

GATE activities at Lyon

<u>Olga Kochebina</u>, Adrien Halty, Thomas Cajgfinger, Simon Rit, Jean Michel Letang, David Sarrut

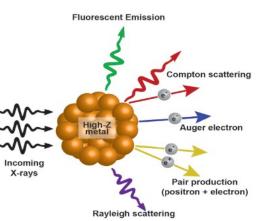
CREATIS-CNRS UMR 5220 – INSERM U1206 – Université Lyon 1 – INSA Lyon – Université Jean Monnet Saint-Etienne, 7 Avenue Jean Capelle, 69100 Villeurbanne (France)

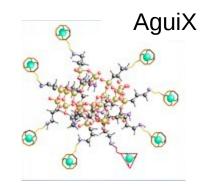
OpenGATE meeting, Clermont Ferrand, France 11.05.17

Outline

- Quantification of SPECT images
- Clinical SPECT simulations
- Simulation of preclinical SPECT with pinhole collimator

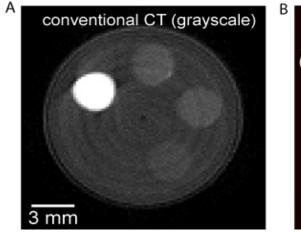
Why we need to quantify images?

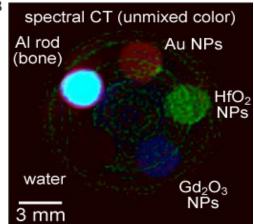

Conventional radiotherapy is ineffective in case of certain type of cancer (ex. chondrosarcomas)


Radiosensitization of tumors with high-Z nanoparticles

 $\rightarrow\,$ increase cross-section between X-ray and tumor tissue

- Gadolinium nanoparticles (AguiX)
- functionalized with quaternary ammonium target proteoglycans
- Intravenous or intra-tumor injection
- Delivered radiotherapy dose is defined by nanoparticles concentration and localization
- Quantified imaging
 - SPECT
 - Spectral CT (SPCCT)
 - PET
 - MRI


Quantification of SPCCT images


- Spectral photon counting CT
- CT with several energy windows
- K-Edge imaging for selective and quantitative detection

Direct concentration of Gd is measured

High resolution but also high image noise

Sensitivity

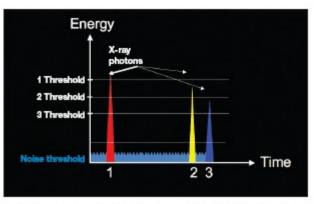
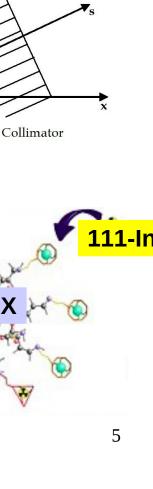


FIGURE 1. What does it mean to count photons? Observed pulse height from each x-ray provides an estimate of energy. This corresponds to the xray's "color." All electronic noise can be eliminated with a separate threshold, regardless of how small the pixel size or how low the radiation dose.

Quantification of SPECT images

Single photon emission tomography: Direct emission of gamma
 ¹¹¹In → ¹¹¹Cd + γ_{171keV}/γ_{245keV}
 ^{99m}Tc → ⁹⁹Tc + γ_{141keV}

Use collimator to detect the direction


Save projections for a set of angles

Tomographic reconstruction

In our case :

- Gd AguiX coupled in 111-In
- Aim: in vivo
- Development of protocols and proof of concept on Preclinical NanoSPECT/CT and SPCCT
- Calibration is challenging

Corrections (attenuation, scatter, dead time, kinetic of the activity distribution, partial volume effect etc)

(x',y')

Object

Aau

0

Partial Volume Effect in SPECT

- Due to finite spatial resolution \rightarrow Bias on the measured activity Spill-out and Spill-in
- Effect is more significant for small volumes

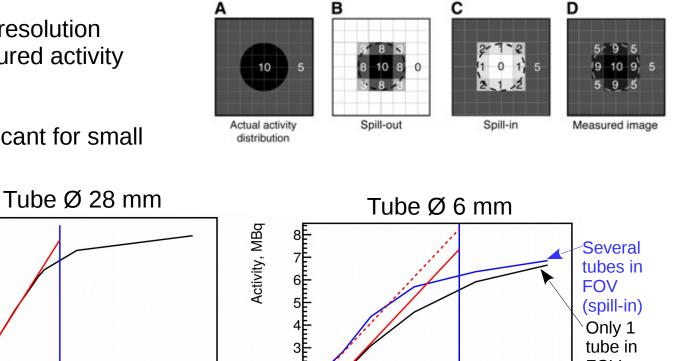
2.2F

1.8E

0.8È 0.6

0.4E

0.2E


50

100

Volume, µl

Activity, MBq

50 1.00

Partial Volume Effect is crucial for quantification measurement

0

200

400

600

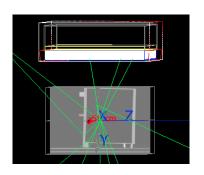
MC simulations for adequate corrections

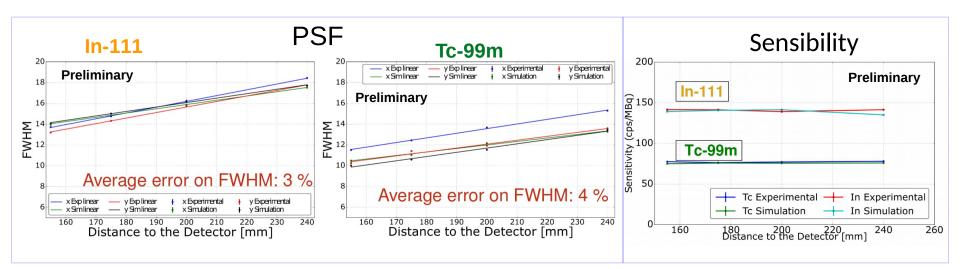
·10³

tube in

(spill-out)

FOV


800 Volume, µl


GATE simulations for SPECT quantification

GATE: Clinical SPECT

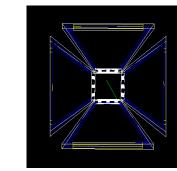
Clinical SPECT/CT : GE Disco NM/CT 670

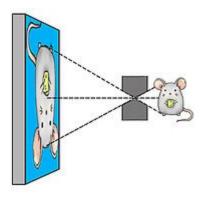
Validations for two tracers Tc-99m and In-111 in progress:

Validation to be done

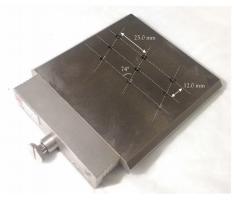
- For energy spectrum
- Complex shaped phantoms
- Clinical data
- Lu-177 tracer

GATE: NanoSPECT with pinhole collimator


- 4 detector heads
- Pinhole collimator
 - Cone-shaped holes
 - Angle between the cones and plate
 - \rightarrow focalization

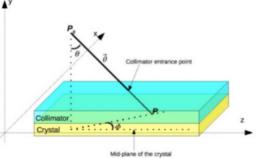

Reconstruction code by Jared Strydhorst

- The geometry is simulated already
 - New Class GateParameterisedPinholeCollimator /gate/SPECThead/daughters/name colli /gate/SPECThead/daughters/insert pinhole_collimator /gate/colli/geometry/input mac/APT2.pin


Preliminary results on sensitivity

Tc-99m	Data	MC	Diff, %
Without collimator	(28.56±0.07)%	(29.17±0.05)%	2.1%
With collimator	(0.112±0.003)%	(0.109±0.002)%	2.7%

APT2.pin
-(x,y) positions
-diameter
-cone opening
angle
-(x,y) focal
positions

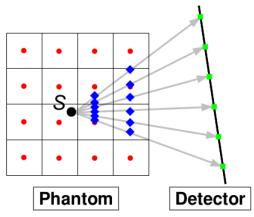

Acceleration is essential!

Acceleration techniques: ARF

Implemented in GATE and validated for SPECT with parallel hole collimator

- Angular Response Function (ARF)
 - Replace collimator+detector response by tabulated modeling
 - Simulation of the detector response for a plane source
 - Computation of tables depending of the incident energy and the direction (θ , ϕ)
 - Couple of small bugs were fixed
 - Still unexplained bias in some cases

Implementation of Angular Response Function Modeling in SPECT Simulations With GATE - Descourt, Carlier, Du, Song, Buvat, Frey, Bardies, Tsui, Visvikis - 2010



Acceleration techniques: FFD

Implemented in GATE and validated for SPECT with parallel hole collimator

- Fixed Forced Detection (FFD)
 - Replace the tracking thought phantom toward detection plane
 - Deterministic response of every pixel at each Monte-Carlo interaction
 - Store probability for each MC interaction instead of events

Gain in computation time ARF+FFD vs. analog $\rightarrow 10^5$ ARF+FFD vs. ARF only $\rightarrow 10^3$

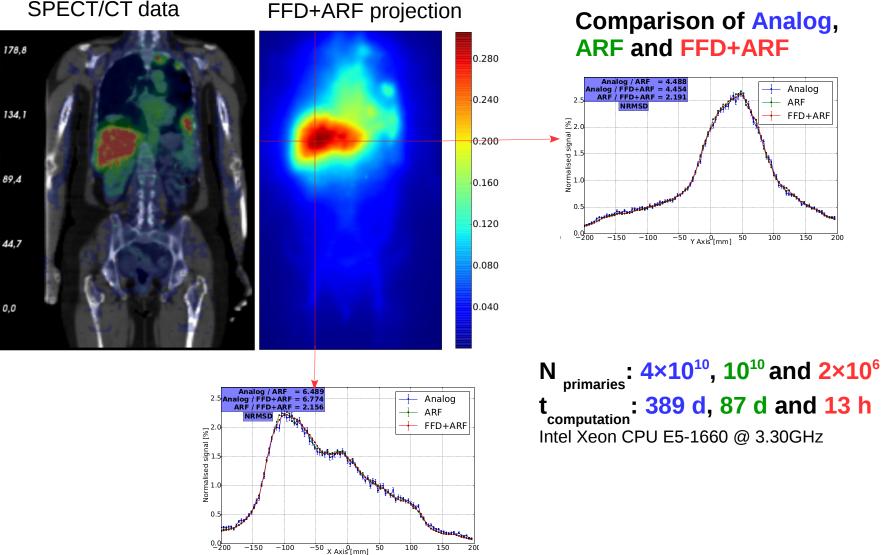
Fixed Forced Detection for fast SPECT Monte-Carlo simulation, Cajgfinger, Rit , Létang, Halty, Sarrut. Submitted to PMB Fixed Forced Detection For X-Ray Imaging - Rit, Romero, Vila Oliva, Smekens, Arbor, Cajgfinger, Sarrut, Letang, Freud

Analog

FFD+ARF

150

200


ARF

50

100

Acceleration techniques: FFD

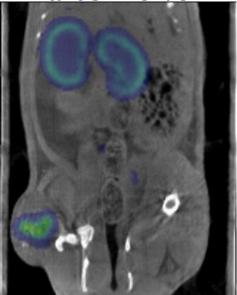
SPECT/CT data

12

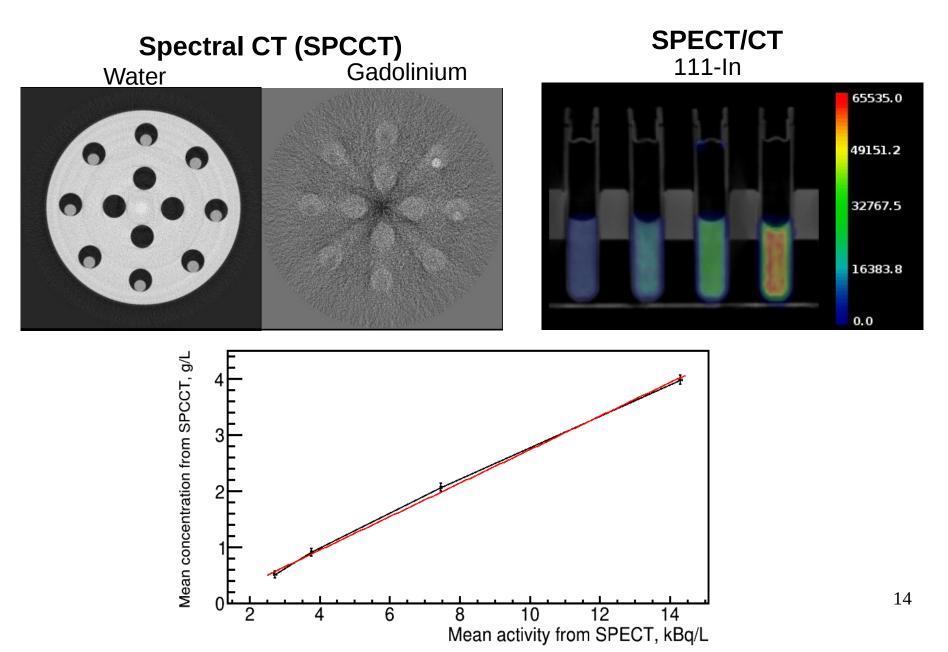
Fixed Forced Detection for fast SPECT Monte-Carlo simulation, Cajgfinger, Rit, Létang, Halty, Sarrut. Submitted to PMB

Conclusion and plans

Use GATE simulations for corrections essential in SPECT quantification


Attenuation, scatter, dead time, kinetic of the activity distribution, **partial volume effect** etc

Implement ARF+FFD for pinhole collimator system


Validation on data

NanoSPECT/CT

First measurements

