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Lecture 1: Introduction to EFTs.

Flavor physics rests on the basic idea of an effective field theory, which in turn is one of
the most basic guides in modeling physics systems. In this lecture we introduce this idea.
We will proceed by examples, introducing the minimal necessary notation only when it’s
needed.

We will introduce the idea of an EFT by the explicit example of Rayleigh scattering,
namely elastic scattering of visible light off atoms. Rayleigh scattering explains why the sky
is blue. (Disclaimer: technically, what happens in Rayleigh scattering is that the atom gets
polarized by the e.m. wave and emits like a dipole. Therefore, one can make an entirely
classical derivation of this effect. We want instead to use the tools and the formalism of
particle physics. Therefore, we will need a small detour where we will introduce all the basic
concepts. The resulting derivation will be much more fun than the classical one.)

L1.1 Introduction

In order to approach the problem using quantum-physics tools, we need some basic concepts:

− particles, and how they are mathematically described (= quantum fields),

− interactions, namely products of fields satisfying certain requirements. These prod-
ucts of fields appear in ‘Lagrangian’ functions, akin to the analogous objects describing
the dynamics of classical-mechanical systems,

− relevant interactions.

The last concept is at the core of the idea of EFTs. It consists in identifying the charac-
teristic energy or distance scale of a problem, and accordingly writing down a sensible set of
interactions describing that problem, while discarding irrelevant details (= effects at scales
widely different than the characteristic one, for example, internal-structure dynamics).

For example, if we are asked to evaluate the amount of heat dissipated by a TGV stopping
from full speed, all we need is its kinetic energy Etrain = MV 2/2, with M its mass and V its
average speed. We do not need details about its internal structure, such as the number of
people going back to their seats during the braking. In fact, one can estimate both effects
using

M ' 250 tons = 2.5 · 105 kg (train mass)

V ' 250 km/h = 2.5 · 105

3.6 · 103
m
s = 0.7 · 102 m

s (average train speed)
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m ∼ 70 kg (average human weight)

v ∼ 5 km/h = 5 · 103

3.6 · 103
m
s = 1.4 m

s (average walking speed)

With respect to the train kinetic energy, the ‘internal structure’ effect is a correction of order
(we assume N ∼ 20 for the number of people going back to their seats)

mv2 ×N
MV 2 = 0.7 · 102 · 1.42 × 20

2.5 · 105 · (0.7 · 102)2 ' 2× 10−6 . (1.1)

Other checks:

N × Ehuman ' 20× 1
2 · 70 · 1.42 kg ·m2

s2 ' 1.4 kJ

Etrain '
1
2(2.5 · 105)(0.7 · 102)2 kg ·m2

s2 = 6 · 108 J = 600 MJ (1.2)

which is correct, since for example vehicles energies are in the MJ range.
So, calculating the train kinetic energy including the ‘internal-structure effect’ of people

going back to their seats is like giving road-sign distances (usually in km) with mm accuracy:
useless for every practical purpose.

In short, the train can be approximated as a ‘material point’. We are very familiar with this
approximation in classical mechanics, e.g. it is the same approximation used in describing
the motion of the moon around the earth, by namely treating both as point-like objects.

***

Here we have encountered the most elementary example of the idea of separation of
scales when describing a physics problem. The idea of an effective theory is, correspondingly,
the idea of describing phenomena with finite accuracy, using their characteristic energy or
distance scale to identify the relevant interactions.

Let us now put this idea to work in a quantum-physics system, considering a concrete
example, where again we will introduce only the minimal necessary formalism as needed.

L1.2 Rayleigh scattering

Problem: the diffusion of light off the atmosphere, and why the sky looks blue.
Let’s analyze the sentence:
• ‘diffusion of light’: photons with wavelength in the visible: 400÷700 nm = 4÷ 7× 10−7 m.
• ‘off the atmosphere’: off atoms. Atom size ∼ 1 Å = 10−10 m.
The atoms are much smaller than the photon wavelength: their internal structure is not

resolved, and they can be treated as point-like objects.

Writing down the interaction

In particle-physics, interactions can be visualized (and in fact also mathematically modeled)
using the very intuitive tool of Feynman diagrams.

Feynman diagrams: imagine a process, draw its diagrams, use them to write down the
mathematical form of the quantum-mechanical (QM) amplitude for the process.
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Figure 1: Scattering of photons (γ) off atoms (a).

In our case the diagram would be as depicted
in fig. 1.

We need to now write down the QM am-
plitude corresponding to this diagram. How
to mathematically represent particles? In
particle-physics, particles are described by
fields. They are functions of the space-
time coordinates, describing the amplitude
of finding that particle in a given point in
space-time. From amplitudes, one can cal-
culate the quantum-mechanical probability P of a given process as P = |amplitude|2. The
quantum-mechanical probability is then the analogue of a wave intensity = |wave amplitude|2
in classical wave mechanics.

Why the field viewpoint

Particle-physics processes are understood (and calculated) using quantum field theories (QFTs).
QFTs put together physics at very small scales (necessitating quantum mechanics) and
physics at high energies (necessitating relativity). So, QFT marries quantum mechanics
with special relativity, and is the mathematical framework for relativistic QM. In relativistic
processes there is no conservation of the particle number (because energy can turn into mass
and viceversa) and one needs to keep track of the event sequence (causality). Hence the
necessity of the ‘field’ viewpoint.

Very basics on Lagrangians and fields

Interactions, like the one in fig. 1, are built out of products of fields. Interactions are terms
of the Lagrangian function. The latter, similarly as in classical mechanics, describes the
dynamics of the given physical system.
Lagrangian – In classical mechanics, one introduces the Lagrangian as S =

∫
Ldt, with S

the action. The dynamics of the system is obtained by the equations of motion that minimize
the action. In QFT the integral is performed over space-time coordinates, d4x, rather than
just over time. Hence S =

∫
L d4x. The space-time Lagrangian density is a function of

the fields describing the system and their first derivatives: L = L (φ, dφ/dxµ), with µ an
index labeling the four space-time coordinates. The symbol φ denotes collectively the fields,
that are just the ‘quantized’ analogue of waves in classical mechanics, namely space-time
distributions of a certain measurable quantity, like charge, or spin.
Fields – In classical mechanics, we can represent fields in coordinate space as the Fourier

transform of the corresponding fields, or amplitudes, in momentum space:

φ(x) ∝
∫
dp
(
a(p)e−ixp + a∗(p)eixp

)
, (1.3)

with a(p) the amplitude for the wave to have momentum p. Quantized fields are ‘similar’,
but for the fact that a are ‘quantized’, namely they create or absorb one particle with that
given momentum.

Note that xp has the dimensions of an action, which is energy × time. Since the ‘quantum
of action’ is a universal constant, ~, one can choose physics units where ~ = 1 (i.e. it is
treated as dimensionless). One can do the same with the speed of light in the vacuum:
c = 1.1 In these units [p] = [E] = mass = length−1, and [x] = [t] = length.
1 Note that, since c ' 3 · 108 m/s, taking c = 1 operatively just means that, if I chose the second as unity
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Writing down the interaction

The atom corresponds to a field with zero charge and angular momentum: a scalar field,
indicated as a in fig. 1. What about the photon? The photon is a ‘quantum’ of electromag-
netic field. But what combination of the E and B fields is good to represent the photon in
our problem? We need to start from the two unsourced Maxwell’s equations:

~∇ · ~B = 0 ,

~∇× ~E = −∂
~B

∂t
, (1.4)

which, as we know, admit the solution

~B = ~∇× ~A ,

~E = −~∇φ− ∂

∂t
~A , (1.5)

with ~A the vector potential and φ the scalar potential. Let’s look at these two equations.
One has for example Ex = −∂xφ− ∂0Ax, and this makes it natural to identify φ ≡ A0, the
zeroth component of the four-vector

Aµ ≡
(
φ
~A

)
. (1.6)

So, in relativistic notation2, the ~E components become

Ei = −∂0Ai + ∂iA0 = −F 0i , (1.7)

and we are tempted to define the ‘e.m. field tensor’

Fµν ≡ ∂µAν − ∂νAµ , (1.8)

with ∂µ ≡ ∂
∂xµ

. What do we get for F ij , with i, j 6= 0?

F ij = ∂iAj − ∂jAi = −∂iAj + ∂jA
i = −εijkBk , (1.9)

where I introduced the antisymmetric symbol εijk, with ε123 = 1. The last equality in eq.
(1.9) follows by comparison with the first of eqs. (1.5). We therefore see that Fµν bundles
together all the components of the electric and the magnetic fields as

Fµν ≡


0 −Ex −Ey −Ez

0 −Bz By
0 −Bx

0

 . (1.10)

Note that the entries below the diagonal are minus the corresponding ones above the diagonal,
because F νµ = −Fµν , by its definition in eq. (1.8).3

of time, then my unity of length would be 108 m. In this way measurements of length and measurements of
time can be identified with one another, because length = constant × time.
2 According to this notation, for i = 1, 2, 3 Ai denotes the ith component of + ~A, whereas Ai denotes minus
the same quantity; ∂i denotes the ith component of +∂/∂~x and ∂i denotes minus the same quantity. For
i = 0, the notation is analogous, but for the fact that there are no minus signs around.
3 It is easy to check (exercise) that the two unsourced Maxwell’s equations (1.4) can be written as

∂µF̃
µν = 0 , with F̃µν ≡ 1

2 ε
µνρσFρσ , (1.11)
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Note that the solution in eq. (1.5) is not unique:

~A′ = ~A− ~∇α(~x, t) = ~A+ ie−iα~∇e+iα ,

φ′ = φ+ ∂α

∂t
= φ− ie−iα ∂

∂t
e+iα , (1.14)

with α an arbitrary function of space-time coordinates, would be equally good solutions of
eqs. (1.5). In four-dimensional notation, these ‘gauge’ transformations become simply

A′µ = Aµ + ∂µα . (1.15)

In physical, measurable quantities, the dependence on the above gauge function must drop.
[Gauge dependence is only a redundancy due to the way we solve Maxwell’s equations –
through the scalar and vector potentials.]

***

Since the atom is electrically neutral, it can only couple to Fµν , not to Aµ individually.
So, the correct building block to describe the photon field is a combination of Fµν . This
combination must be invariant under space-time transformations (= relativistic invariance).
The latter is achieved by the field combination FµνFµν , with all indices saturated4. Quan-
tities with all indices saturated are invariant under space-time transformations in the same
way as the scalar product ~u ·~v ≡ uivi (i = 1, 2, 3 or x, y, z), with ~u and ~v two spatial vectors,
is invariant under space rotations, represented by orthogonal matrices.
Hence, the atom-photon interaction must be of the form

Lint ∝ φ∗φFµνFµν . (1.16)

Let us look at fig. 1. In the interaction in eq. (1.16), the field φ describes the atom
approaching the interaction point (squared box in the figure), the field φ∗ describes the atom
leaving the interaction point, and each of the two powers of Fµν describes the photon field
(approaching and respectively leaving the interaction point).
The QM probability P for the atom-photon scattering is then

P ∝

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

. (1.17)

Now, to understand why the sky is blue, we need to work out the dependence of the scattering
probability in eq. (1.17) on the photon energy. This is easy to work out. Recall from

and that the two sourced Maxwell’s equations

~∇ · ~E = ρ

ε0
,

~∇× ~B =
~j

ε0
+ ∂ ~E

∂t
, (1.12)

become

∂µF
µν = jν/ε0 , with jµ ≡

(
ρ
~j

)
. (1.13)

4 Fµν F̃µν is an equally good field combination. For simplicity we will however drop this term in our discus-
sion, as this term leads to the very same conclusions.
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definition (1.8) that Fµν involves derivatives of the four-vector Aµ. The latter obeys a
plane-wave representation entirely similar to eq. (1.3). Therefore:

Fµν ∝ ∂µeipx ∝ Eγ . (1.18)

As a consequence, the atom-photon diffusion probability will depend on E4
γ , namely photons

with higher energy (close to the blu color) will be diffused much more than those with lower
energy (close to the red). This is why the sky looks blue.

Embellishments

In eq. (1.16) we have written a proportionality relation, we have namely omitted to specify
the coupling strength. We can actually work it out very simply by just finding its mass
dimensions. To this end, let us first rewrite Lint in eq. (1.16) making explicit its coupling
strength C

Lint = Cφ∗φFµνFµν . (1.19)

We know that, since the action is dimensionless (with ~ = 1), [L ] = mass4. Furthermore,
[Fµν ] = mass2. What about [φ]? We can work out the a dimension from the Feynman
diagram representing the free propagation of the atom, depicted in fig. 2. We know that
the atom propagates at non-relativistic speeds, so the diagram in fig. 2 must be of the form
Lprop = φ∗ (p2/2m)φ, where again φ and φ∗ represent the atom at

Figure 2: Diagram for the free propagation of an
atom a.

the beginning and at the end of the prop-
agation path. Since [Lprop] = mass4 and
[p2/2m] = mass, it follows that [φ] =
mass3/2. Now we have all the ingredients
to work out the mass dimension of φ. We
know that [C][φ]2[Fµν ]2 = mass4, and that
[φ]2[Fµν ]2 = mass7. It follows that [C] =
mass−3 = length3. The only length scale in
the problem (apart from the photon wave-
length, present in Fµν) is the atom size a0, of the order of 10−10 m. So the final behavior of
the diffusion probability is

P ∼ a6
0E

4
γ (1.20)

which turns out to be right!

***

To recapitulate:

• By general considerations of symmetry and mass dimensions we got the correct photon-
energy dependence of the diffusion probability.

• By a simple dimensional argument we also got right the overall normalization: a6
0.

That the scattering probability grows as a power of the atom size is what one expects
on the basis of geometrical considerations.

• The whole argument is fully consistent for photon energies much smaller than the
inverse atom size a−1

0 , which is our case, since we wanted to describe photons in the
visible.
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• Note that, if the photon wavelength had on the other hand been comparable with
the atom size, the photon would have been able to resolve the internal constituents
of the atom itself. In this case, new scales (those of the internal atom constituents)
would have entered the game, and the question would have arisen, which of these
scales determines the size of the coupling C. The answer is that, unless forbidden by
dynamical or symmetry reasons, all of these scales contribute to C.
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