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 Experimental astroparticles 1

 Cosmic rays

 Indirect search for dark matter

 Some experiments

 AMS-02: detailing a modern experiment

 Recent results on cosmic rays and their implications

 Experimental astroparticles 2

 This afternoon, presented by David Maurin

 The gamma-ray sky 

 Interactions in a detector/atmosphere 

 Ground vs space detectors 

 Fermi-LAT and H.E.S.S. (and Auger)

 Recent results and constraints on dark matter 

PLAN
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HISTORIC

 1736 – 1806 : Charles Augustin de Coulomb observed that a sphere 

initially charged and isolated loses its electrical charge



Charles-Augustin de Coulomb

(1736-1806)
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HISTORIC

Electroscopes 
are 

spontaneously 
discharging 

????

An electroscope

 1736 – 1806 : Charles Augustin de Coulomb observed that a sphere 

initially charged and isolated loses its electrical charge



Space

Beginning of 20th century

Henri Becquerel

(1852-1908) 

Marie Curie 

(1867-1934) 

1903 1903

C.T.R. Wilson

(1869-1959) 

1927

Ce rayonnement ionisant 
peut venir de l’espace !!!
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The radioactivity

could explain

the spontaneous discharge

???HISTORIC



 1912: Victor Hess measures the atmospheric ionization with 

electroscopes during balloon flights at various altitudes: the 

ionization increases

 This ionization comes 

from space!
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HISTORIC

1936

Victor Hess

(1869-1959) 



They are 
electrically 

charged 
particles!

They are 
neutral 

particles!

Robert Andrews 
Milikan
(1868-1953)

Arthur Compton
(1892-1962)

1927
1923

 From what are they composed? The debate is passionate in the 

1920’s

 Their intensity varies depending on where we are on Earth…

 Cosmic rays are charged particles!

 More particle from the western direction: positively charged

HISTORIC

1925: very high energy

gammas → « cosmic rays »



 1937: Pierre Auger positions three Geiger counters separated of 70 m 

at le pic du midi

 Cosmic rays arrive in group: atmospheric shower
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HISTORIC

Pierre Victor Auger

(1899-1993) 



 Many new particles discovered in the cosmic rays

 1932: positron e+ (first observation of antimatter)

 1936: muon μ

 1949: pion π

 1949: kaon K

 1949: lambda Λ

 1952: xi Ξ

 1953: sigma Σ

 Birth of a new science: particle physics!

 Cosmic rays are replaced by accelerators where 

particles are artificially produced
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HISTORIC



COSMIC  RAYS
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 Cosmic rays

 12 orders in energy

 100 MeV to 1020 eV

 30 orders in flux

 Isotropic flux

 Abondance of nuclei in the cosmic 

rays similar to the one from the 

solar system

LHC equivalent



 Composition
 Charged : electrons, protons, nuclei

 Neutral : photons, neutrinos

 Charged cosmic rays

 Power law spectrum 1/E,  = 2.7-3.5
 The measured spectrum results

 from the production and acceleration mechanisms (1/E , = 2.0-2.4)

 from the diffusion (1/E ,  = 0.3-0.7)

  =  + 
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COSMIC  RAYS



From 

the sun

From our 

Galaxy

From outside

our Galaxy

COSMIC  RAYS

 Where are they coming from?



COSMIC  RAYS

 Low energy cosmic rays are accelerated by the sun

Aurora borealis



 At intermediate energies, supernovae remants produce cosmic 

rays



Centaurus A

 At extreme energies, active galaxy nuclei, quasars, or gamma 

ray bursts are potential candidates



 Primary cosmic rays
 Produced direcly in the source

 Sources: supernova remnants, pulsars, active galactic nuclei, quasars

 Primaries include
 Electrons, protons, helium, carbon, …

 Secondary cosmic rays
 Originate from the interaction of primaries on interstellar medium

 Secondaries include
 Positrons, antiprotons, bore, … 

 Additional sources of electrons and positrons?
17

Production and 

acceleration

Propagation (diffusion) 

in our Galaxy

e-

p

Observation

Primaries e-

Primaries p

p+H Secondaries e, p

Primaries e, p
Unknown

source

COSMIC  RAYS



 In our Galaxy, main source of primary cosmic rays: supernova 
remnants

 Very strong magnetic field in the shell of 

supernovas

 Acceleration

 Due to the shock wave

 First order Fermi mechanism

 Naturally produce a power law 

spectrum

 This process explains why the cosmic ray composition is similar to 
the one from the solar system

ACCELERATION
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 Charged cosmic rays: propagation equivalent to a diffusion in the 

Galactic medium

 Irregular magnetic field of the diffusive halo = random walk

 Possible to write a cosmic ray transport equation

 Difficult to solve

 5 free parameters, with large uncertainties on these parameters

hz=200 pc, L=1-15 kpc, R=25 kpc

PROPAGATION

Halo

Disk



 Heliosphere: a region of space 
influenced by the sun (solar wind)

 Size: 150 AU

 Solar wind: a continous flow of 
charged particles from sun

 e- and p

 Carries the sun magnetic field to the 
interplanetary space

 Solar cycles

 Reversal of the sun magnetic field 
polarity

 Every 11 years

 Solar activity going from a minimum 
to a maximal intensity

 Solar modulation affects cosmic rays 
below 20 GeV

 Deviation from the power law

SOLAR  MODULATION
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Solar 

modulation
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Galaxy rotation curve

A : prediction

B : observation

To explain the observation, we have to suppose the presence of a halo 

containing an invisible matter around the galaxies: the dark matter!

A B



 A very large fraction of the Universe content remains mysterious

 Dark matter: 27% of our Universe is made of unknown matter (other 

than electrons, quarks, …)

 « Observation »: galaxy rotation curves, X-ray emission, 

gravitational lensing, cosmic microwave background

DARK  MATTER

23Vincent Poireau



 Best candidate: weakly interacting massive particle  WIMP

 Massive particles: 100 GeV – several TeV

 Weakly interacting with the ordinary matter

 Several ways to see its effect

Vincent Poireau

DARK  MATTER
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 Annihilation of the WIMPs

 Natural cross-section from relic density: <σv> ≈ 3.10-26 cm3s-1

Vincent Poireau

DARK  MATTER
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χ

χ

Electrons e-

Positrons e+

Protons p

Antiprotons p

Gamma rays
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1959-1974: Vulcano Ranch (USA)

8km2

1980-1993: Fly eye (Utah)

1998-2004: AGASA (Japon)

100 km2 

2004- : Pierre-Auger 

observatory

EXPERIMENTS



1979 à 1995: ECHO 

Altitude: 17 km

AMS-01

1998: Discovery

Altitude: 400 km
1965: proton satellite

Orbit: 183-589 km

1947: inside a B 29

Altitude : 10 km

Carl Anderson

(1905-1991)
1993-1996:

JACEE

Alt: 30 km

EXPERIMENTS



EXPERIMENTS
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2004-2010:  CREAM

Altitude : 40 km
2006-:  Pamela

Altitude : 400 km
2008-:  Fermi

Altitude : 500 km

2011-:  AMS

Altitude : 400 km

Let’s detail this experiment!
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 A particle detector in space

 Detect charged particles and gamma rays

 From 100 MeV to a few TeV

AMS-02
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5m x 4m x 3m
7.5 tons



 Launched from Cap Canaveral on the 16th of May 2011

 Penultimate American shuttle!

AMS-02
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 Installation on the ISS on the 19th of May 2011

 Orbit at 400 km altitude

 One orbit every 90 minutes

 Detect the cosmic rays before they interact in the atmosphere
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AMS-02



FLIGHT OPERATION
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 More than 100 billions of events recorded since May 2011

 Much more than all the cosmic rays collected in the last 100 years

 Will operate at least until 2024

 Acquisition rate from 200 to 2000 Hz

 Continuous operation 7d/7 24h/24

 Acquisition
 ~40 millions events a day

 ~100 GB transferred every day

 35 TB of data every year

 200 TB of reconstructed data every 
year



DETECTOR
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Transition radiation 
detector

Identifies e+, e-

Silicium tracker
Z, P

Electromagnetic calorimeter
E of e+, e-, γ

Cherenkov detector
Z, E

Time of flight
Z, E

Magnet 0,14 T
±Z

Cosmic rays



 Rigidity

 R = p/Z

 Expressed in GV
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DETECTOR

A 369 GeV positron event



COLLABORATION
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 Measurement of cosmic ray fluxes

 Understand the cosmic ray propagation in 

our Galaxy

 Indirect search of dark matter

 Positrons and antiprotons produced during 

its annihilation

 Search for primordial antimatter

 Anti-helium relic of the Big-Bang or anti-

carbon from anti-stars

 Surprises? Strangelets?

AMS  TOPICS
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 Positrons : expected only as secondary

 Positron excess with respect to the secondary prediction = source of primary 

positrons

 Positron fraction 

 Allows to factorize the acceptance and efficiencies

 Simplify the computation of systematic uncertainties

 Challenges

 100 times more protons than electrons

 2000 times more protons than positrons

 Need to divide number of protons by 106

POSITRON  FRACTION
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 Result for the positron fraction below 35 GeV

 Fraction begins to increase above 10 GeV

 Incompatible with secondary positrons only

 A source of primary positrons is needed!

 Nearby source since positrons do not propagate more than a few kpc

POSITRON  FRACTION

42Vincent Poireau
Energy (GeV)

P
o
si

tr
o
n

  
fr

a
ct

io
n

AMS data

Secondary origin



 Fraction at high energy

 AMS: precision and energy never reached before
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POSITRON  FRACTION



 Fluxes bring more information for the models than the fraction

 Obtaining the flux via

 N number of positrons or electrons

 A acceptance

 Trig and sel trigger and selection efficiencies

 T exposure time

 dE energy bin size

FLUX  MEASUREMENT
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 The electron and positron fluxes are different in their 

magnitude and energy dependence
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FLUX  MEASUREMENT

Preliminary



 Fitting the positron fraction using the best combination of annihilation 
channels

 Dark matter may explain the fraction, but unnatural annihilation cross-
section 

 ×1000 compared to the one expected from the relic density

 Not likely that we have observed an indirect observation of dark matter

 In tension with other observables (antiprotons, gamma rays, …)

INTERPRETATION:  DARK  MATTER
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A&A 575, A67 (2015)



 Neutron stars spinning at high rate with a strong magnetic 

field

 200 pulsars at less than 2 kpc from Earth

 Only a small fraction able to emit positrons

 Mechanism

 Electrons extracted from the surface by the high fields 

 electrons produce synchrotron photons  

 photons produce e+-e- pairs 

 Some escape from the pulsar

 Precise prediction very difficult

 Five closeby pulsars able to 

explain the fraction

INTERPRETATION:  PULSARS
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A&A 575, A67 (2015)
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 Dark matter could create an excess of antiprotons with respect to the 

expectations

 Pulsars do NOT produce antiprotons

 AMS measured the ratio p/p

 290 000 antiprotons

 Is dark matter necessary to explain this

measurement?

 Controversial topic!

 Need to compute what is expected from

secondary antiprotons

ANTIPROTONS
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Preliminary



 Adding the contribution of the secondary antiprotons with its 
uncertainty

 Comparison of data and expectations for p/p

 The ratio p/p is not in discrepancy with the expectations

 No dark matter needed here (yet)

ANTIPROTONS
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p
/p
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Proton

Helium

Lithium

Carbon

OTHER RESULTS



 Recent and unexpected observation: the power law is broken at high energy 

 What can cause these anomalies?

 Sources?

 Acceleration?

 Propagation?

 Still an open question!

NUCLEUS  ANOMALY
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 Ratio of secondary over primary allows to understand the propagation of cosmic 

rays

 Carbon: primary, produced and accelerated in sources

 Boron: secondary, produced by the collision of heavier nuclei on the interstellar matter

 Ratio directly measures the average amount of interstellar material traversed by the 

cosmic rays

BORON/CARBON  RATIO
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Bonus: a break in 

the B/C ratio would

explain the nucleus 

anomaly by propagation

phenomena



 Cosmic rays are charged and neutral particles coming from space

 From a few MeV to 1020 eV

 Mainly protons, helium, electrons, …

 Sources

 At intermediate energies, they come from supernova remnant in our Galaxy

 Protons, electrons, … come directly from the source

 Positrons, antiprotons, … are created by collision with the interstellar medium, with a rate 
that can be predicted

 Propagation

 Charged cosmic ray propagation is equivalent to a diffusion

 Positrons in cosmic rays

 There is more positrons at high energy compared to the expectations

 New source: dark matter? pulsars?

 AMS will extend its energy range, and should be able to discriminate between the dark 
matter and pulsar hypotheses

 Antiprotons in cosmic rays

 Antiprotons could be produced by dark matter

 After the recent AMS measurement, no need for dark matter

 Other measurements

 Many other measurement are yet to come, with on-going experiments or promising 
future experiments (CALET, DAMPE, ISS-CREAM)

IN  SUMMARY
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TRANSMISSION



He,Li,Be,..FePe–
He, CP, De+

TRD

TOF

Tracker

RICH

ECAL

– – – –

Physics

example
AntimatterCosmic Ray Physics Dark matter



DÉTECTEUR



POSITRON  FRACTION

 Key detectors for this measurement

 TRD

 Tracker

 E/p close to 1 for electrons/positrons

 Calorimeter

 Based on 3D shower shape

 Methodology

 Selection using the calorimeter variable

 Count of e+ (Z>0) and e- (Z<0) from a 2D fit 

on the TRD and tracker variables

 Count for each energy range

61

50 – 100 GeV



 Counts of leptons after the selection

 Z > 0 : count of positrons

 Z < 0 : count of electrons

POSITRON  FRACTION
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CHARGE  CONFUSION
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 For some energy range, difficulty to 

measure the sign of the charge 

 confusion

 Two sources

 Finite resolution of the tracker and 

multiple scattering

 Production of secondary tracks 

along the path of the primary track



 electron + positron flux measurement

 Independent from charge sign measurement

 High selection efficiency (70% at 1 TeV)

COMBINED  FLUX
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Phys. Rev. Lett. 113, 221102 (2014)



 Fit of the AMS data using a minimal model

 Positrons

 Secondary production

 + source

 Electrons

 Primary and secondary 

production

 + same source

 Simultaneous fit to 

 Positron fraction from 2 GeV

 Combined flux from 2 GeV

MINIMAL  MODEL
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PROPAGATION
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Prediction from the fits

MINIMAL  MODEL
Result from the fits

Positron fraction Combined flux

Electron flux Positron flux

Fits are satisfactory, which shows that the data can be described by a common e+/e- source
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Dark 
matter

27%

Dark 
energy

68%

Ordinary
matter

5%
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