

Light Distribution Models for Compact γ -Camera

<u>M.-A. Verdier¹</u>, A. Bricou¹, C. Trigila¹, M.-A. Duval¹, F. Lefebvre¹, L. Pinot¹, A. Dubois¹, L. Menard¹, Y. Charon¹

¹IMNC, Université Paris Diderot / Université Paris Sud

Gate Technical Meeting 11/05/207

verdier@imnc.in2p3.fr

Gate Technical Meeting

2/12

POCI/TRECAM, France

- Compact γ-camera have interest in addition to counting probe for radio-guided tumor surgery (eg. SNOLL)
- Need of compact devices for use in contact with tissues for improved resolution, sensitivity and ergonomics

$\gamma\text{-}\mathsf{Camera}$ @ IMNC

linne

- \bullet We developed 2 light hand-held γ
 - 256 pixels dedicated photodetection module¹
 - $5 \times 5 \text{ cm}^2$ continuous LaBr₃:Ce (5, 6 mm)
 - 15 mm Pb collimator + lateral Pb shielding
 - High performances with submilimetric intrinsic spatial resolution
 - \rightarrow iterative fit of light distribution model
 - light weight (1.2 kg, 1.8 kg)

TReCam: PS-PMT

¹N. Dinu et al. NIMA 2015

4/12

- Need to fully understand our cameras and in particular how is the light distributed, to improve capabilities at low activities and short acquisition time.
 - Improve energy and spatial performances
 - Improve background rejection
- TReCam is currently under clinical evaluation at Hospital Jean Verdier (Bondy) by surgeon Alexandre Bricou
 - He's using the camera in a SNOLL clinical protocol (breast cancer)
 - He's simulating realistic clinical cases and detector response with Gate

 \Rightarrow How to ease Gate simulation analysis and detector response simulation ?

Gate To TReCam

- gate_to_trecam is a small python GUI to convert Gate simulation (no optics) to our standard "clinical" tool format with detector parameter tuning
 - LY and intrinsic resolution of the crystal
 - Photodetector QE and fluctuations
 - Light distribution model

 \Rightarrow How is the light distributed on the photo-detector ?

Scrimger-Baker Model (1)

6/12

- The Scrimger-Baker model² is the standard mode use to describe the distribution of light in a continuous scintillator.
 - x_0 , y_0 , z_0 are the coordinates of the position of interaction of the γ -rays in the scintillator
 - N_0 is the total number of photons emitted.

• In our cameras it works quite well as a fitting model for spatial reconstructions (x_0, y_0) but not for Dol (z_0) and energy (N_0) .

²JW Scrimger, RG Baker, Physics in medicine and biology 12.1 (1967)—

 As this equation can be integrated, one can use it to generate a Monte Carlo set of "photons" positions (x,y) following a probability density of SB:

Scrimger-Baker random distribution

$$\begin{cases} x = x_0 + r \times \cos(\theta) \\ y = y_0 + r \times \sin(\theta) \end{cases}$$

$$egin{aligned} r &= \sqrt{rac{1}{(1-U)^2} - 1} \ U \ ext{random number on } [0,1[\ heta \ ext{random number on } [0,2\pi] \end{aligned}$$

7/12

• This model only represent the light emitted directly towards the photodetector: ie modeling very large crystals or with absorbing coating all around

\Rightarrow Can we upgrade this model to a more adapted to our cameras ?

- Our crystals have absorbing coatings on the sides and reflective coating (diffusive) on the top (opposite to the photodetector)
 - Light is spread in two components (top and bottom)
 - Assuming specular reflection on top
 - Assuming no refraction/reflection on the bottom window
 - Each component is composed by a fraction light given by a solid angle

(3)

Double Scrimger-Baker Model

$$\begin{pmatrix} \frac{dN(r,z_0)}{ds} = \frac{N}{2\pi\Omega} \left(\frac{\Omega_0(r,z_0)}{z_0^2 \left(1 + \left(\frac{r}{z_0}\right)^2 \right)^{\frac{3}{2}}} \frac{\Omega_1(r,z_1)}{z_1^2 \left(1 + \left(\frac{r}{z_1}\right)^2 \right)^{\frac{3}{2}}} \right) \\ r = \sqrt{(x-x_0)^2 + (y-y_0)^2} \\ z_1 = 2D - z_0 \end{cases}$$

- Gate Simulation $^{57}{\rm Co}$ 122 keV γ with these models
 - Single SB Spectrum asymmetric because of the term in $1/z_0^2$
 - Double SB Number of photons roughly independent of *z*₀

Light Density Profiles

10/12

- Comparison between experimental data, these 2 models and Gate (Optic)
 - Realistic Gate optics simu far from experimental data
 ⇒ hard to get optical parameters with hygroscopic crystal
 - Better agreement between exp data , double SB model and specular Gate simu.

 \Rightarrow Need more work to fully understand our experimental behavior.

- \bullet We developed light hand held $\gamma\text{-cameras}$
- We need to have a better understanding of how light is distributed in our devices
 - To improve fitting model for position of interaction reconstruction
 - Perform better MC simulation of our detector for realistic clinical cases.
- We used a double Scrimger-Baker
 - Better agreement to our exp data than realistic optical simulation and standard SB model.
 - Need better evaluation of the optical parameter of our scintillator (use LUT Davis).

 \Rightarrow Current work on a range of non hygroscopic scintillator to test various reflective/absorbing coating to improve our models. \Rightarrow Also testing of neural network algorithm based on experimental data for position reconstruction.

Light Models

12/12