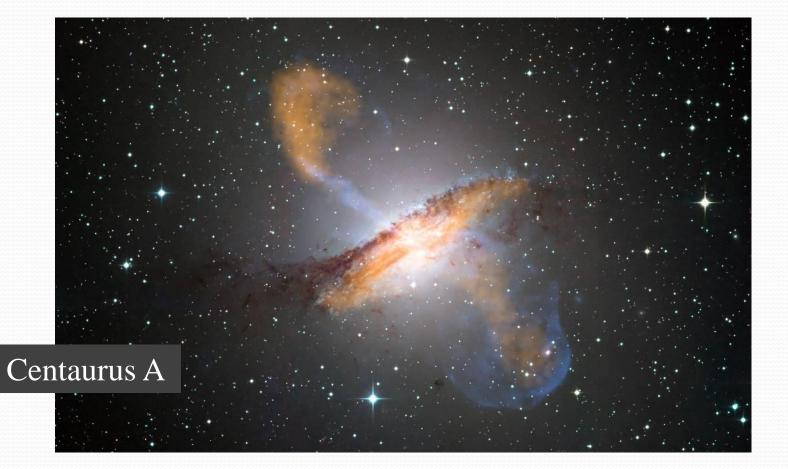
- The measured spectrum results
 - from the **production** and **acceleration** mechanisms $(1/E^{\alpha}, \alpha = 2.0-2.4)$
 - from the **diffusion** $(1/E^{\delta}, \delta = 0.3-0.7)$
- $\gamma = \alpha + \delta$

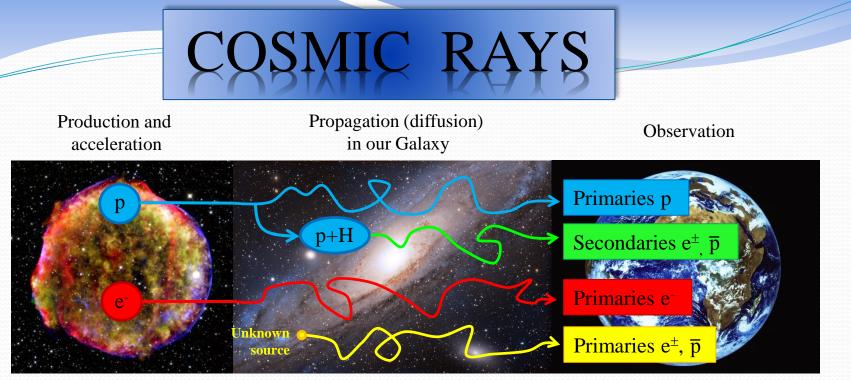


• Where are they coming from?

• Low energy cosmic rays are accelerated by the sun

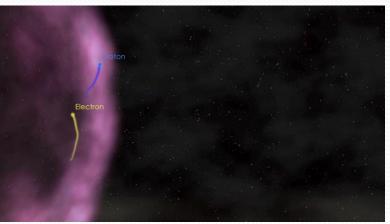
Aurora borealis




• At intermediate energies, supernovae remants produce cosmic rays

• At extreme energies, active galaxy nuclei, quasars, or gamma ray bursts are potential candidates

- Primary cosmic rays
 - Produced direcly in the source
 - Sources: supernova remnants, pulsars, active galactic nuclei, quasars
 - Primaries include
 - Electrons, protons, helium, carbon, ...
- Secondary cosmic rays
 - Originate from the interaction of primaries on interstellar medium
 - Secondaries include
 - Positrons, antiprotons, bore, ...
- Additional sources of electrons and positrons?

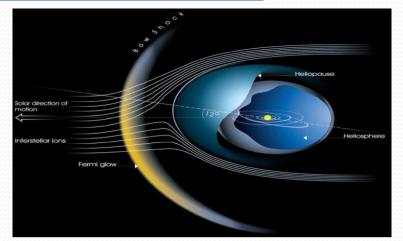

ACCELERATION

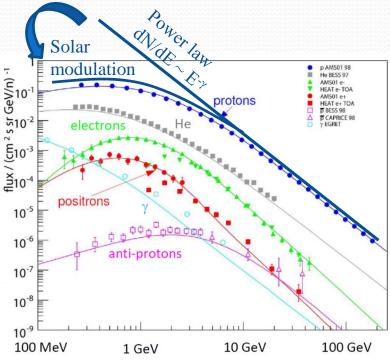
- In our Galaxy, main source of primary cosmic rays: supernova remnants
 - Very strong magnetic field in the **shell** of supernovas

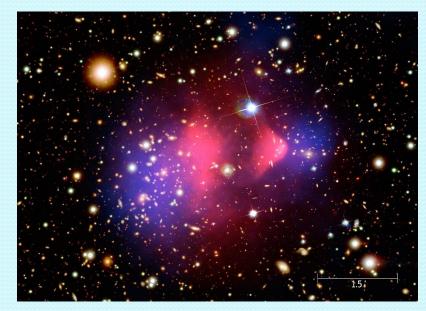
Acceleration

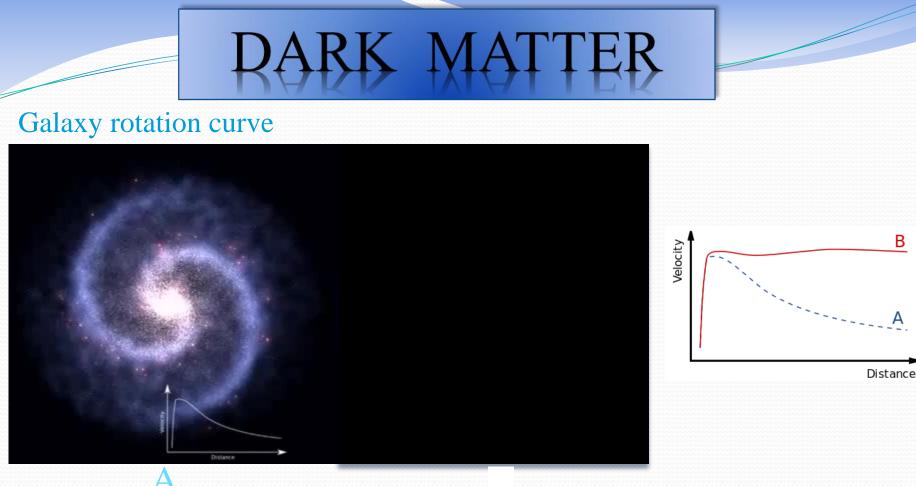

- Due to the **shock wave**
- First order Fermi mechanism
- Naturally produce a **power law** spectrum

• This process explains why the cosmic ray composition is similar to the one from the solar system

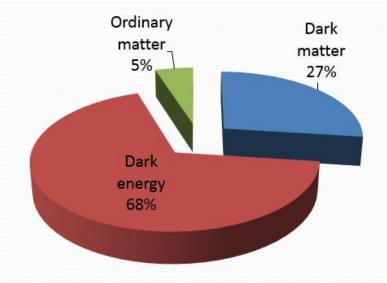

PROPAGATION


- Charged cosmic rays: propagation equivalent to a diffusion in the Galactic medium
 - **Irregular magnetic field** of the diffusive halo = random walk
 - Possible to write a **cosmic ray transport equation**
 - Difficult to solve
 - 5 free parameters, with large uncertainties on these parameters


SOLAR MODULATION

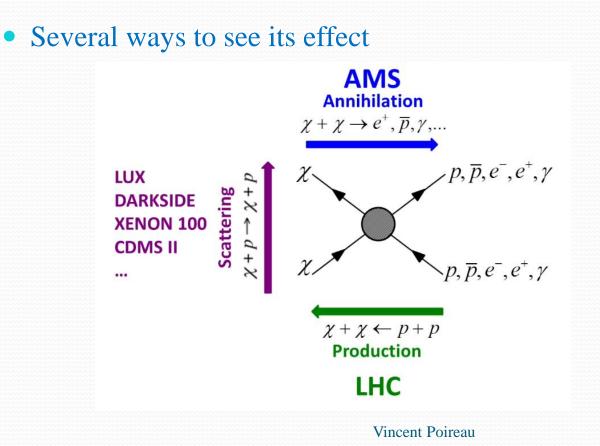

- Heliosphere: a region of space influenced by the sun (solar wind)
 - **Size**: 150 AU
- Solar wind: a continous flow of charged particles from sun
 - e⁻ and **p**
 - Carries the **sun magnetic field** to the interplanetary space
- Solar cycles
 - **Reversal** of the sun magnetic field polarity
 - Every **11 years**
 - Solar activity going from a minimum to a maximal intensity
- Solar modulation affects cosmic rays below 20 GeV
 - **Deviation** from the power law

INDIRECT SEARCH FOR DARK MATTER

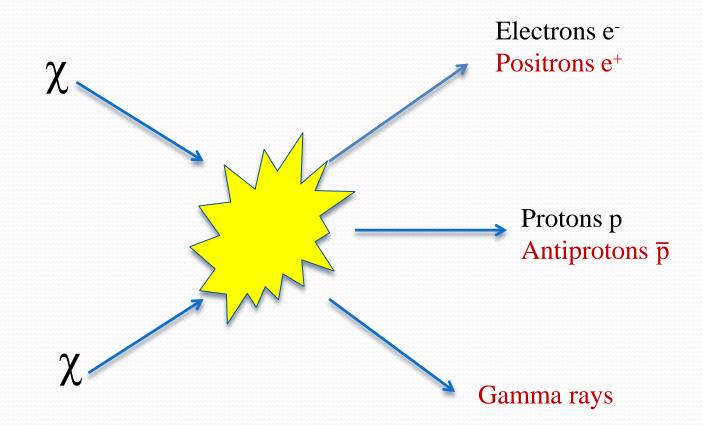


A: prediction **B** : observation

To explain the observation, we have to suppose the presence of a halo containing an invisible matter around the galaxies: the dark matter!


• A very large fraction of the Universe content remains mysterious

- Dark matter: 27% of our Universe is made of unknown matter (other than electrons, quarks, ...)
- « Observation »: galaxy rotation curves, X-ray emission, gravitational lensing, cosmic microwave background


DARK MATTER

- Best candidate: weakly interacting massive particle \Rightarrow WIMP
 - Massive particles: 100 GeV several TeV
 - Weakly interacting with the ordinary matter

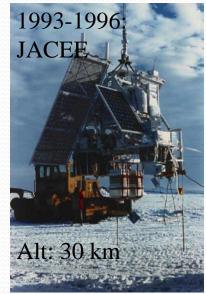
- Annihilation of the WIMPs
 - Natural cross-section from relic density: $\langle \sigma v \rangle \approx 3.10^{-26} \text{ cm}^3 \text{s}^{-1}$

COSMIC RAY EXPERIMENTS

EXPERIMENTS

1980-1993: Fly eye (Utah)

2004- : Pierre-Auger observatory


N IT IN PARTY

EXPERIMENTS

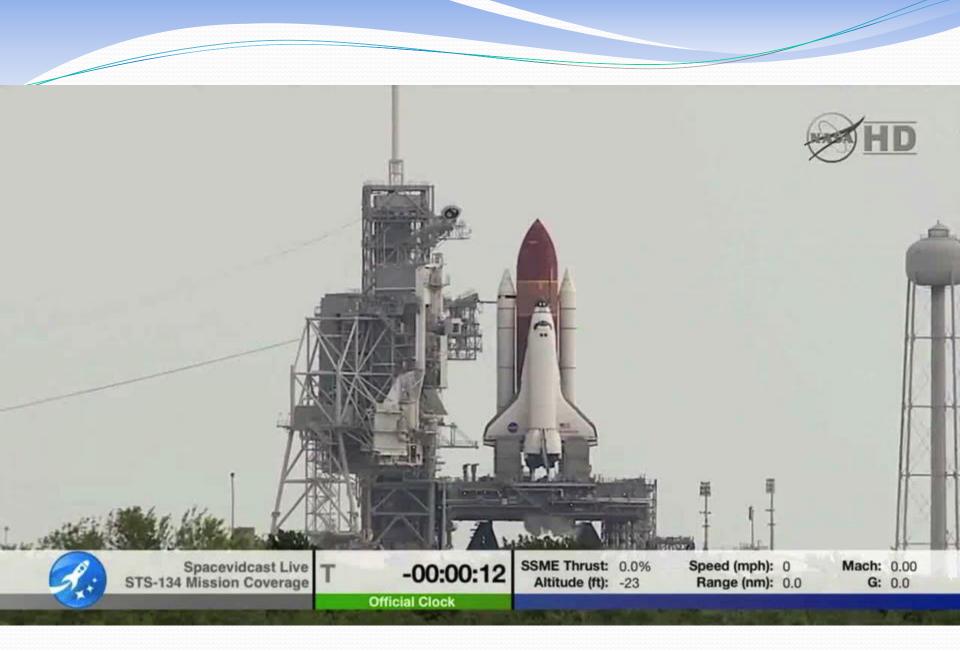
EXPERIMENTS

2004-2010: CF Altitude : 40 kr 2011-: AMS Altitude : 400 km Let's detail this experiment!

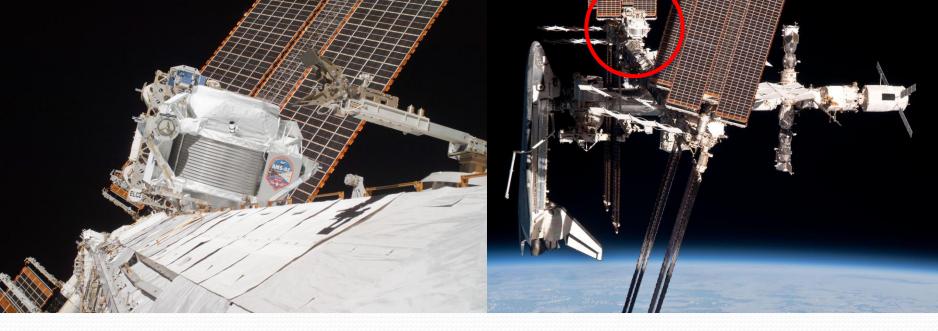
>)6-: Pamela itude : 400 km

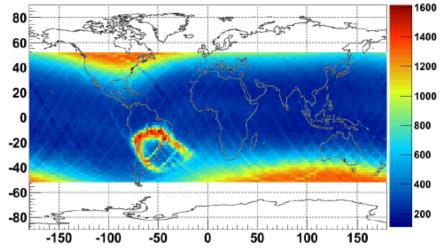
THE AMS-02 EXPERIMENT

- A particle detector in space
 - Detect charged particles and gamma rays
 - From 100 MeV to a few TeV



5m x 4m x 3m 7.5 tons


- Launched from Cap Canaveral on the 16th of May 2011
 - Penultimate American shuttle!


- Installation on the ISS on the 19th of May 2011
 - Orbit at 400 km altitude
 - One orbit every **90 minutes**

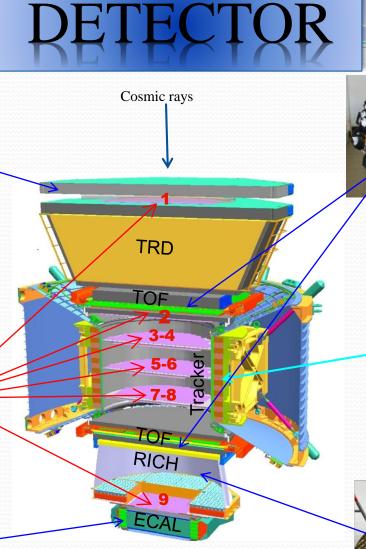
• Detect the cosmic rays before they interact in the atmosphere

FLIGHT OPERATION

- Acquisition rate from 200 to 2000 Hz Acquisition rate [Hz]
- Continuous operation 7d/7 24h/24
- Acquisition
 - ~40 millions events a day
 - ~100 GB transferred every day
 - **35 TB** of data every year
 - **200 TB** of reconstructed data every year

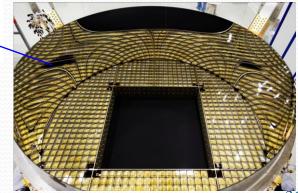
- More than 100 billions of events recorded since May 2011
 - Much more than all the cosmic rays collected in the last 100 years
- Will operate at least until 2024

Transition radiation detector Identifies e⁺, e⁻

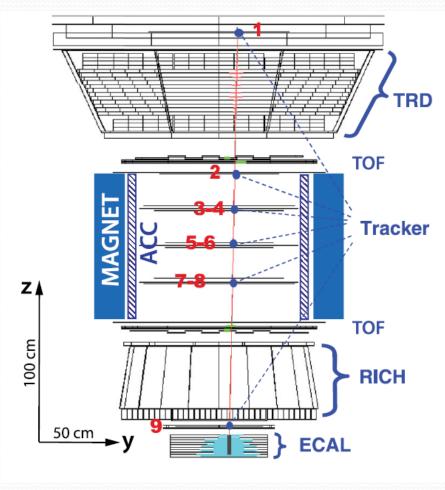


Silicium tracker Z, P

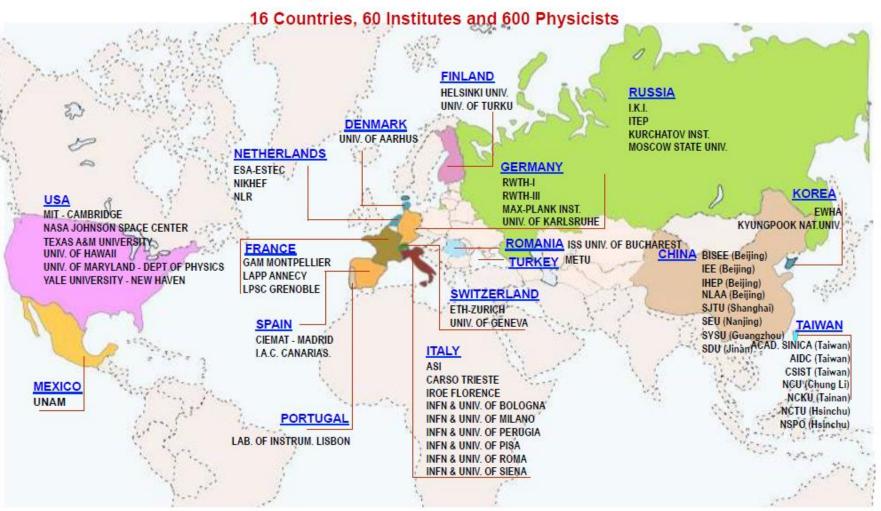
 $\begin{array}{c} Electromagnetic \ calorimeter \\ E \ of \ e^{+}, \ e^{-}, \ \gamma \end{array}$


Time of flight Z, E

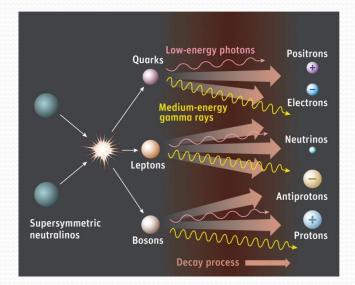
Magnet 0,14 T ±Z

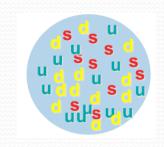


Cherenkov detector Z, E


- Rigidity
 - R = p/Z
 - Expressed in GV

A 369 GeV positron event


COLLABORATION


AMS: a U.S. DOE sponsored international collaboration

AMS TOPICS

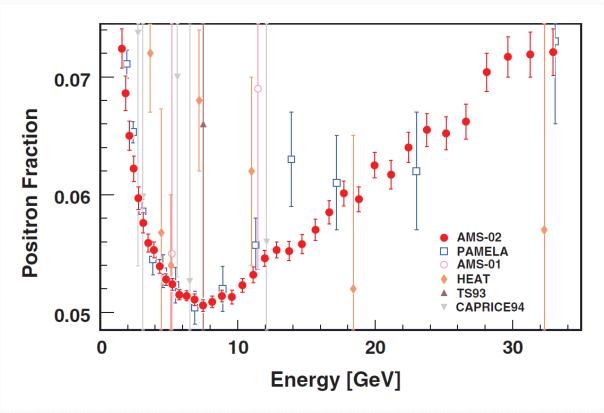
- Measurement of cosmic ray fluxes
 - Understand the cosmic ray **propagation** in our Galaxy
- Indirect search of dark matter
 - **Positrons** and **antiprotons** produced during its annihilation
- Search for primordial antimatter
 - Anti-helium relic of the Big-Bang or anticarbon from anti-stars
- Surprises? Strangelets?

ELECTRONS AND POSITRONS IN COSMIC RAYS

POSITRON FRACTION

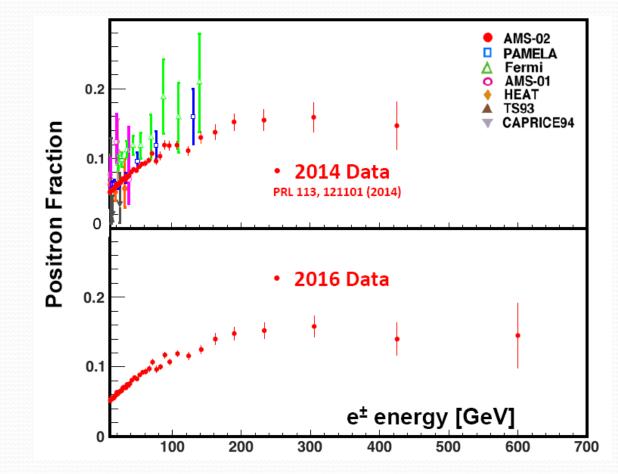
- Positrons : expected only as secondary
- Positron excess with respect to the secondary prediction = source of primary positrons

Positron fraction
$$F = \frac{\Phi_{e^+}}{\Phi_{e^+} + \Phi_{e^-}} = \frac{N_{e^+}}{N_{e^+} + N_{e^-}}$$


- Allows to factorize the **acceptance** and efficiencies
- Simplify the computation of systematic uncertainties

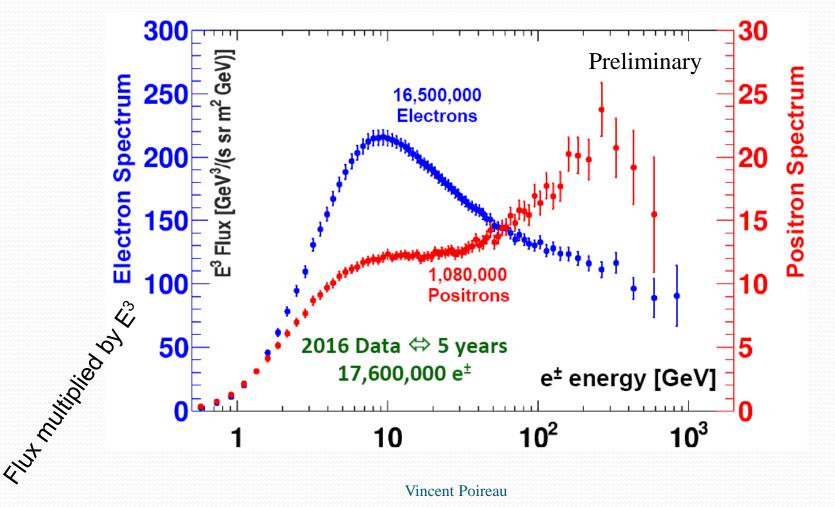
• Challenges

- 100 times more protons than electrons
- 2000 times more protons than positrons
- \Rightarrow Need to divide number of protons by 10^6

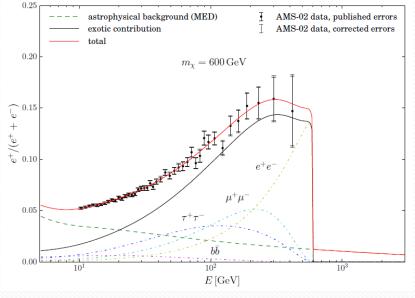

POSITRON FRACTION

- Result for the positron fraction below 35 GeV
 - Fraction begins to increase **above 10 GeV**
 - Incompatible with secondary positrons only
 - A source of primary positrons is needed!
 - Nearby source since positrons do not propagate more than a few kpc

• Fraction at high energy


• AMS: precision and energy never reached before

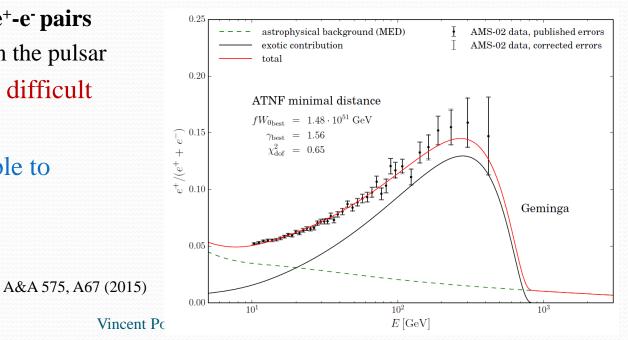
• Fluxes bring more information for the models than the fraction

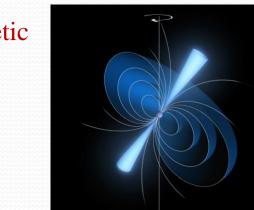

- Obtaining the flux via N $A \times \varepsilon_{Trig.} \times \varepsilon_{sel.} \times T \times dE$
 - *N* **number** of positrons or electrons
 - A acceptance
 - ε_{Trig} and ε_{sel} trigger and selection efficiencies
 - *T* exposure **time**
 - dE energy **bin size**

• The electron and positron fluxes are different in their magnitude and energy dependence

INTERPRETATION: DARK MATTER

• Fitting the positron fraction using the best combination of annihilation channels

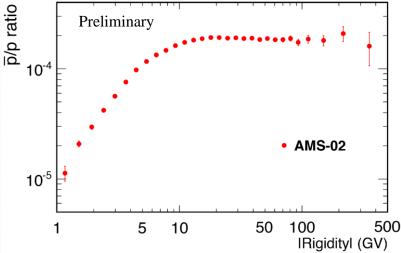

A&A 575, A67 (2015)


- Dark matter may explain the fraction, but unnatural annihilation crosssection
 - ×1000 compared to the one expected from the relic density
- Not likely that we have observed an indirect observation of dark matter
 - In tension with other observables (antiprotons, gamma rays, ...)

Vincent Poireau

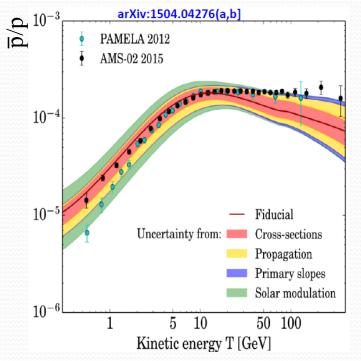
INTERPRETATION: PULSARS

- Neutron stars spinning at high rate with a strong magnetic field
- 200 pulsars at less than 2 kpc from Earth
 - Only a small fraction able to emit positrons
- Mechanism
 - Electrons extracted from the surface by the high fields
 - \Rightarrow electrons produce **synchrotron photons**
 - \Rightarrow photons produce **e**⁺-**e**⁻ **pairs**
 - \Rightarrow Some **escape** from the pulsar
- Precise prediction very difficult
- Five closeby pulsars able to explain the fraction



ANTIPROTONS IN COSMIC RAYS

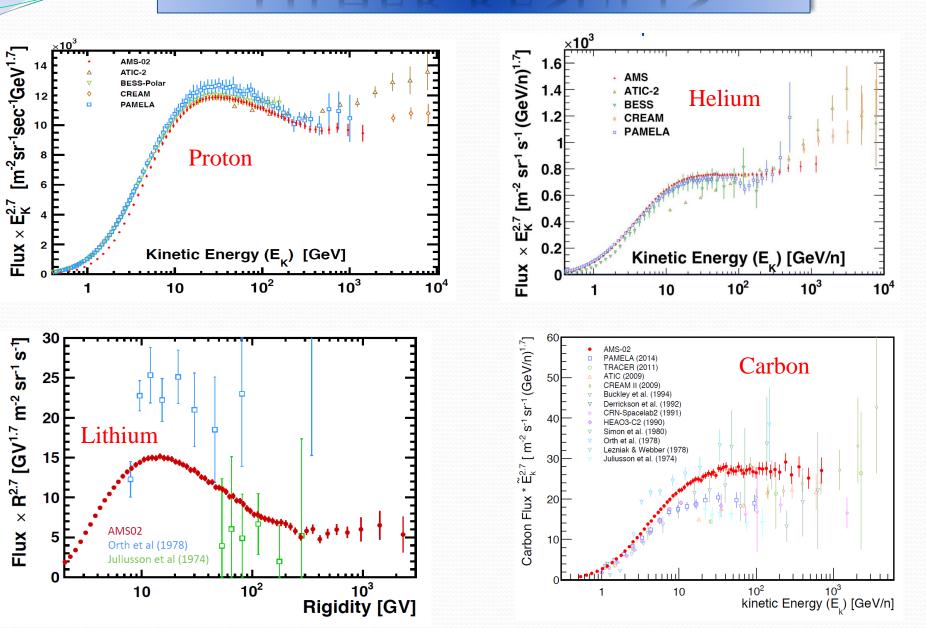
Vincent Poireau


ANTIPROTONS

- Dark matter could create an excess of antiprotons with respect to the expectations
 - Pulsars **do NOT** produce antiprotons
- AMS measured the ratio \overline{p}/p
 - 290 000 antiprotons
- Is dark matter necessary to explain this measurement?
 - Controversial topic!
 - Need to compute what is expected from secondary antiprotons

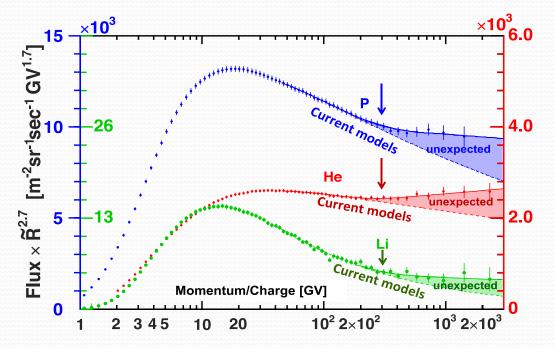
ANTIPROTONS

- Adding the contribution of the secondary antiprotons with its uncertainty
 - **Comparison** of data and expectations for \overline{p}/p



- The ratio \overline{p}/p is not in discrepancy with the expectations
 - No dark matter needed here (yet)

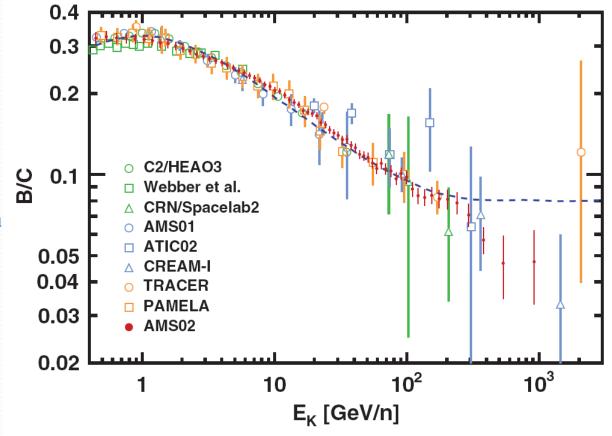
Vincent Poireau


OTHER RESULTS ON COSMIC RAYS

OTHER RESULTS

NUCLEUS ANOMALY

• Recent and unexpected observation: the power law is broken at high energy



- What can cause these anomalies?
 - Sources?
 - Acceleration?
 - Propagation?
- Still an open question!

BORON/CARBON RATIO

- Ratio of secondary over primary allows to understand the propagation of cosmic rays
 - **Carbon**: primary, produced and accelerated in sources
 - Boron: secondary, produced by the collision of heavier nuclei on the interstellar matter
 - Ratio directly measures the average amount of interstellar material traversed by the cosmic rays

Bonus: a break in the B/C ratio would explain the nucleus anomaly by propagation phenomena

IN SUMMARY

- Cosmic rays are charged and neutral particles coming from space
 - From a few MeV to 10²⁰ eV
 - Mainly protons, helium, electrons, ...
- Sources
 - At intermediate energies, they come from supernova remnant in our Galaxy
 - Protons, electrons, ... come directly from the source
 - Positrons, antiprotons, ... are created by **collision** with the interstellar medium, with a rate that **can be predicted**
- Propagation
 - Charged cosmic ray propagation is equivalent to a diffusion
- Positrons in cosmic rays
 - There is **more positrons** at high energy compared to the expectations
 - New source: dark matter? pulsars?
 - AMS will extend its **energy range**, and should be able to **discriminate** between the dark matter and pulsar hypotheses
- Antiprotons in cosmic rays
 - Antiprotons could be produced by dark matter
 - After the recent AMS measurement, no need for dark matter
- Other measurements
 - Many other measurement are **yet to come**, with on-going experiments or **promising future experiments** (CALET, DAMPE, ISS-CREAM)

Vincent Poireau

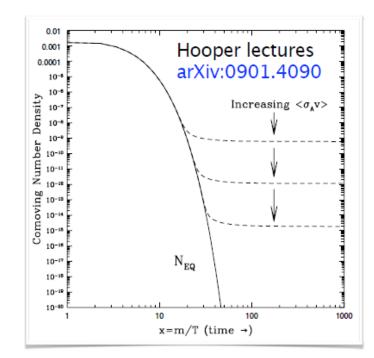
TO BE CONTINUED... (David Maurin)

ADDITIONAL SLIDES

WIMP "miracle"

- Start with heavy, stable dark matter (DM) particle X in thermal equilibrium.
- Early universe $T > M_X: X\overline{X} \leftrightarrow f\overline{f}$
- Universe cools $T < M_X : X\overline{X} \rightarrow f\overline{f}$
- Freeze out: Hubble expansion eventually prevents XX → ff
- Solving Boltzmann equation

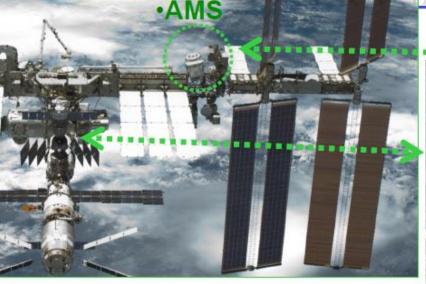
Vii


$$\frac{dn}{dt} = -\frac{3\dot{R}}{R}n - \langle \sigma v \rangle n^2 + \langle \sigma v \rangle n_0^2$$

assuming measured DM density results in:

$$\frac{\Omega_{\rm DM}h^2}{0.1} \approx \left(\frac{\langle \sigma v \rangle}{3~{\rm pb}\cdot{\rm cm/s}}\right)^{-1}$$

and for $m_{DM} = 100$ GeV and weak g:


$$\sigma \sim g^4/m_{\rm DM}^2 \sim 3 {\rm pb} \cdot {\rm cm/s}$$

* Lee, Weinberg (1977) FERMILAB-PUB-77/41-THY

n (n ₀)	DM number density (at equilibrium)		
Ŕ∕R	expansion rate		
(0 v)	DM annihilation cross section x velocity		
$\Omega_X h^2$	physical X density		

TRANSMISSION

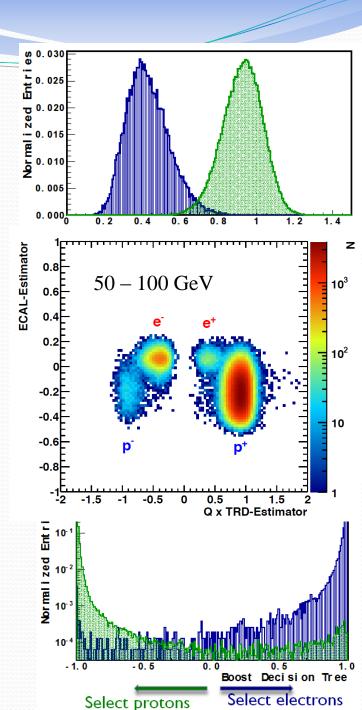
Astronaut at ISS AMS Laptop

Ku-Band High Rate (down): Events <10Mbit/s>

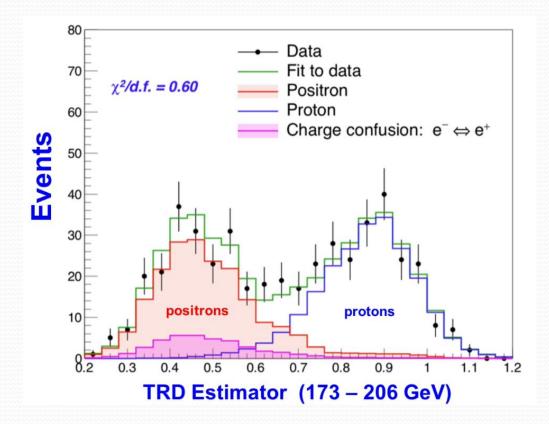
S-Band Low Rate (up & down): Commanding: 1 Kbit/s Monitoring: 30 Kbit/s

White Sands Ground Terminal, NM

AMS Payload Operations Control and Science Operations Centers (POCC, SOC) at CERN since June 2011


AMS Computers at MSFC, AL

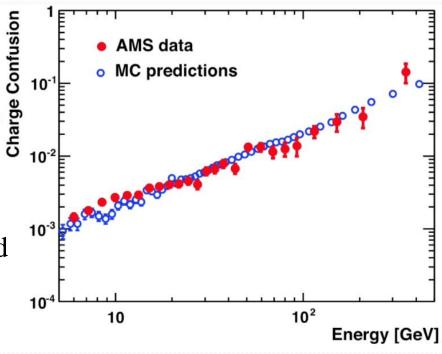
	e -	Ρ	He,Li,Be,Fe	γ	e+	P, D	He, C
TRD		Y	Υ			T	Υ
TOF	T	T	44	T	Ŧ	Ţ	ř
Tracker				八			ノ
RICH			\rightarrow	00	\bigcirc	\bigcirc	
ECAL		****	Ŧ			*****	¥
Physics example		С	osmic Ray Physics	Dark matter Antimatte			


POSITRON FRACTION

- Key detectors for this measurement
 - TRD
 - Tracker
 - E/p close to 1 for electrons/positrons
 - Calorimeter
 - Based on 3D shower shape
- Methodology
 - Selection using the calorimeter variable
 - **Count** of e⁺ (Z>0) and e⁻ (Z<0) from a 2D fit on the TRD and tracker variables
 - Count for each energy range

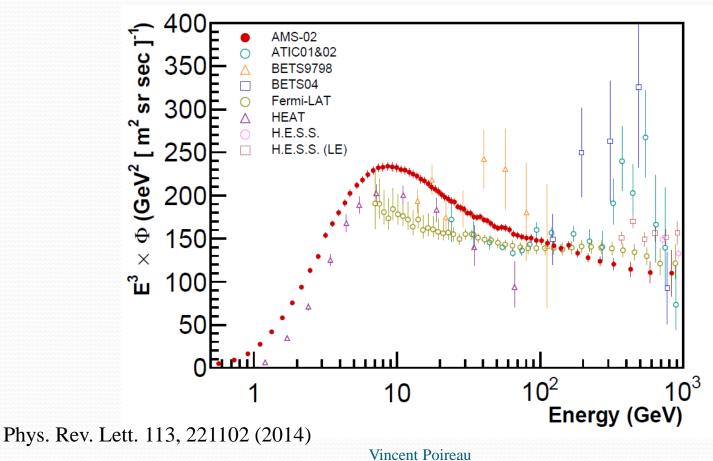
POSITRON FRACTION

- Counts of leptons after the selection
 - **Z** > **0** : count of **positrons**


• Z < 0 : count of **electrons**

Vincent Poireau

CHARGE CONFUSION


 For some energy range, difficulty to measure the sign of the charge
⇒ confusion

- Two sources
 - Finite resolution of the tracker and multiple scattering
 - Production of secondary tracks along the path of the primary track

COMBINED FLUX

- electron + positron flux measurement
 - Independent from charge sign measurement
 - **High selection efficiency** (70% at 1 TeV)

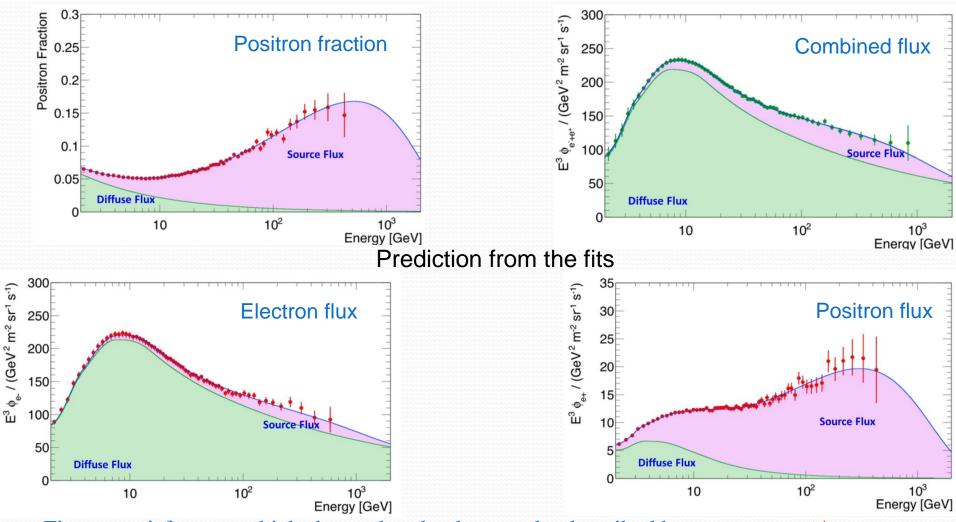
- Fit of the AMS data using a minimal model
- Positrons
 - Secondary production $\Phi_{e^+} = C_{e^+} E^{-\gamma}$

$$\Phi_{e^{+}} = C_{e^{+}} E^{-\gamma_{e^{+}}} + C_{s} E^{-\gamma_{s}} e^{-E/E_{s}}$$

- + source
- Electrons
 - Primary and secondary $\Phi_{e^-} = C_{e^-} E^{-\gamma e^-} + C_s E^{-\gamma s} e^{-E/E_s}$ production
 - + same source
- Simultaneous fit to
 - Positron fraction from 2 GeV
 - Combined flux from 2 GeV

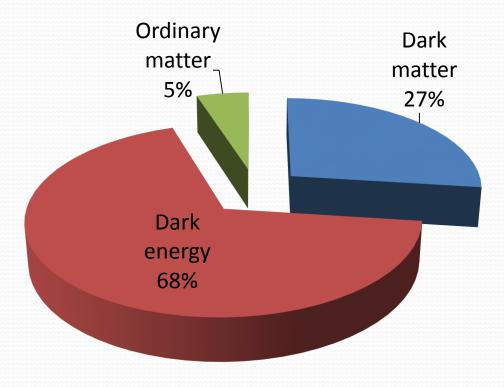
PROPAGATION

$$\frac{\partial \psi}{\partial t} - \boldsymbol{\nabla} \cdot \{K(E) \boldsymbol{\nabla} \psi\} - \frac{\partial}{\partial E} \{b(E) \psi\} = q(\mathbf{x}, t, E)$$


$$\psi = dn/dE$$

$$K(E) = K_0 \beta (\mathcal{R}/1 \text{ GV})^{\delta}$$
 $b(E) = \frac{E_0}{\tau_E} \epsilon^2$ $\epsilon = E/E_0$

$$q_{e^+}^{\rm DM}(\mathbf{x}_S, E_S) = \frac{1}{2} \langle \sigma v \rangle \left\{ \frac{\rho_{\chi}(\mathbf{x}_S)}{m_{\chi}} \right\}^2 \left\{ g(E_S) \equiv \sum_i B_i \left. \frac{dN_{e^+}}{dE_S} \right|_i \right\}$$


$$g(E) = Q_0 \left(\frac{E_0}{E}\right)^{\gamma} \exp(-E/E_C) \qquad \qquad \int_{E_{\min}}^{+\infty} E_S g(E_S) dE_S = fW_0.$$

Result from the fits

Fits are satisfactory, which shows that the data can be described by a common e^{+}/e^{-} source

Vincent Poireau

The CR hadronic sector puzzle (theoretical interpretation)

Broken power law interpretations include:

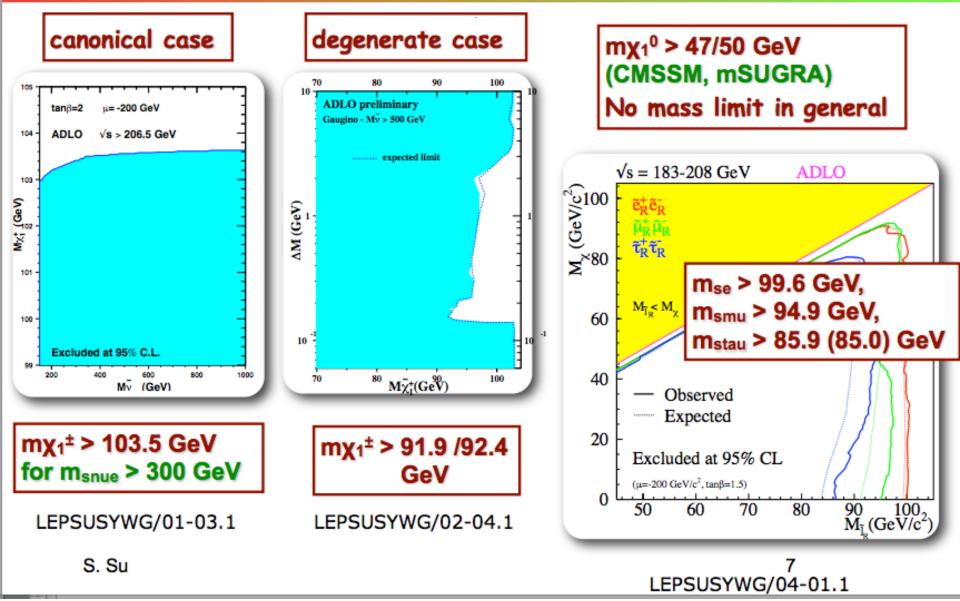
- *diffusion effects* (source spectra assumed to be single power law):
 - non factorizable spatial and rigidity dependence of diffusion coefficient [N. Tomassetti, Astrophys. J. 752, L13]
 - non linear diffusion on external turbolence (self-generated waves) above (below) the break [Blasi,Amato,Serpico, PRL 109]
- acceleration effects (observed features are imprinted on production spectra):
 - DSA acceleration non-linear effects (CR feed-back) [V. Ptuskin, V. Zirakashvili and E. S. Seo, Astrophys. J. 763]
 - Acceleration by different sources (e.g.: OB associations, SuperBubbles, W-R stars) [TStanev, Biermann & Gaisser, Astron. Astrophys. 274, 902
 - Weak re-acceleration [E. Seo and V. Ptuskin, Astrophys. J. 431]
- local sources:
 - Young nearby objects accounting for He harder spectrum are in tension with anisotropy measurements [Blasi, Amato, JCAP 1201, 011]

Violation of universality of spectral indices interpretations include:

- e.g.: He accelerated "earlier" (with higherMach number than proton) ?
 - He more efficient at injection than proton + slower decline with Mach number [Malkov, Diamond & Sagdeev, Phys. Rev. Lett. 108]
 - Variable He/p ion concentration in the medium swept by shocks [L. O. Drury, Mon. Not. Roy. Astron. Soc. 415, 1807]

ATLAS SUSY Searches* - 95% CL Lower Limits

Status: EPS 2013


	Model	e, μ, τ, γ	Jets	E ^{miss} T	∫£ dt[fb	p ⁻¹]	Mass limit	J2 02 - (4.4 22.0) 10	Reference
Inclusive Searches	$\begin{array}{l} \text{MSUGRA/CMSSM} \\ \text{MSUGRA/CMSSM} \\ \text{MSUGRA/CMSSM} \\ \overline{q} \overline{q}, \overline{q} \rightarrow q \overline{\chi}_{1}^{0} \\ \overline{g} \overline{g}, \overline{g} \rightarrow q \overline{q} \overline{\chi}_{1}^{0} \\ \overline{g} \overline{g}, \overline{g} \rightarrow q \overline{q} \overline{\chi}_{1}^{0} \\ \overline{g} \overline{g}, \overline{g} \rightarrow q q \overline{\chi}_{1}^{1} \rightarrow q q W^{\pm} \overline{\chi}_{1}^{0} \\ \overline{g} \overline{g} \rightarrow q q q \ell \ell (\ell \ell) \overline{\chi}_{1}^{0} \overline{\chi}_{1}^{0} \\ \text{GMSB} (\ell \text{ NLSP}) \\ \text{GMSB} (\ell \text{ NLSP}) \\ \text{GGM (bino NLSP)} \\ \text{GGM (bino NLSP)} \\ \text{GGM (higgsino bino NLSP)} \\ \text{GGM (higgsino NLSP)} \\ \text{GGM (higgsino NLSP)} \\ \text{Gravitino LSP} \end{array}$	$\begin{matrix} 0 \\ 1 \ e, \mu \\ 0 \\ 0 \\ 1 \ e, \mu \end{matrix} \\ 2 \ e, \mu (SS) \\ 2 \ e, \mu \\ 1 \cdot 2 \ \tau \\ 2 \ \gamma \\ 1 \ e, \mu + \gamma \\ \gamma \\ 2 \ e, \mu (Z) \\ 0 \end{matrix}$	2-6 jets 3-6 jets 7-10 jets 2-6 jets 3-6 jets 3-6 jets 3-6 jets 3-6 jets 0-2 jets 0 1 b 0-3 jets mono-jet	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.7 4.7 20.7 4.8 4.8 4.8 4.8 5.8 10.5	q . ğ . ğ . ğ . q . g .	1.2 Te 1.1 TeV 740 GeV 1.3 1.18 Te 1.1 TeV 1.24 T	any m(ζ) m(k ² ₁) =0 GeV TeV m(k ² ₁) =0 GeV eV m(k ² ₁) <=0 GeV, m(k ²) =0.5(m(k ⁰ ₁)+m(g)) m(k ² ₁) <=50 GeV feV tanβ <=15 .4 TeV tanβ >18	ATLAS-CONF-2013-047 ATLAS-CONF-2013-054 ATLAS-CONF-2013-054 ATLAS-CONF-2013-054 ATLAS-CONF-2013-047 ATLAS-CONF-2013-047 ATLAS-CONF-2013-007 1208.4688 ATLAS-CONF-2013-026 1209.0753 ATLAS-CONF-2012-144 1211.1167 ATLAS-CONF-2012-152 ATLAS-CONF-2012-152
3 rd gen. <i>ἒ</i> med.	$\begin{array}{l} \bar{g} \rightarrow b \bar{b} \bar{\chi}_{1}^{0} \\ \bar{g} \rightarrow t \bar{t} \bar{\chi}_{1}^{0} \\ \bar{g} \rightarrow t \bar{t} \bar{\chi}_{1}^{0} \\ \bar{g} \rightarrow b \bar{t} \bar{\chi}_{1}^{1} \end{array}$	0 0 0-1 e,μ 0-1 e,μ	3 b 7-10 jets 3 b 3 b	Yes Yes Yes Yes	20.1 20.3 20.1 20.1	100 100 100 100			ATLAS-CONF-2013-061 ATLAS-CONF-2013-054 ATLAS-CONF-2013-061 ATLAS-CONF-2013-061
3rd gen. squarks direct production	$ \begin{array}{c} \bar{b}_1\bar{b}_1, \bar{b}_1 \rightarrow b\bar{\chi}_1^0 \\ \bar{b}_1\bar{b}_1, \bar{b}_1 \rightarrow t\bar{\chi}_1^{\pm} \\ \bar{t}_1\bar{t}_1(\text{light}), \bar{t}_1 \rightarrow b\bar{\chi}_1^{\pm} \\ \bar{t}_1\bar{t}_1(\text{light}), \bar{t}_1 \rightarrow W\bar{b}\bar{\chi}_1^0 \\ \bar{t}_1\bar{t}_1(\text{medium}), \bar{t}_1 \rightarrow t\bar{\chi}_1^0 \\ \bar{t}_1\bar{t}_1(\text{medium}), \bar{t}_1 \rightarrow b\bar{\chi}_1^{\pm} \\ \bar{t}_1\bar{t}_1(\text{heavy}), \bar{t}_1 \rightarrow t\bar{\chi}_1^0 \\ \bar{t}_1\bar{t}_1(\text{heavy}), \bar{t}_1 \rightarrow t\bar{\chi}_1^0 \\ \bar{t}_1\bar{t}_1, \bar{t}_1 \rightarrow c\bar{\chi}_1^0 \\ \bar{t}_1\bar{t}_1(\text{mealural GMSB}) \\ \bar{t}_2\bar{t}_2, \bar{t}_2 \rightarrow \bar{t}_1 + Z \end{array} $	0 2 e, µ (SS) 1-2 e, µ 2 e, µ 2 e, µ 0 1 e, µ 0 0 m 2 e, µ (Z) 3 e, µ (Z)	2 b 0-3 b 1-2 b 0-2 jets 2 jets 2 b 1 b 2 b 1 ono-jet/c-ta 1 b 1 b 1 b	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.1 20.7 4.7 20.3 20.3 20.1 20.7 20.5 20.3 20.7 20.7	δ1 δ1 τ	100-630 GeV 430 GeV 220 GeV 225-525 GeV 150-580 GeV 200-610 GeV 320-660 GeV 200 GeV 500 GeV 520 GeV	$\begin{split} m(\tilde{\kappa}_{1}^{0}) &< 100 \ \text{GeV} \\ m(\tilde{\kappa}_{1}^{0}) &= m(\tilde{\kappa}_{1}^{0}) \\ m(\tilde{\kappa}_{1}^{0}) &= 55 \ \text{GeV} \\ m(\tilde{\kappa}_{1}^{0}) &= 55 \ \text{GeV} \\ m(\tilde{\kappa}_{1}^{0}) &= 55 \ \text{GeV} \\ m(\tilde{\kappa}_{1}^{0}) &= 56 \ \text{GeV} \\ m(\tilde{\kappa}_{1}^{0}) &= 200 \ \text{GeV} \\ m(\tilde{\kappa}_{1}^{0}) &= 200 \ \text{GeV} \\ m(\tilde{\kappa}_{1}^{0}) &= 0 \ \text{GeV} \\ m(\tilde{\kappa}_{1}^{0}) &= 180 \ \text{GeV} \end{split}$	ATLAS-CONF-2013-053 ATLAS-CONF-2013-007 1208.4305, 1209.2102 ATLAS-CONF-2013-048 ATLAS-CONF-2013-063 ATLAS-CONF-2013-053 ATLAS-CONF-2013-024 ATLAS-CONF-2013-024 ATLAS-CONF-2013-025 ATLAS-CONF-2013-025
EV direct	$ \begin{array}{l} \tilde{\ell}_{L,R}\tilde{\ell}_{-R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\ell} \nu (\ell \tilde{\nu}) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\tau} \nu (\tau \tilde{\nu}) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{L} \nu \tilde{\ell}_{L} \ell (\tilde{\nu} \nu), \ell \tilde{\nu} \tilde{\ell}_{L} \ell (\tilde{\nu} \nu) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0} \rightarrow W * \tilde{\chi}_{1}^{0} Z^{*} \tilde{\chi}_{1}^{0} \end{array} $	2 e, μ 2 e, μ 2 τ 3 e, μ 3 e, μ	0 0 0 0	Yes Yes Yes Yes Yes	20.3 20.3 20.7 20.7 20.7	$ \vec{\hat{x}_{1}^{\pm}} \\ \vec{\hat{x}_{1}^{\pm}} \\ \vec{\hat{x}_{1}^{\pm}} \\ \vec{\hat{x}_{1}^{\pm}} \\ \vec{\hat{x}_{1}^{\pm}} \\ \vec{\hat{x}_{2}^{\pm}} $	85-315 GeV 125-450 GeV 180-330 GeV 600 GeV 315 GeV	$\begin{array}{l} m(\tilde{\chi}_{1}^{0}) \!$	ATLAS-CONF-2013-049 ATLAS-CONF-2013-049 ATLAS-CONF-2013-028 ATLAS-CONF-2013-035 ATLAS-CONF-2013-035
Long-lived particles	$\begin{array}{l} \text{Direct} \bar{\chi}_{1}^{+} \bar{\chi}_{1}^{-} \text{ prod., long-lived } \bar{\chi}_{1}^{\pm} \\ \text{Stable, stopped } \bar{g} \text{ R-hadron} \\ \text{GMSB, stable } \bar{\tau}, \bar{\chi}_{1}^{0} \rightarrow \bar{\tau}(\bar{\epsilon}, \bar{\mu}) + \tau(\epsilon \\ \text{GMSB}, \bar{\chi}_{1}^{0} \rightarrow \gamma \bar{\mathcal{G}}, \text{ long-lived } \bar{\chi}_{1}^{0} \\ \bar{\chi}_{1}^{0} \rightarrow q q \mu \text{ (RPV)} \end{array}$	0	1 jet 1-5 jets 0 0 0	Yes Yes - Yes Yes	20.3 22.9 15.9 4.7 4.4	<i>X̂</i> [±] ğ <i>X̂</i> ⁰ <i>X̂</i> ¹ q	270 GeV 857 GeV 475 GeV 230 GeV 700 GeV	m $(\tilde{\chi}_1^c)$ +m $(\tilde{\chi}_1^0)$ =160 MeV, r $(\tilde{\chi}_1^c)$ =0.2 ns m $(\tilde{\chi}_1^0)$ =100 GeV, 10 μ s <r<math>(g)<1000 s 10<tan<math>\beta<50 0.4<r<math>(\tilde{\chi}_1^0)<2 ns 1 mm<cr<1 decoupled<="" g="" m,="" td=""><td>ATLAS-CONF-2013-069 ATLAS-CONF-2013-057 ATLAS-CONF-2013-058 1304.6310 1210.7451</td></cr<1></r<math></tan<math></r<math>	ATLAS-CONF-2013-069 ATLAS-CONF-2013-057 ATLAS-CONF-2013-058 1304.6310 1210.7451
RPV	$ \begin{array}{l} LFV pp \rightarrow \tilde{v}_r + X, \tilde{v}_r \rightarrow e + \mu \\ LFV pp \rightarrow \tilde{v}_r + X, \tilde{v}_r \rightarrow e(\mu) + \tau \\ Bilinear \ RPV \ CMSSM \\ \tilde{x}_1^+ \tilde{x}_1^- \tilde{x}_1^+ \rightarrow W \tilde{x}_1^0, \tilde{x}_1^0 \rightarrow ee\tilde{v}_\mu, e\mu \tilde{v} \\ \tilde{x}_1^+ \tilde{x}_1, \tilde{x}_1^+ \rightarrow W \tilde{x}_1^0, \tilde{x}_1^0 \rightarrow er \tilde{v}_a, er \tilde{v} \\ \tilde{g} \rightarrow qq \\ \tilde{g} \rightarrow \tilde{t}_1 t, \tilde{t}_1 \rightarrow bs \end{array} $	$\begin{array}{c} 2 \ e, \mu \\ 1 \ e, \mu + \tau \\ 1 \ e, \mu \\ \psi_e \\ 4 \ e, \mu \\ \tau \\ 3 \ e, \mu + \tau \\ 0 \\ 2 \ e, \mu (SS) \end{array}$	0 0 7 jets 0 6 jets 0-3 <i>b</i>	- Yes Yes Yes - Yes	4.6 4.7 20.7 20.7 4.6 20.7	ν̄, ν̄, ğ, ğ, ½, ½, ½, ½, ½, ĝ ĝ ĝ ĝ	1.1 TeV 1.2 Te 760 GeV 350 GeV 666 GeV 880 GeV		1212.1272 1212.1272 ATLAS-CONF-2012-140 ATLAS-CONF-2013-036 ATLAS-CONF-2013-036 1210.4813 ATLAS-CONF-2013-007
Other	Scalar gluon WIMP interaction (D5, Dirac χ)	0 0	4 jets mono-jet	Yes	4.6 10.5	sgluon M* scale		incl. limit from 1110.2693 m($_{\chi}){<}80$ GeV, limit of ${<}687$ GeV for D8	1210.4826 ATLAS-CONF-2012-147
		√s = 8 TeV artial data	$\sqrt{s} = 0$ full of	8 TeV data		1() ⁻¹ 1	Mass scale [TeV]	

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 σ theoretical signal cross section uncertainty.

ATLAS Preliminary

 $\int \mathcal{L} dt = (4.4 - 22.9) \text{ fb}^{-1}$ $\sqrt{s} = 7, 8 \text{ TeV}$

Current limits: neutralino/chargino

