Neutrino oscillations

Pablo del Amo Sánchez GraSPA 26/07/17

Overview

Non historical approach: minimal effort

- Atmospheric neutrinos: SK
- The saga of Solar neutrinos
- The trilogy: reactor neutrinos
- Fourth parts couldn't be better: accelerator neutrinos
- Teaser: DUNE

Atmospheric neutrinos

- Cosmic rays collisions in upper atmosphere (15 km)
- Plenty of pions from hadronic interactions
- $\pi^+ \rightarrow \mu^+ \nu_\mu$ and $\mu^+ \rightarrow e^+ \nu_e \overline{\nu_\mu}$

SO

$$v_{\mu} : v_{e} = 2 : 1$$

(known better than 3% below 5 GeV)

Pablo DEL AMO SANCHEZ, LAPP - IN2P3 - CNRS / UniSavoieMontBlanc

Water Cerenkov detectors

Huge underground water tanks
 surrounded by photomultiplier tubes (PMTs)

 Interacting particles produce light, light gives electrical signal in PMTs

Cerenkov effect: particles faster than speed of light in medium radiate light (e.g. blueish light in nuclear reactors)

• Ex: (Super-)KamiokaNDE et SNO

 $w = V_{w} \cdot t$ $w = V_{w} \cdot t$ $w = V_{w} \cdot t$ $w = V_{p} \cdot t$

Pablo DEL AMO SANCHEZ, LAPP - IN2P3 - CNRS / UniSavoieMontBlanc

SUPERKAMIOKANDE INSTITUTE FOR COSMIC RAY RESEARCH UNIVERSITY OF TOKYO

NIKKEN SEKKEI

26/07/2017 GraSPA

Water Cerenkov detectors

• Huge underground water tanks surrounded by photomultiplier tubes (PMTs)

 Interacting particles produce light, light gives electrical signal in PMTs

Cerenkov effect: particles faster than speed of light in medium radiate light (e.g. blueish light in nuclear reactors)

• Ex: (Super-)KamiokaNDE et SNO

 $w = V_{w} \cdot t$ wV_{w} $d = V_{p} \cdot t$

Pablo DEL AMO SANCHEZ, LAPP - IN2P3 - CNRS / UniSavoieMontBlanc 5

26/07/2017 GraSPA

Water Cerenkov detectors

- SNO et (Super-)KamiokaNDE
- Directionality from Cerenkov cone
- Energy from total collected light
- Distinction between electrons and muons

The Cerenkov radiation from a muon produced by a muon neutrino event yields a well defined circular ring in the photomultiplier detector bank.

> The Cerenkov radiation from the electron shower produced by an electron neutrino event produces multiple cones and therefore a diffuse ring in the detector array. 6

Super-KamiokaNDE

- 1000m deep, 50000 tons of water, 11000 PMTs
- Observed expected number of downgoing v_{μ} , deficit in upgoing
- No excess in v_e , so $v_\mu \rightarrow v_\tau$?

13000km

 \sim 500km

~15

Atmospheric neutrinos disappear?

Pablo DEL AMO SANCHEZ, LAPP - IN2P3 - CNRS / UniSavoieMontBlanc

Atmospheric neutrinos disappear?

Pablo DEL AMO SANCHEZ, LAPP - IN2P3 - CNRS / UniSavoieMontBlanc

Atmospheric neutrinos oscillate!

Atmospheric neutrinos oscillate!

But why don't we see this?

Because...

• Two effects:

Neutrinos not monochromatic \rightarrow different oscillation lengths Experimental resolution: if too close, maxima and minima blurred

The solar neutrino saga

Neutrinos from the Sun

• Hydrogen fusion in the Sun requires inverse beta decay:

Solar constant = 1361 J/s m² $\phi_{ve}^{sun} = 6.4 \times 10^{14} v_e/s m^2$

26/07/2017 GraSPA

Pablo DEL AMO SANCHEZ, LAPP - IN2P3 - CNRS / UniSavoieMontBlanc

Neutrinos from the Sun

Neutrinos from the Sun

- Neutrino flux from the Sun accurately predicted (Bahcall et al)
- Model in good agreement with results from helioseismology

Homestake experiment

~30%

Late 1960s: Ray Davis set to test v_e flux predictions in underground mine (under 1500m of rock) Experiment run for 30 years (till 1994):

observed 2.56 ± 0.23 SNU

expected 8.2 ± 1.8 SNU

1 Solar Neutrino Unit = 10^{-36} interactions/s atom

 $v_e + n \rightarrow p + e^-$ ■ Homestake: $v_e + {}^{37}Cl \rightarrow {}^{37}Ar + e^-$

- Located in Lead, SD
- 615 tons of C₂Cl₄ (Cleaning fluid)
- Extraction method:
 - Pump in He that displaces Ar
 - Collect Ar in charcoal traps
 - Count Ar using radioactive decay
- Never Calibrated with source

26/07/2017 GraSPA

Pablo DEL AMO SANCHEZ, LAPP - IN2P3 - CNRS / UniSavoieMontBlanc **Raymond Davis, Nobel Prize 2002**

Problems?

- Problems with experiment? With v_e flux predictions?
- Test other parts of the v_e spectrum with different experimental techniques

Neutrino Flux (cm⁻²s⁻¹)

Pablo DEL AMO SANCHEZ, LAPP - IN2P3 - CNRS / UniSavoieMontBlanc

Problems?

- Problems with experiment? With v_e flux predictions?
- Test other parts of the v_e spectrum with different experimental techniques

Problems?

- Problems with experiment? With v_e flux predictions?
- Test other parts of the v_e spectrum with different experimental techniques

Experiment type	Observed/Expected
Chlorine	~30%
Gallium	~60%
KamiokaNDE	~40%

Perhaps neutrinos are oscillating after all, as suggested by Pontecorvo et al? These experiments only sensitive to v_e try and detect v_{μ} and v_{τ} too! \rightarrow SNO

Sudbury Neutrino Observatory (SNO)

- 2000 m deep (Sudbury, Ontario)
- Cosmics veto
- 1000 tons of Heavy water (D₂0), shielded by 7000 tons light water (H₂0) seen by 9500 photomultiplier tubes (PMTs)
- So-called Water Cerenkov detector

Particles faster than speed of light in medium radiate light (e.g. blueish light in nuclear reactors)

SNO

• SNO measures well v_e flux:

$\mathbf{CC}: \nu_{e} + d \rightarrow p + p + e^{-}$

- Good measurement of the ν_e spectrum.
- Some directional information.
- Only sensitive to ν_e .

$\mathbf{ES}:\nu_{e}+e^{-}\rightarrow\nu_{e}+e^{-}$

- Strong directional sensitivity.
- Low statistics.

Charged current

• Cannot see v_{μ} / v_{τ} flux in this way: neutrinos from Sun not energetic enough to produce heavy μ or τ particles in interactions

SNO

• But it measures the total $v_e + v_\mu + v_\tau$ flux by means of Neutral Current interactions!

Neutral current

Solar neutrinos oscillate!

Less v_e than predicted but total $v_e + v_\mu + v_\tau$ correct!

Matter effects are important!

- High electron density in Sun \rightarrow matter effects!
- v_e get heavier, $v_{\mu} \& v_{\tau}$ unaffected.

Matter effects are important!

Matter effects are important!

• Found oscillation parameters for solar neutrinos:

$$P(v_e \rightarrow v_e) = 1 - \sin^2(2\theta)\sin^2\left(1.27\frac{\Delta m^2 L[km]}{E[GeV]}\right)$$

The trilogy: reactor neutrino experiments

Reactor neutrinos

Liquid scintillator detectors

- KamLAND: Kamioka Liquid scintillator AntiNeutrino Detector
 - 1000 ton liquid scintillator:
 - eactor neutrino Spherical plastic balloon

Pablo DEL AMO SANCHEZ, LAPP - IN2P3 - CNRS / UniSavoieMontBlanc

Reactor neutrinos oscillate!

• Confirm solar neutrino oscillations

26/07/2017 GraSPA

What have we learnt so far? Neutrinos oscillate! V_2 v_e , v_{μ} , v_{τ} different from v_1 , v_2 , v_3 MASS Two different oscillation frequencies: $\Delta m_{32}^2 \sim \Delta m_{31}^2$ fast: atmospheric, $\Delta m_{32}^2 \sim \Delta m_{31}^2$ slow: solar, Δm_{21}^2 atm ~ 20 x solar v_{1} Δm^2_{21} Neutrinos mix a lot! (Mixing angles large!)

Convention: v_1 is state with most v_p

atmospheric, maximal $\theta_{32} = 45^{\circ} \pm 6^{\circ}$

solar, large $\theta_{21} = 34^{\circ} \pm 1^{\circ}$

•

•

What have we learnt so far?

- Neutrinos oscillate!
 ν_e, ν_u, ν_τ different from ν₁, ν₂, ν₃
- Two different oscillation frequencies: fast: atmospheric, $\Delta m_{32}^2 \sim \Delta m_{31}^2$ slow: solar, Δm_{21}^2 atm ~ 20 x solar
- Neutrinos mix a lot! (Mixing angles large!) atmospheric, maximal $\theta_{32} = 45^{\circ} \pm 6^{\circ}$ solar, large $\theta_{21} = 34^{\circ} \pm 1^{\circ}$

Convention: ν_{1} is state with most ν_{e}

• What is the amount of v_e in v_3 (θ_{13})?

Amount of v_e in faster oscillations (θ_{13})

Amount of v_e in fast oscillations (θ_{13})

Oscillation probability depends on energy \rightarrow search for energy-dependent depletion

• Double Chooz: liquid scintillator detector, 1 km away

Amount of v_e in fast oscillations (θ_{13})

Oscillation probability depends on energy \rightarrow search for energy-dependent depletion

• Daya Bay: very similar detector to Double Chooz and Reno, all 1-2 km away from reactors

 $sin^{2}(2\theta_{13}) = 0.089 \pm 0.012$ $\theta_{13} = 9.1^{\circ} \pm 0.6^{\circ} \quad (\approx \theta_{Cabbibo}!)$

Pablo DEL AMO SANCHEZ, LAPP - IN2P3 - CNRS / UniSavoieMontBlanc

Fourth parts couldn't be better: accelerator neutrinos

Accelerator experiments

- Can also produce neutrino beams:
- Results in excellent agreement with

other neutrino sources:

$\nu_{\mu} \rightarrow \nu_{\tau}$ appearance

- Can also produce neutrino beams:
- Results in excellent agreement with

Recent results: T2K

Recent results: $v_{\mu} \rightarrow v_{e}$ appearance

- T2K observes 32 v_e events, 5 background events expected
- Appearance of different flavour ($v_{\mu} \rightarrow v_{e}$) at > 8 σ

Neutrino mixing matrix

 $s_{ij} = \sin \theta_{ij}$

δ , matter-antimatter asymmetry in neutrinos?

Normal mass ordering

Inverted mass ordering

Which mass state is the lightest?

Pablo DEL AMO SANCHEZ, LAPP - IN2P3 - CNRS / UniSavoieMontBlanc

Future long baseline projects...

LAPP - IN2P3 - CNRS / UniSavoieMontBlanc

Future long baseline projects...

DUNE

40 kton Lq. Ar TPC Starting around 2026

Sanford

South Dakota

- Long baseline oscillations
- Mass ordering
- Matter-antimatter asymmetry

1300 km

Chicago

Fermilat

- SN neutrinos
- Proton decay
- And more...

Conclusions

Neutrinos oscillate! Masses ≠ 0

(2015 Nobel prize)

 $\nu_{e},\,\nu_{\mu},\,\nu_{\tau}$ different from $\nu_{1},\,\nu_{2},\,\nu_{3}$

Pablo DEL AMO SANCHEZ, LAPP - IN2P3 - CNRS / UniSavoieMontBlanc

Conclusions

- Neutrinos oscillate! Masses $\neq 0$ v_e, v_{μ}, v_{τ} different from v_1, v_2, v_3
- Two different oscillation frequencies: fast: atmospheric, $\Delta m_{32}^2 \sim \Delta m_{31}^2$ slow: solar, Δm_{21}^2 atm ~ 20 x solar
- Neutrinos mix a lot! (Mixing angles large!) atmospheric, maximal $\theta_{32} = 45^{\circ} \pm 6^{\circ}$ solar, large $\theta_{21} = 34^{\circ} \pm 1^{\circ}$ reactor, not so small $\theta_{13} = 9.1^{\circ} \pm 0.6^{\circ}$
- For the future: matter-antimatter asymmetry in neutrinos?

which is the lightest mass state?

26/07/2017 GraSPA

Pablo DEL AMO SANCHEZ, LAPP - IN2P3 - CNRS / UniSavoieMontBlanc

(2015 Nobel prize)

BACK UP SLIDES

How many neutrinos are there?

$$\Gamma_{\rm inv} = \Gamma_Z - \Gamma_{\rm had} - 3\Gamma_l$$
$$\Gamma_{\rm inv} = N_\nu \cdot \Gamma_\nu$$

PDG K. Nakamura et el., JPG 37, 075021 (2010)

Number $N = 2.984 \pm 0.008$ (Standard Model fits to LEP data)

Number N = 2.92 ± 0.05 (S=1.2) (Direct measurement of invisible Z width)

Etats propres de saveur et de masse

 Matrice PMNS (Pontecorvo-Maki-Nakagawa-Sakata) relie états propres de masse (v₁, v₂, v₃) et de saveur (v_e, v_μ, v_τ)

$$\begin{pmatrix} \mathbf{v}_{e} \\ \mathbf{v}_{\mu} \\ \mathbf{v}_{\tau} \end{pmatrix} = U_{PMNS} \begin{pmatrix} \mathbf{v}_{1} \\ \mathbf{v}_{2} \\ \mathbf{v}_{3} \end{pmatrix} \qquad \qquad U_{PMNS} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix}$$

p.ex.

$$\left|\boldsymbol{\nu}_{\mu}\right\rangle = U_{\mu 1}\left|\boldsymbol{\nu}_{1}\right\rangle + U_{\mu 2}\left|\boldsymbol{\nu}_{2}\right\rangle + U_{\mu 3}\left|\boldsymbol{\nu}_{3}\right\rangle$$

Oscillations des neutrinos

 Neutrinos sont créés dans des états propres de saveur, se propagent comme des états propres de masse, et sont détectés comme des états propres de la saveur : (ex : neutrinos atmosphériques, issus des désintégrations des pions)

(Analogue aux oscillations des kaons neutres : production et détection en termes des états de saveur K⁰ et K⁰ propagation en termes de K_{short} et K_{logg})

Oscillations des neutrinos

 Neutrinos sont créés dans des états propres de saveur, se propagent comme des états propres de masse, et sont détectés comme des états propres de la saveur : (ex : neutrinos atmosphériques, issus des désintégrations des pions)

Masses m_1, m_2, m_3 différentes \rightarrow phases $-iE_1t$, $-iE_2t$, $-iE_3t$ différentes \rightarrow 2700 proportion des composantes 210 μ ELT change Zavec le temps LAPP - IN2P3 - CNRS / UniSavoieMontBlanc

Un peu d'histoire

- Oscillation neutrino-antineutrino proposée par Bruno Pontecorvo (1957) par analogie avec les oscillations K⁰ et K⁰
- Mélange entre les saveurs proposé par Maki, Nakagawa et Sakata (1962)
- Calcul de la probabilité d'oscillation entre saveurs par Gribov et Pontecorvo (1967, 1969)

• Etudes expérimentales expliquées en détail page 12 et suivantes

26/07/2017 GraSPA