Laboratoire de Physique de Clermont

applicatio

CPOP: an opensource C++ Cell POPulation modeler for radiation biology

Lydia Maigne⁽¹⁾, Henri Payno⁽¹⁾, François Smekens⁽¹⁾, Giovanna Fois⁽¹⁾, Françoise Degoul⁽²⁾, Eric Débiton⁽²⁾

(1) LPC, UMR 6533 CNRS/IN2P3 – Université Clermont Auvergne, Aubière Cedex, France
 (2) UMR 1240 – INSERM – Université Clermont Auvergne, Clermont-Ferrand

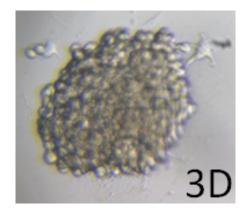
Improve radiation therapy treatments for resistant cancer cells

New targeted therapies using NP

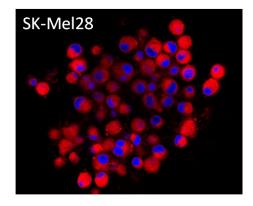
Melanoma, chondrosarcoma, glioma

2D and <u>3D cell models</u>

Prediction of biological damage Tools for multi-scale simulations Monte Carlo with GATE and G4-DNA Cell population modeler X-ray and proton beams

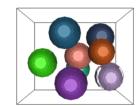


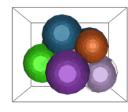
Lydia Maigne - CPOP: an opensource C++ Cell POPulation modeler for radiation biology

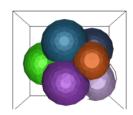

3D cell models

- Melanoma spheroid
 - Obtained from 0.5% methylcellulose added to the culture medium
 - Resistant
 - At day 4 :
 - Spheroid diameter 550 µm
 - Cell diameter 17,2 +/- 2,5 μm
 - Nucleus diameter 11,2 +/ 2,0 μm
 - Around 1000 cells
 - Cultured in 96-well polystyrene conical plates

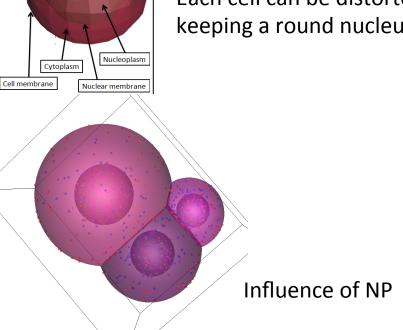
Day 6 $\,$ \varnothing 570 μm

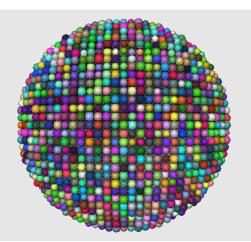

Lydia Maigne - CPOP: an opensource C++ Cell POPulation modeler for radiation biology

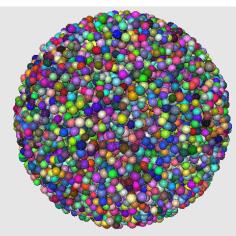

- Development of a 3D cell population platform from biological inputs
 - C++
 - Able to deal with large cell populations (more than 1 million cells).
 - Each cell can be distorted in function of the environment with variable cell radius
 - Open-source and cross-platform
 - For 2D and 3D cell modeling
 - Mesh
 - Famous mesh library: CGAL
 - Compilation with Geant4 (10.0 and further) and ROOT, 2 ways to run it:
 - Export to **Geant4** / GATE (geometry and material compatibility) through xml files
 - Autorun Geant4 simulations
 - I/O files

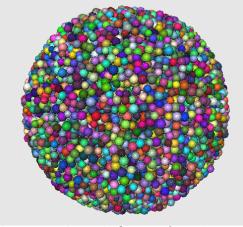

CPOP structuration

MAS MASPlatform Agent simulate Modeler Models Geometry Environment SDS 0..* Delaunay Cell 0..* 0..* Organelle \bigtriangleup 0..* Mesher CellProperties Force RoundCell mesh

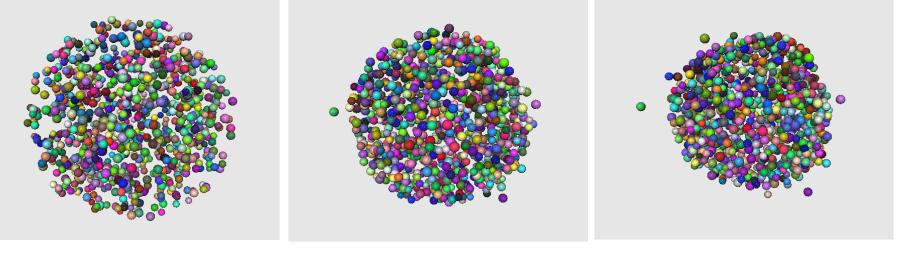

Elastic forces applied to cells




Each cell can be distorted keeping a round nucleus


Spheroid modeling

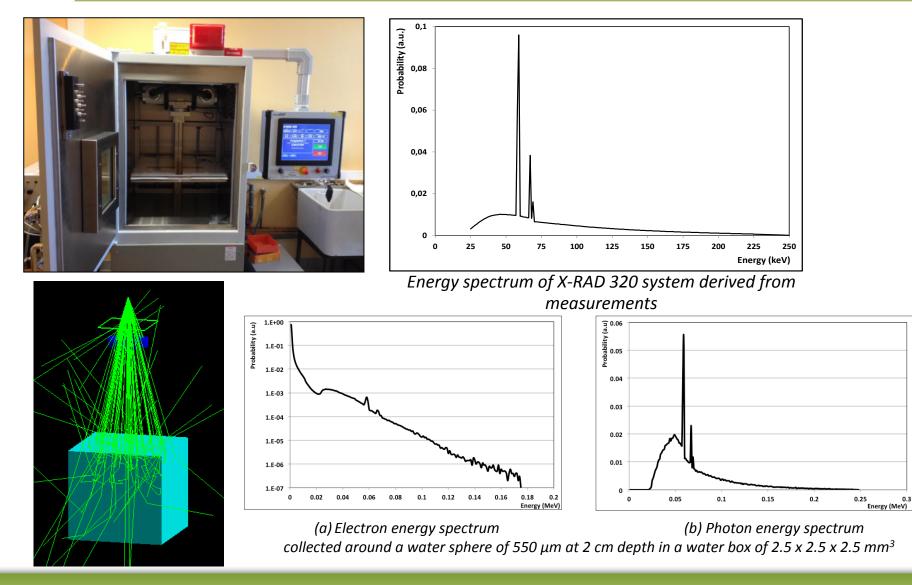
Using a grid, no forces


Without grid, no forces

Without grid, with forces (rigidity=0.002; ratioToStableLength=0.7

Parameter name	Description	Value or range values
Cell properties		
nucleusRadius	Radius of the nucleus (µm)	4.6 - 6.6
membraneRadius	Radius of the cell (µm)	7.35 - 9.85
cytoplasmMaterials	Material composing the cytoplasm	
nucleusMaterials	Material composing the nucleus	
Spheroid properties		
internalRadius	Internal radius of the spheroid (µm)	0
externalRadius	External radius of the spheroid (µm)	225
nbCell	Number of cells composing the	18124
	spheroid	
	Mesh properties	
maxNumberOfFacetPerCell	Maximum number of facets to	300
	represent round cells	
	Force properties	
ratioToStableLength	Ratio of elastic length	0.7
rigidity	Intensity of the force	0.002
Simulation properties		
Duration	Total duration of the simulation in	600
	seconds (s)	
numberOfAgentToExecute	Number of agents to execute per step	100
displacementThreshold	Maximum displacement of cells for	0.5
	each step simulation (µm)	
stepDuration	Duration of a step in second (s)	1

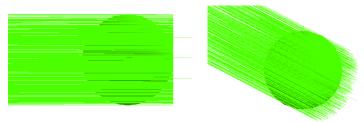
Melanoma spheroids

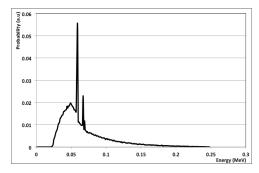

(a)

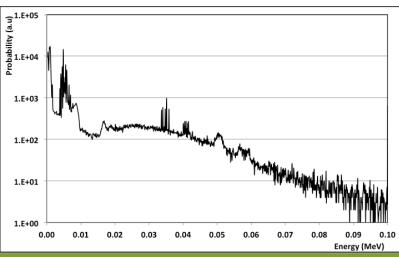
(b)

(c)

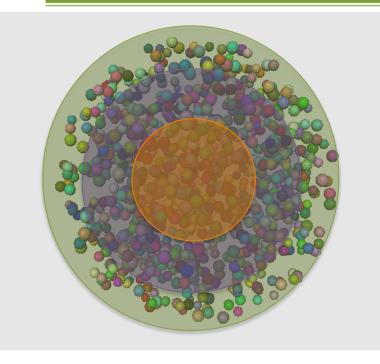
Spheroids corresponding to SkMel28 cell populations.
(a) 962 cells generated without forces,
(b) 989 cells generated with a force rigidity=0.0007,
(c) 989 cells generated with a force rigidity=0.002.

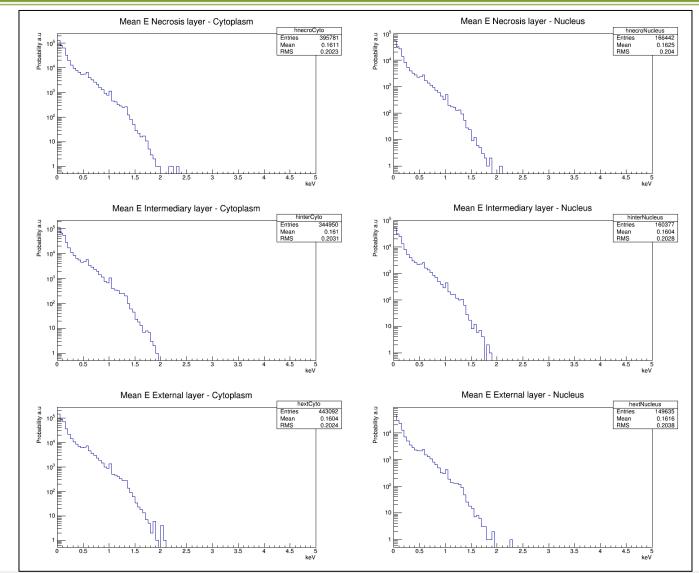

Simulate X-Ray beam using GATE



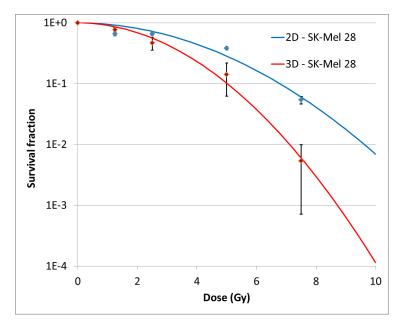

Gadolinium based NP (GBN) under X-Ray radiation

Characteristics of AGuIX AC13 GBN


- Diameter 3.5 nm
- Mass: 8.5 kDa
- $\quad \text{Chemical formula: } \text{Gd}_{10}\text{Si}_{30}\text{C}_{200}\text{N}_{50}\text{O}_{150}\text{H}_{577}$
- Cells incubated with GBN concentration of 4mM (d=0.034 g.cm⁻³) -> GBN density=1.034 g.cm⁻³
- Penelope physics down to 100 eV
- Energy spectrum actor to collect energy of secondary electrons exiting the GBN
- 300 billions of photons generated using the photon energy spectrum (User spectrum)



Results: Assessment of energy depositions to cells and organelles


- 3 layers (thickness can be fixed by user):
 - Necrosis
 - Intermediary
 - External
 - Sampling cells/region:10
 - Location of GBN in cells: cell membrane, cytoplasm, nucleoplasm or nuclear membrane
 - e- energy spectra:
 - e_spectrum and GBN_spectrum
 - Spectrum weight per region
 - G4 PhysicsList: Penelope
 - Mean energy spectra to organelles/ region

Energy spectra obtained in 3 layers in nucleus and cytoplasm

Perspectives

- Ongoing simulations with GBN
- Correlate results with experiments and particularly cell survivals

- Collect energy spectrum in nucleus and go further with G4-DNA
- Poster AAPM 2017 in Denver
- Paper in preparation for Physics in Medicine and Biology
- ANR G4-ADN submitted