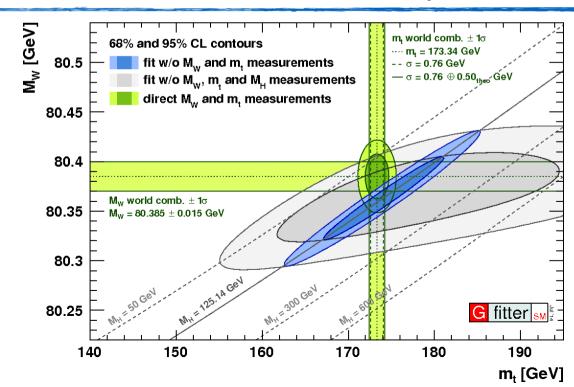
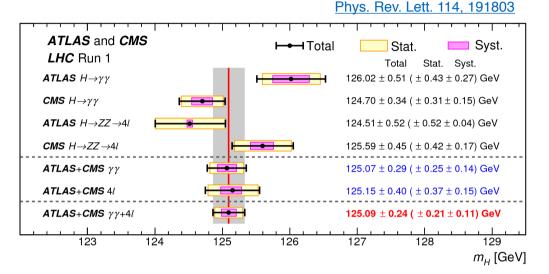

Measurement of the W-boson mass with the ATLAS detector

N. Andari *(University of Birmingham)* LLR Palaiseau February 13, 2017

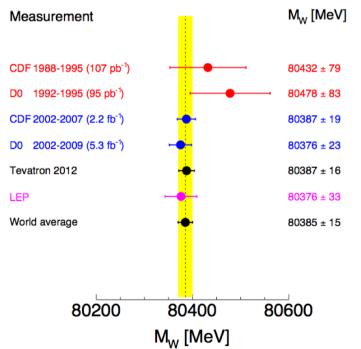

Motivation of the measurement

In the electroweak sector of the SM, the W mass is defined by:

In the on-shell scheme: $m_W^2 \left(1 - \frac{m_W^2}{m_Z^2}\right) = \frac{\pi \alpha}{\sqrt{2}G_E} (1 + \Delta r)$


 Δr reflects loop corrections and depends on m_t^2 and Inm_H

The relation between M_W , m_t , and M_H provides stringent test of the SM and is sensitive to new Physics



Status of the measurements

Higgs mass

Mass of the W Boson

Top mass

ATLAS+CMS Preliminary	LHC <i>top</i> WG	m _{top} summar	y, I s = 7-8 TeV	Aug 2016
World Comb. Mar 2014	[7]			
stat				
total uncertainty		total	stat	
$m_{top} = 173.34 \pm 0.76 (0.11)$.36 ± 0.67) GeV	$m_{top} \pm tota$	al (stat \pm syst)	s Ref.
ATLAS, I+jets (*)		172.31±	: 1.55 (0.75 ± 1.35)	7 TeV [1]
ATLAS, dilepton (*)		173.09 :	± 1.63 (0.64 ± 1.50)	7 TeV [2]
CMS, I+jets	┝╌┼╼┼╌┥	173.49 :	± 1.06 (0.43 ± 0.97)	7 TeV [3]
CMS, dilepton		172.50	± 1.52 (0.43 ± 1.46)	7 TeV [4]
CMS, all jets		173.49 :	± 1.41 (0.69 ± 1.23)	7 TeV [5]
LHC comb. (Sep 2013)	⊢ • - 	173.29	\pm 0.95 (0.35 \pm 0.88)	7 TeV [6]
World comb. (Mar 2014)	 ÿ 	173.34	± 0.76 (0.36 ± 0.67)	1.96-7 TeV [7
ATLAS, I+jets		172.33 :	± 1.27 (0.75 ± 1.02)	7 TeV [8]
ATLAS, dilepton		173.79 :	± 1.41 (0.54 ± 1.30)	7 TeV [8]
ATLAS, all jets		175.1±	1.8 (1.4 ± 1.2)	7 TeV [9]
ATLAS, single top		$172.2\pm$	2.1 (0.7 ± 2.0)	8 TeV [10]
ATLAS, dilepton	H	172.99 :	± 0.85 (0.41± 0.74)	8 TeV [11]
ATLAS, all jets		173.80 :	± 1.15 (0.55 ± 1.01)	8 TeV [12]
ATLAS comb. (June 2016)	- ▼ i	172.84	± 0.70 (0.34 ± 0.61)	7+8 TeV [11]
CMS, I+jets		172.35 :	± 0.51 (0.16 ± 0.48)	8 TeV [13]
CMS, dilepton	⊢ ●	172.82 :	± 1.23 (0.19 ± 1.22)	8 TeV [13]
CMS, all jets	⊢++ +	172.32 :	\pm 0.64 (0.25 \pm 0.59)	8 TeV [13]
CMS, single top		172.60 :	± 1.22 (0.77 ± 0.95)	8 TeV [14]
CMS comb. (Sep 2015)	⊢₩⊣	172.44	± 0.48 (0.13 ± 0.47)	7+8 TeV [13]
(*) Superseded by results shown below the line	[2] ATLA [3] JHEP [4] EUr.P	S-CONF-2013-046 S-CONF-2013-077 12 (2012) 105 hys.J.C72 (2012) 2202 hys.J.C74 (2014) 2758	 [6] ATLAS-CONF-2013-102 [7] arXiv:1403.4427 [8] Eur.Phys.J.C75 (2015) 330 [9] Eur.Phys.J.C75 (2018) 158 [10] ATLAS-CONF-2014-055 	[11] arXiv:1606.02179 [12] ATLAS-CONF-2016-064 [13] Phys.Rev.D83 (2016) 07200 [14] CMS-PAS-TOP-15-001
		1 1 1	_	
165 170	175		180	185
	m.	[GeV]		

W mass

World average uncertainty ~15 MeV Best individual measurement: CDF 19 MeV

Tevatron results

CDF experiment:

Source

Lepton removal

Backgrounds

 $p_T(W)$ model

QED radiation

Total

Parton distributions

W-boson statistics

Phys. Rev. Lett.108 (2012) 151803

electron/muon channels 2.2 fb⁻¹ integrated luminosity

Lepton energy scale and resolution

Recoil energy scale and resolution

m_W= 80387+/12(stat)+/-15(syst) MeV

D0 experiment:

Phys. Rev. Lett. 108 (2012) 151804

electron channel 4.3 fb⁻¹ integrated luminosity

m_w= 80375+/11(stat)+/-20(syst) MeV

4

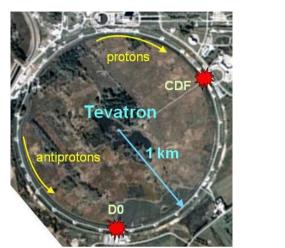
 $\frac{14}{5}$

 $\mathbf{2}$

24

 $\frac{14}{9}$

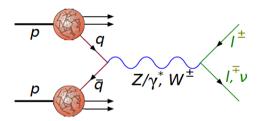
 $\mathbf{2}$


 $\frac{17}{29}$

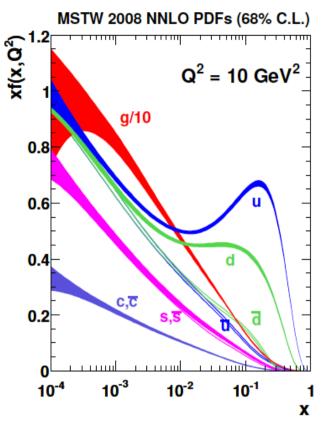
			ΔM_W (MeV)
Uncertainty (MeV)	Source	m_T	p_T^e
	Electron energy calibration	16	17
7	Electron resolution model	2	2
6	Electron shower modeling	4	6
0	Electron energy loss model	4	4
2	Hadronic recoil model	5	6
3	Electron efficiencies	1	3
_	Backgrounds	2	2
5	Experimental subtotal	18	20
10	PDF	11	11
4	QED	7	7
10	Boson p_T	2	5
12	Production subtotal	13	14
19	Total	22	24

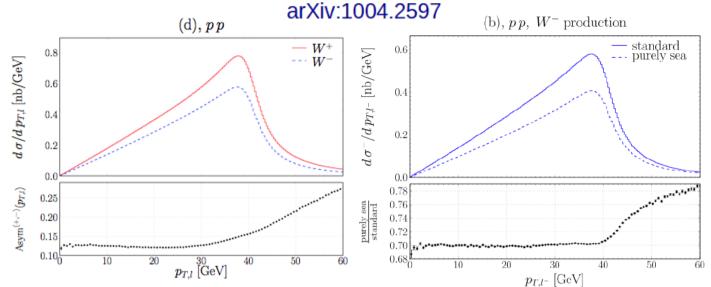
 $M_W = 80\,387 \pm 16~{
m MeV}$

Tevatron vs LHC


proton-antiprotons collisions $\sqrt{s}=1.96$ TeV

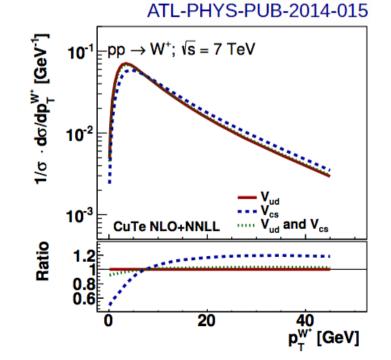
proton-protons collisions $\sqrt{s}=7$ TeV

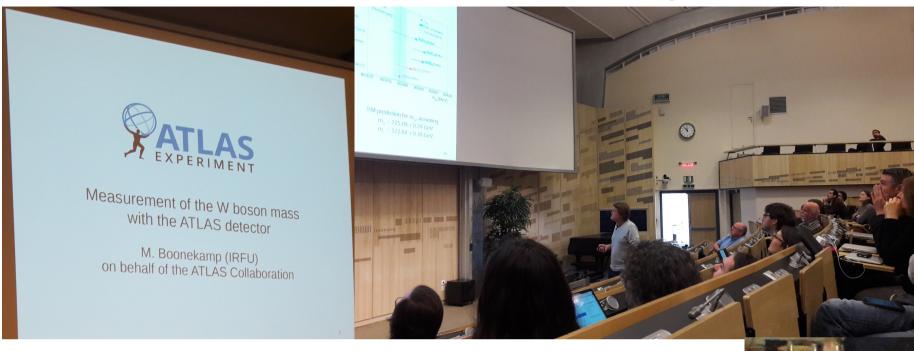



@LHC: Even more challenging and difficult to perform the measurement

- higher pile-up environment: difficult hadronic recoil calibration, worse resolution
- W+/W⁻ production is asymmetric —> charge-dependent analysis
- The sea-quark PDFs play a larger role at the LHC (25% of the W-boson production is induced by at least one second generation quark s or c).
- The valence-sea difference as well as the amount of sea quarks with u and d

Valence vs sea quarks




The uncertainty in u and d valence and sea PDF -> an uncertainty in helicity axis of the W -> on p_T^I spectrum

Strange quark pdf uncertainty -> uncertainty on the relative fraction of charm-initiated W boson production -> uncertainty on $p_T(W)$

The amount of charm initiated W production will also alter the balance between valence quark and sea quark -> W polarisation $-> p_T^I$

CERN Seminar 13/12/2016 **Despite the challenge!**

CERN Courler January/February 2017

News

ATLAS makes precision measurement of W mass

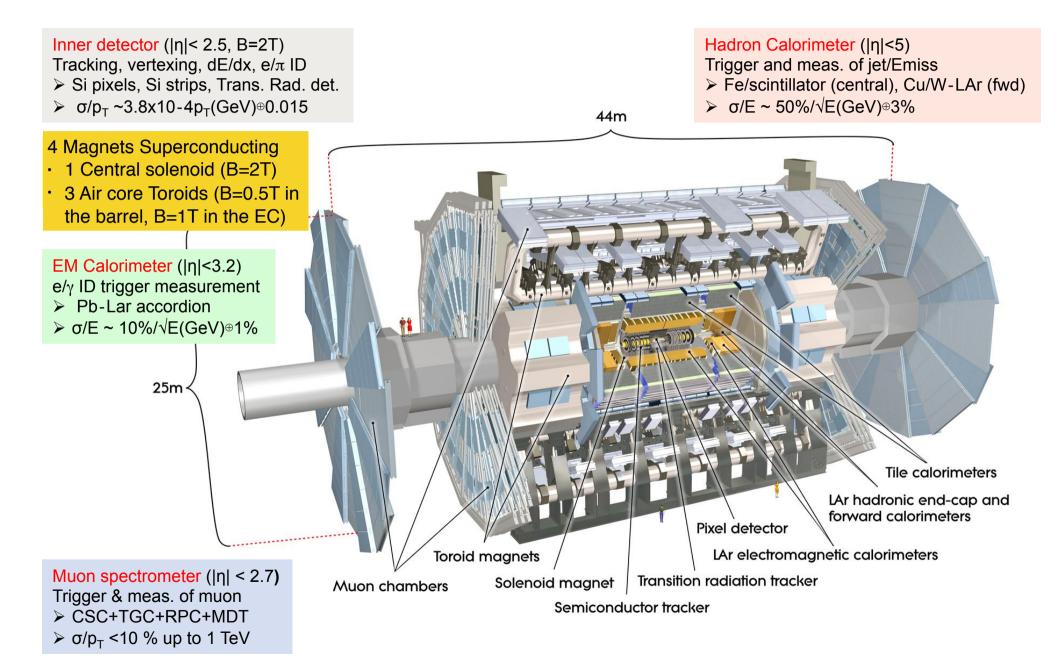
arXiv.org > hep-ex > arXiv:1701.07240v1

arXiv:1701.07240 [hep-ex]

Searc

(Help

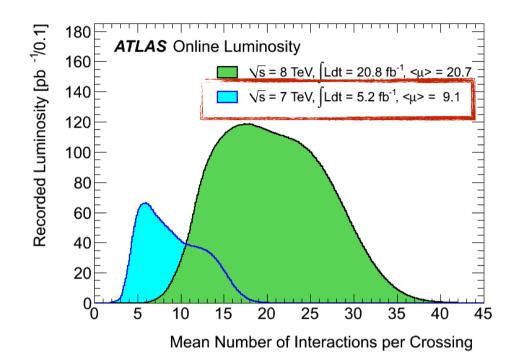
High Energy Physics – Experiment


Measurement of the *W*-boson mass in pp collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector

ATLAS Collaboration

paper is submitted to EPJC

(Submitted on 25 Jan 2017)


ATLAS detector

Samples used for the analysis

Data Run I in 2011:

centre-of-mass energy: **7 TeV 4.6** fb⁻¹ for the electron channel **4.1** fb⁻¹ for the muon channel (part of the data discarded due to timing problem in the resistive plate chambers) bunch spacing: 50 ns

Simulation MC samples:

- Single boson production: Powheg+Pythia8 (NLO QCD+PS tune AZNLO), QED FSR using PHOTOS
- Herwig and MC@NLO for EW and top backgrounds
- Pile-up simulated using Pythia
- Description of passive material based on final ATLAS Run I calibration results

Selection cuts

Lepton selections:

- muons isolated (track-based) letal<2.4
- electrons isolated (track+calorimeter-based) tight identified 0<letal<1.2, 1.8<letal<2.4

Kinematic requirements: $p_T^1>30$ GeV, $m_T>60$ GeV, MET>30 GeV and recoil(u_T)<30 GeV

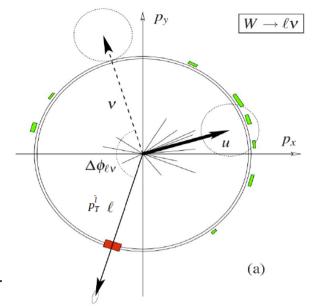
~6M/8M observed in the electron/muon channel

$ \eta_{\ell} $ range	$0\!-\!0.8$	0.8 - 1.4	1.4 - 2.0	2.0 - 2.4	Inclusive
$ W^+ \to \mu^+ \nu \\ W^- \to \mu^- \bar{\nu} $	$1283332\ 1001592$	$1063131\769876$	$1377773\916163$	$885582\547329$	4609818 3234960
$ \eta_{\ell} $ range	0-0.6	0.6 – 1.2		1.8 - 2.4	Inclusive
$ \begin{array}{c} W^+ \to e^+ \nu \\ W^- \to e^- \bar{\nu} \end{array} \end{array} $	$1233960\969170$	$1207136\908327$		$\frac{956620}{610028}$	$3397716\2487525$

Variables and categories

Recoil reconstructed from the vector sum of the momenta of all clusters measured in the calorimeters.

 $\vec{u}_{\mathrm{T}} = \sum_{i} \vec{E}_{\mathrm{T},i}$

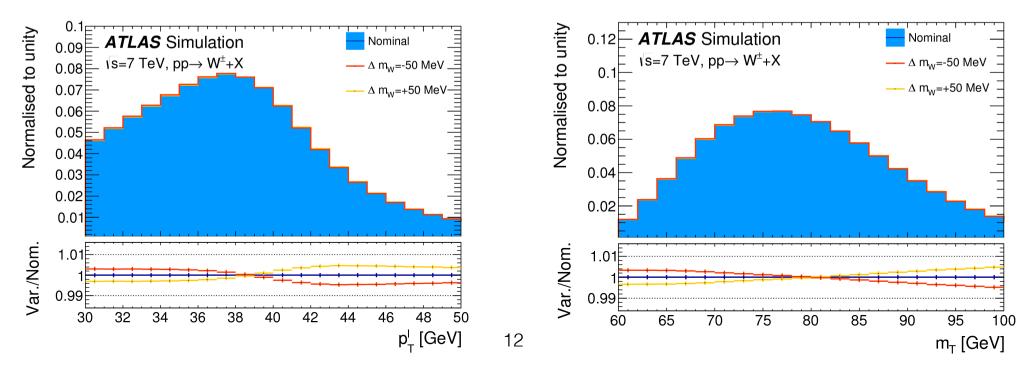

In W, Z events $-u_T$ provides an estimate of the boson p_T

Sensitive final state distributions: p_T^I, m_T, p_T^{miss} (not used due to its poor resolution)

$$\vec{p}_{\rm T}^{\rm miss} = -\left(\vec{p}_{\rm T}^{\,\ell} + \vec{u}_{\rm T}\right), \quad m_{\rm T} = \sqrt{2p_{\rm T}^{\,\ell}p_{\rm T}^{\rm miss}(1 - \cos\Delta\phi)}$$

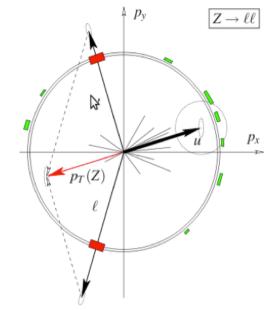
Categories for the measurement:

Decay channel	$W \to e \nu$	$W \to \mu \nu$
Kinematic distributions Charge categories	$p_{\mathrm{T}}^\ell,m_{\mathrm{T}}$ W^+,W^-	$p_{\rm T}^{\ell}, m_{\rm T} \ W^+, W^-$
$ \eta_{\ell} $ categories	[0, 0.6], [0.6, 1.2], [1.8, 2.4]	[0, 0.8], [0.8, 1.4], [1.4, 2.0], [2.0, 2.4]


Analysis strategy

Template fit approach: compute the p_T^I and m_T distributions for different assumed values of mW —> chi2 minimisation gives the best fit template *(fitting ranges: 32<p_T^I <45 GeV, 66<m_T<99 GeV).*

Predictions for different m_W values are obtained by reweighting the boson invariant mass distribution according to the BW parameterisation.


$$\frac{\mathrm{d}\sigma}{\mathrm{d}m} \propto \frac{m^2}{(m^2 - m_V^2)^2 + m^4 \Gamma_V^2 / m_V^2}$$

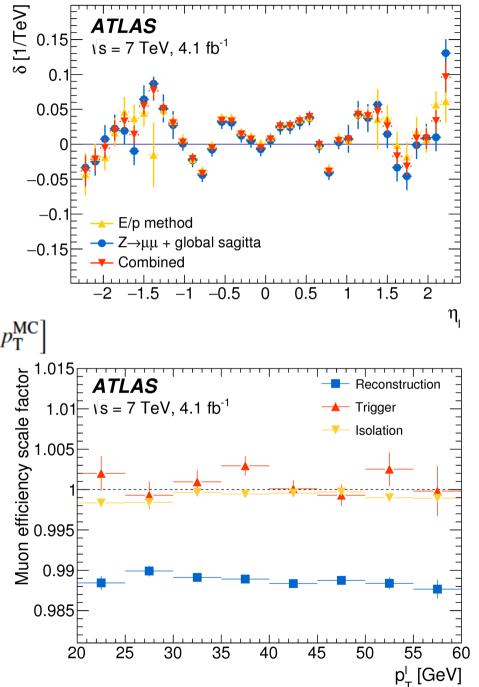
A blinding offset was applied throughout the measurement and removed when consistent results were found.

Analysis strategy

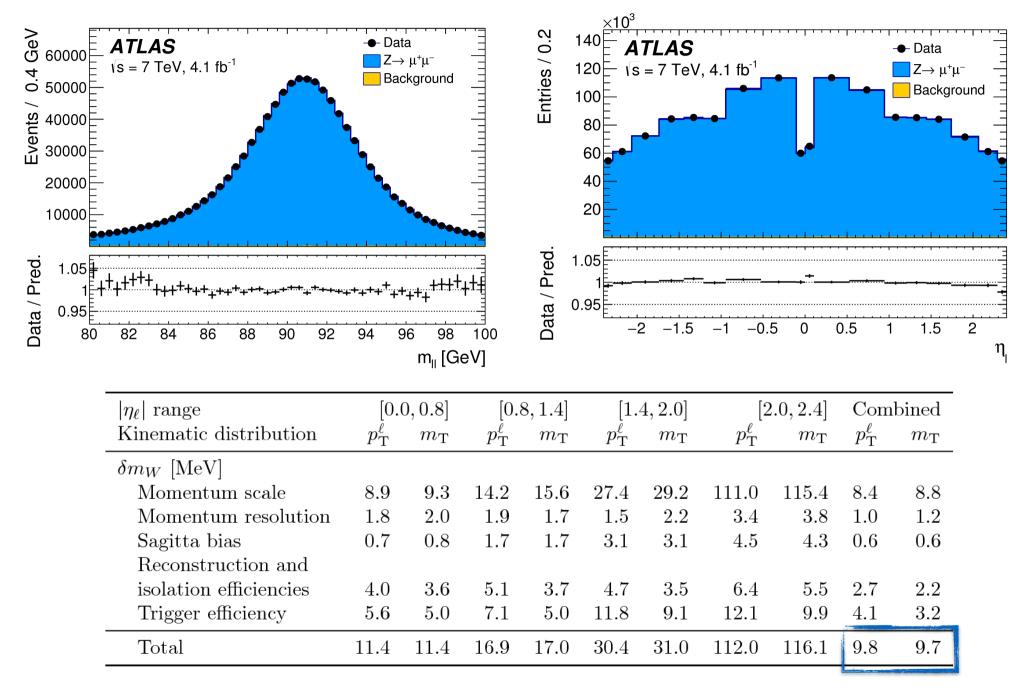
Benefit from the fully reconstructed mass (and kinematics in the transverse plane) in Z-boson sample to validate the analysis and to provide significant experimental and theoretical constraints.

- Lepton momentum corrections derived exploiting the precisely measured value of m_z at LEP
- The recoil response is calibrated using the expected momentum balance with p_T^{\parallel} in Z events and tested using the m_T observable
- Ancillary measurements on Z data are used to validate the physics modelling corrections
- The whole analysis is checked by performing a measurement of the Zboson mass and comparing to the LEP value using:
 - m_{II} (closure test of the calibration procedure)
 - p_T^{I} to test the p_T^{I} -dependence of the corrections and the modelling of the Z p_T and of the relative fractions of the Z-boson helicity states.

Experimental precision

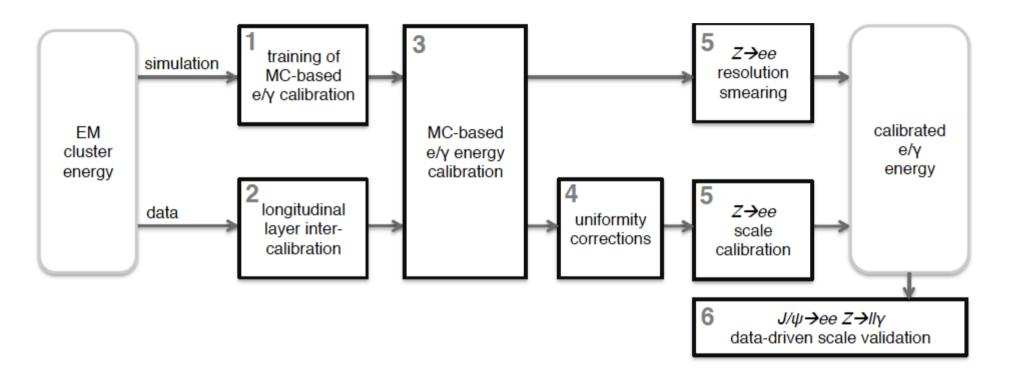

Muon Calibration & Efficiency

Muon identified using combined ID+MS tracks, momentum measurement from ID only.


Calibration factors for ID-only muons derived from $Z \rightarrow \mu\mu$ and sagitta bias chargedependent corrections from $Z \rightarrow \mu\mu$ and E/p of $W \rightarrow e\nu$. Eur.Phys.J.C 74 (2014) 3130

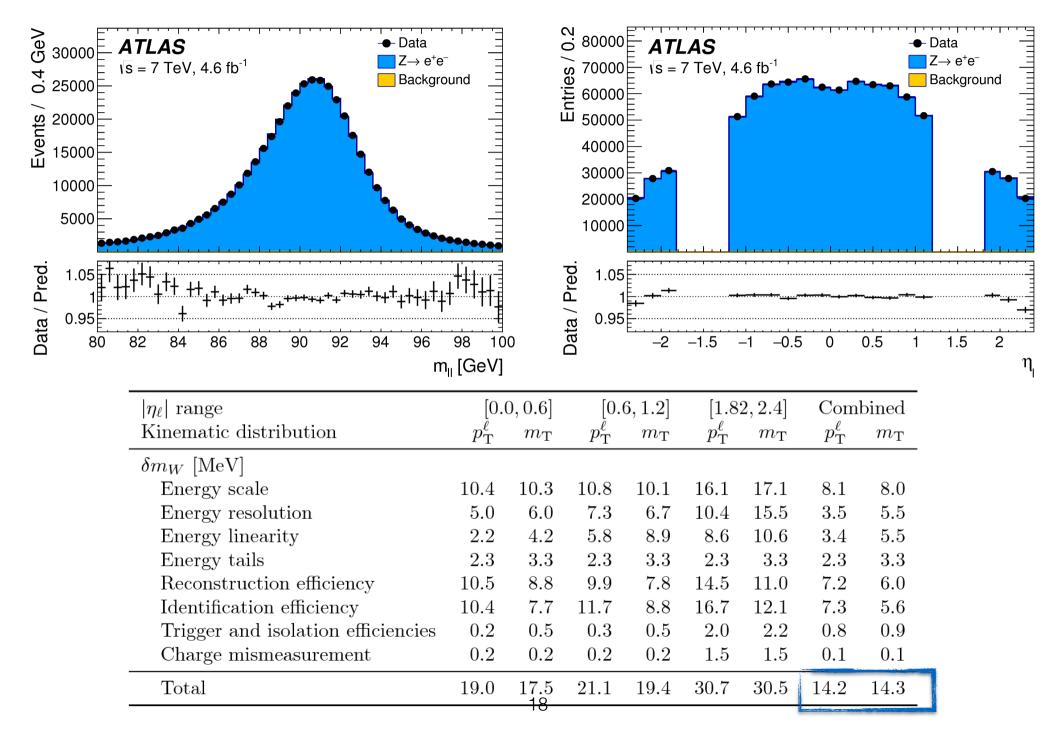
$$p_{\rm T}^{\rm MC, corr} = p_{\rm T}^{\rm MC} \times \left[1 + \alpha(\eta, \phi)\right] \times \left[1 + \beta_{\rm curv}(\eta) \cdot G(0, 1) \cdot p_{\rm T}^{\rm MC}\right]$$
$$p_{\rm T}^{\rm data, corr} = \frac{p_{\rm T}^{\rm data}}{1 + q \cdot \delta(\eta, \phi) \cdot p_{\rm T}^{\rm data}}$$

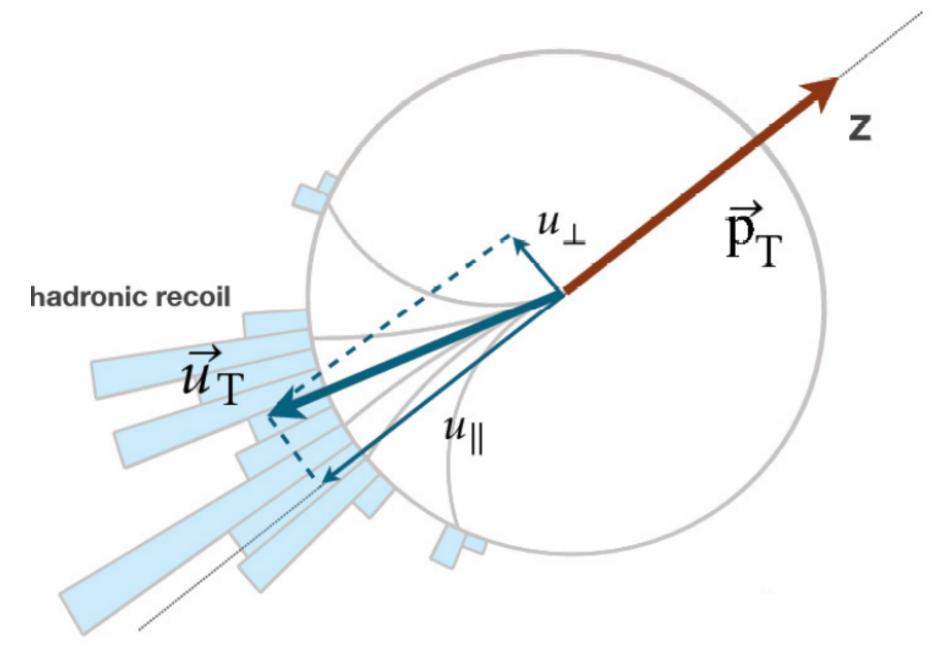
Muon trigger/id/iso efficiency corrections data/ MC evaluated in bins of p_T , eta and charge. Dominant uncertainty is the statistical uncertainty of the Z sample.



Muon Calibration & Efficiency

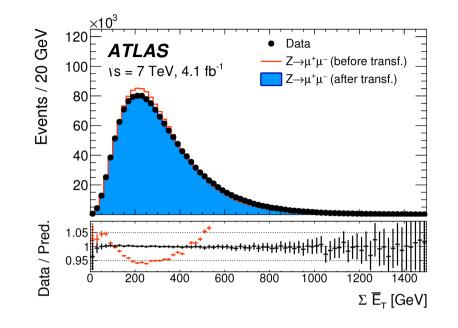
Electron Calibration & Efficiency


Calibration for electrons closely follows the Run I calibration paper Eur. Phys. J.C 74 (2014) 3071


Exclude bin 1.2<letal<1.82 for the W mass measurement as the amount of passive material in front of the calorimeter and its uncertainty are largest in this region. Azimuthal correction from <E/p> vs phi

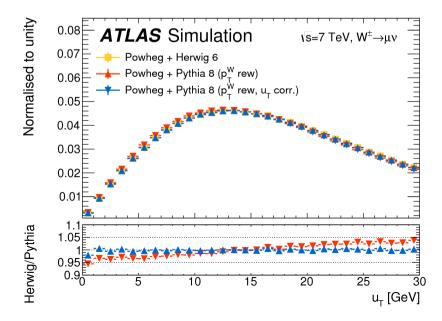
Electron efficiency corrections en fonction de eta et p_T Eur.Phys.J.C 74 (2014) 2941

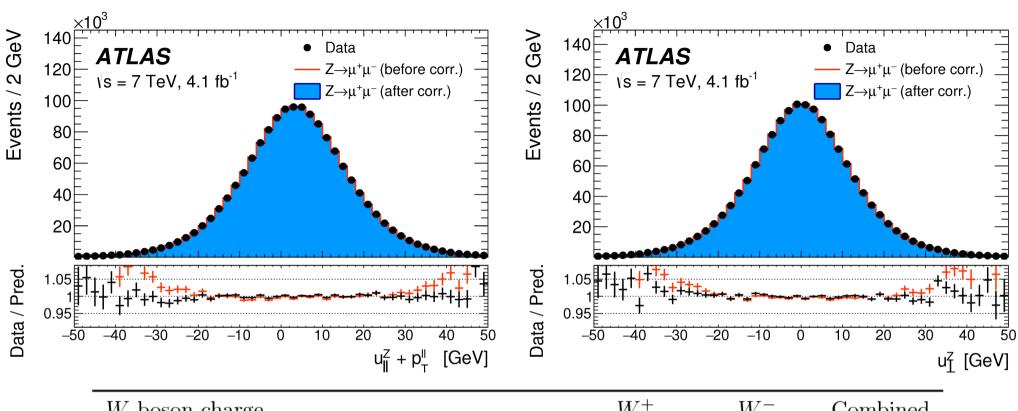
Electron Calibration & Efficiency


Recoil Calibration

Recoil Calibration

A set of corrections is derived:

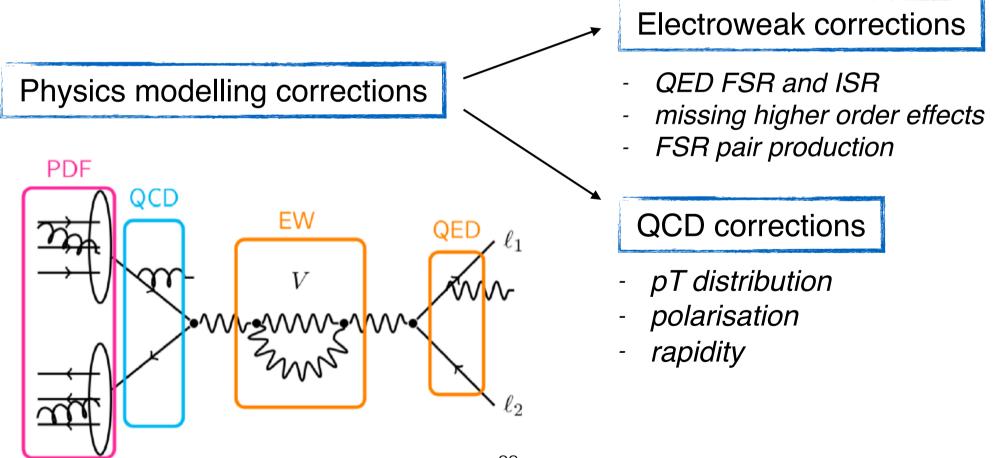

- equalise pile-up multiplicity distribution in data and MC
- equalise SumE_T-u for W+,W-,Z in data and MC
- apply residual recoil energy scale and resolution corrections using p_T balance in Z events (in bins of p_T^{II} and SumE_T-u)


The corrections are derived in pile-up bins, $\langle \mu \rangle$, 2.5-6.5, 6.5-9.5 and 9.5-16.0

A closure test of the applicability of Z-based corrections to W production is performed using Powheg+Herwig6 samples.

The particle-level p_T(W) distribution in Powheg+Pythia8 is reweighted to Powheg+Herwig6

Recoil Calibration


И	7+	И	7-	Combined		
p_{T}^{ℓ}	m_{T}	p_{T}^{ℓ}	m_{T}	p_{T}^{ℓ}	m_{T}	
0.2	1.0	0.2	1.0	0.2	1.0	
0.9	12.2	1.1	10.2	1.0	11.2	
2.0	2.7	2.0	2.7	2.0	2.7	
1.4	3.1	1.4	3.1	1.4	3.1	
0.2	5.8	0.2	4.3	0.2	5.1	
2.6	14.2	2.7	11.8	2.6	13.0	
	$p_{\rm T}^{\ell}$ 0.2 0.9 2.0 1.4 0.2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccccccccc} p_{\rm T}^{\ell} & m_{\rm T} & p_{\rm T}^{\ell} \\ 0.2 & 1.0 & 0.2 \\ 0.9 & 12.2 & 1.1 \\ 2.0 & 2.7 & 2.0 \\ 1.4 & 3.1 & 1.4 \\ 0.2 & 5.8 & 0.2 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

4T E.Er Physics modelling NA $\frac{3R_{m1}}{M_{e} 10^{-3}} P = \frac{E}{C} = \frac{hf}{C} = \frac{h}{2} V = V_{1} (1 + \beta \Delta t) U_{ef} = \frac{U_{m}}{V_{ef}}$ $\sum_{T_m}^{2} X_L = \frac{U_m}{T_m} = \omega L = 2\pi f L \vec{F}_m = \vec{B} I \ell = \frac{\mu I_1 I_2}{2\pi f L}$ R=Ro JA E=mc B=JA NI R=PS = 1/2-48 | lt= lo(1+d At) (3B)=E, Ho 3-CxpS#2 $U_{m} sin \omega(t-T) = U_{m} sin 2\pi \left(\frac{t}{T} - \frac{x}{\lambda}\right) E_{\mu} = \frac{1}{2} m v$ $\left[\frac{E_{e}}{E_{o}}\right]_{II}$ 2 cos Va cos 22 Ede = - MOB - ds E= 4 P. P. P = JJds = AD cos (0-2) sin(U $= \frac{Fe}{P_0} = k \frac{\varphi}{F} \int \vec{B} d\vec{\ell} = \mu \int \vec{J} d\vec{S} \quad \vec{f}' = \frac{A_0^2 R}{(N-1)(R)}$ 1)(125- $\beta = \frac{n\omega_{*}}{n\omega_{2}} (\alpha + \gamma) + J_{2} \phi$ Sin 2 Ey= Eosin (kx-wt) Bt Eople Easin (Kx-=

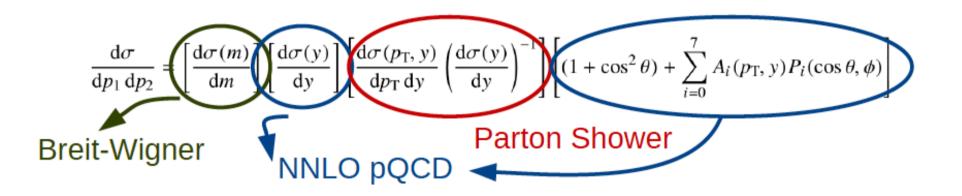
Physics modelling

No available single generator to describe all the physics modelling

Start from the Powheg+Pythia8 and apply corrections. Use ancillary measurements of Drell-Yan processes to validate (and tune) the model and assess systematic uncertainties.

EW corrections

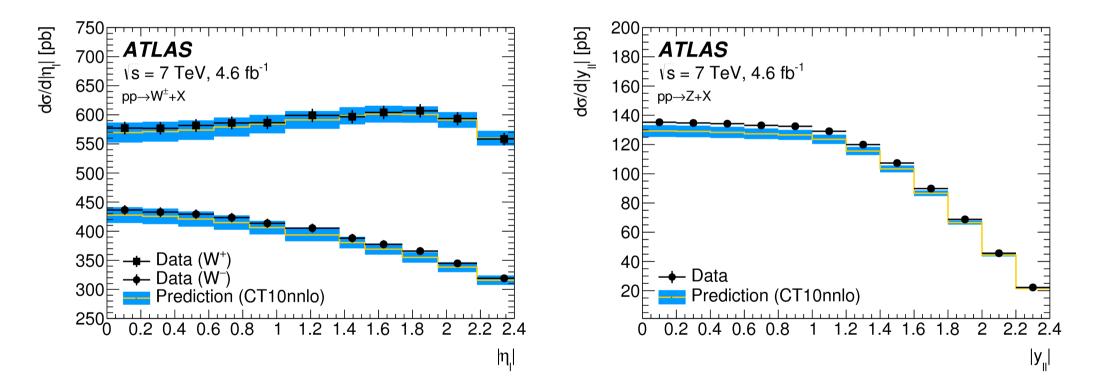
QED effects: FSR (dominant correction) included in the simulation with PHOTOS, negligible uncertainty. QED ISR included through Pythia8 parton shower.


NLO EW effects: taken as uncertainties, pure weak corrections evaluated in the presence of QCD corrections, estimated using Winhac. ISR-FSR interference.

FSR lepton pair production estimated and added as an uncertainty. Formally higher order correction but a significant additional source of energy loss.

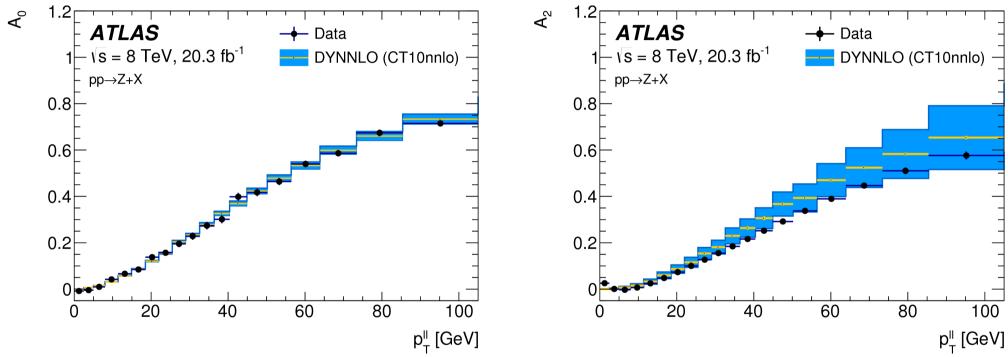
Decay channel	W -	$\rightarrow ev$	$W \rightarrow \mu \nu$			
Kinematic distribution	p_{T}^ℓ	m_{T}	p_{T}^ℓ	m_{T}		
δm_W [MeV]						
FSR (real)	< 0.1	< 0.1	< 0.1	< 0.1		
Pure weak and IFI corrections	3.3	2.5	3.5	2.5		
FSR (pair production)	3.6	0.8	4.4	0.8		
Total	4.9	2.6	5.6	2.6		
24						

QCD corrections


The Drell-Yan cross-section can be decomposed by factorising the dynamic of the boson production and the kinematic of the boson decay. An approximate decomposition is given by:

The d σ /dm is modelled with a BW parametrisation (+ EW corrections) The d σ /dy and the Ai coefficients are modelled with fixed order pQCD at NNLO The d σ /dp_T is modelled with parton shower (tried analytic resummation)

Rapidity distribution

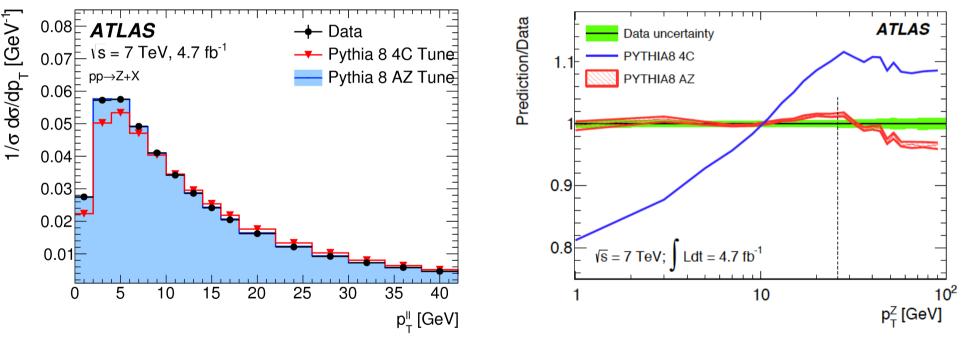

The rapidity distribution is modelled with NNLO predictions and the CT10nnlo PDF set. PDF choice validated on the observed weaker suppression of the strange quark in the W,Z cross-section data as published in <u>arXiv:1612.03016</u>

Satisfactory agreement between the theoretical prediction and the measurements is observed: $\chi^2/dof = 45/34$.

Angular coefficients

The Ai coefficients are modelled with fixed order pQCD at NNLO. The predictions (DYNNLO) are validated by comparison to the Ai measurements in 8 TeV Z-boson data <u>JHEP08(2016)159</u>

Uncertainties on Ai modelling: experimental uncertainty of the measurement and observed discrepancy for A2 coefficient

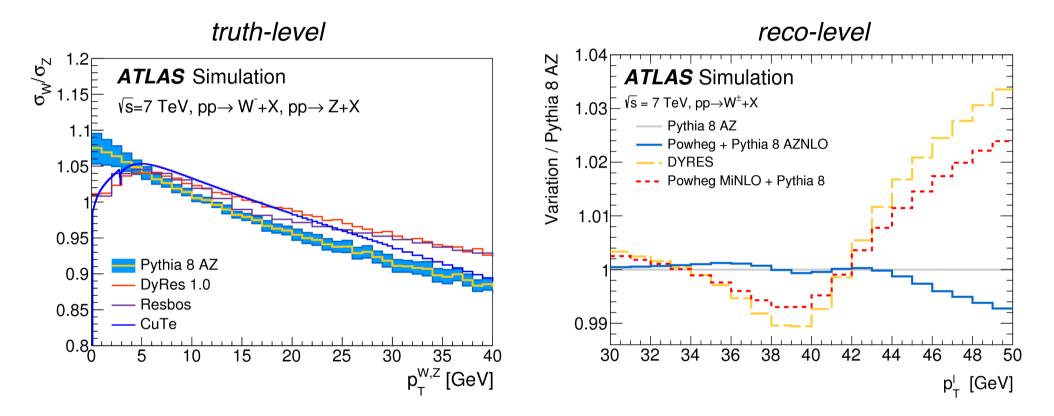

W-boson charge	V	V^+	V	V-	Combined		
Kinematic distribution	p_{T}^ℓ	m_{T}	p_{T}^{ℓ}	m_{T}	p_{T}^{ℓ}	m_{T}	
Angular coefficients	5.8 27	5.3	5.8	5.3	5.8	5.3	

Transverse momentum

Parton shower MC Pythia 8 tuned to the 7 TeV data AZ tune (better description in rapidity bins then the AZNLO tune of Powheg+Pythia) <u>JHEP09(2014)145</u>

The agreement between data and Pythia AZ is better than 1% for $p_T < 40$ GeV

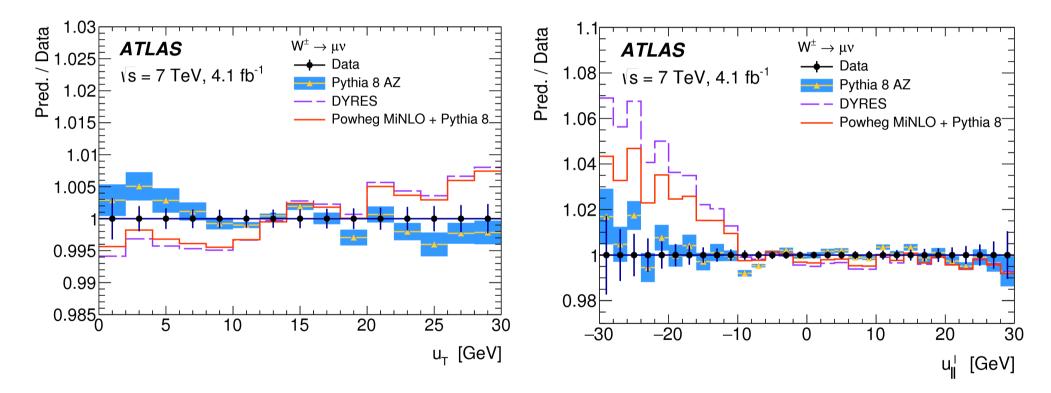
PYTHIA8Tune NameAZPrimordial $k_{\rm T}$ [GeV] 1.71 ± 0.03 ISR $\alpha_{\rm S}^{\rm ISR}(m_Z)$ 0.1237 ± 0.0002 ISR cut-off [GeV] 0.59 ± 0.08 $\chi^2_{\rm min}/{\rm dof}$ 45.4/32



The accuracy of Z data is propagated and considered as an uncertainty

W-boson charge	V	V ⁺	V	V-	Combined		
Kinematic distribution	p_{T}^ℓ	m_{T}	p_{T}^{ℓ}	m_{T}	p_{T}^{ℓ}	m_{T}	
AZ tune	3.0 2	28 ^{3.4}	3.0	3.4	3.0	3.4	

Transverse momentum


Resummed predictions (DYRES, ResBos, CuTe) and Powheg MiNLO+Pythia8 were tried but they predict harder W p_T spectrum for a given $p_T(Z)$ spectrum.

The effect on m_W of using the "formally" more accurate predictions has a significant impact on the W-mass value of the order of 50-100 MeV

Transverse momentum

The $u_{II}(I)$ distribution is very sensitive to the underlying $p_T(W)$ distribution —> used to provide a data-driven validation of the accuracy of our Pythia8 AZ model and to compare to the other calculations

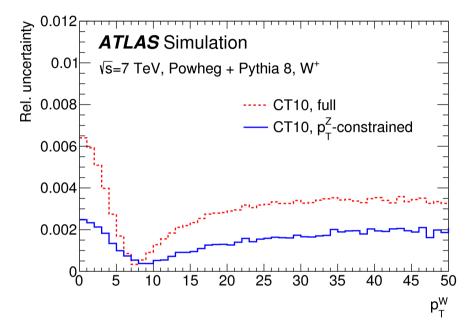
The NNLL resummed predictions and Powheg+MiNLO are strongly disfavoured by the data and the PS MC are in a good agreement tested using Pythia8, Herwig7 and Powheg+Pythia8

Transverse momentum uncertainties

Z—>W extrapolation: heavy quark masses (varying m_c by ±0.5 GeV and m_b by ±0.8 GeV), factorisation scale variations in the QCD ISR (separately for light and heavy-quark induced production),

Relative variations of the $p_T(W)$ and $p_T(Z)$ are considered.

1.03 ع^م م ATLAS Simulation $\sqrt{s}=7$ TeV. pp $\rightarrow W^{\pm}+X$. pp $\rightarrow Z+X$ 1.02 Higher-order QCD expected to be largely 1.01 correlated between W and Z produced by light quarks but a certain degree of decorrelation is expected from heavy-0.99 flavour induced production. 0.98 Pythia 8 AZ -Light guarks \rightarrow W,Z $-c\overline{c}\rightarrow 7$ Total 25 0.97 20 30 35 15 40 p_r^{W,Z} [GeV]


W-boson charge	W	/+	W	/-	Com	bined
Kinematic distribution	p_{T}^{ℓ}	m_{T}	p_{T}^{ℓ}	m_{T}	p_{T}^{ℓ}	m_{T}
Charm-quark mass	1.2	1.5	1.2	1.5	1.2	1.5
Parton shower $\mu_{\rm F}$ with heavy-flavour decorrelation	5.0	6.9	5.0	6.9	5.0	6.9

PDF uncertainties

PDF variations (25 error eigenvectors) of CT10nnlo are applied simultaneously to the boson rapidity, Ai, and p_T distributions.

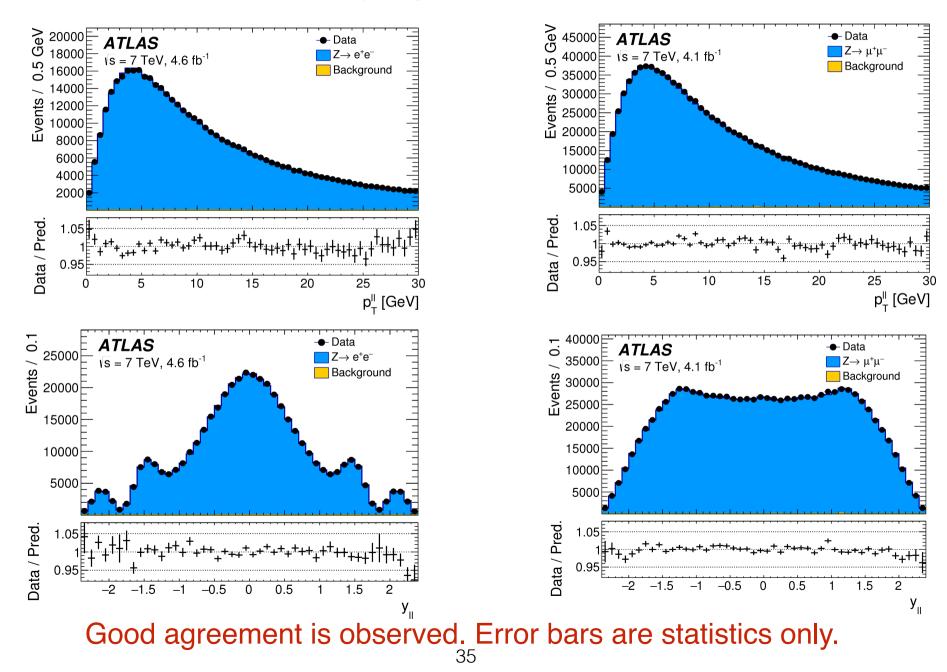
Only relative variations of the $p_T(W)$ and $p_T(Z)$ induced by PDFs are considered.

Consider largest deviation of $p_T(W)/p_T(Z)$ for the parton shower PDF variation: CTEQ6L1 LO (nominal) to CT14lo, MMHT2014lo and NNPDF2.3lo

W-boson charge	W	7+	W	7—	Combined	
Kinematic distribution	p_{T}^ℓ	m_{T}	p_{T}^ℓ	m_{T}	p_{T}^{ℓ}	m_{T}
Fixed-order PDF uncertainty	13.1	14.9	12.0	14.2	8.0	8.7
Parton shower PDF uncertainty	3.6	4.0	2.6	2.4	1.0	1.6

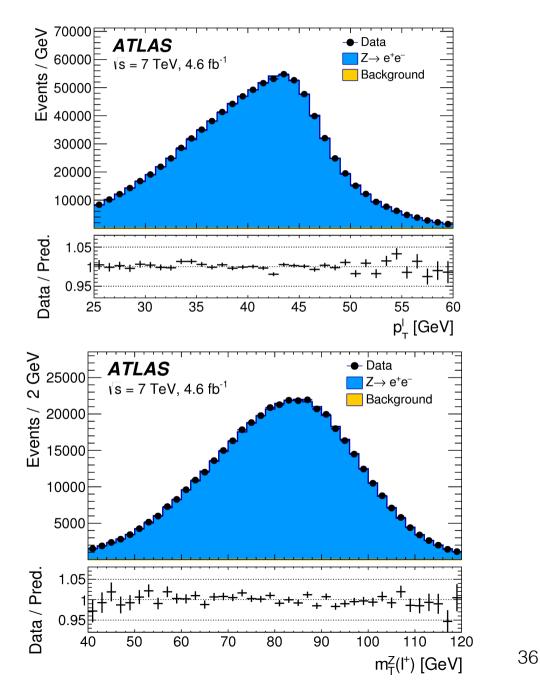
The PDF uncertainties very similar between p_T¹ and m_T but strongly anti-correlated between W⁺ and W⁻. Envelope taken from CT14 and MMHT2014~3.8 MeV.

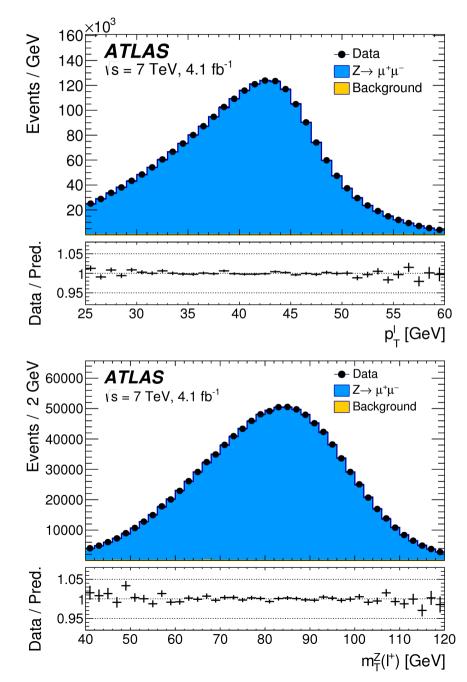
Summary of physics modelling uncertainties

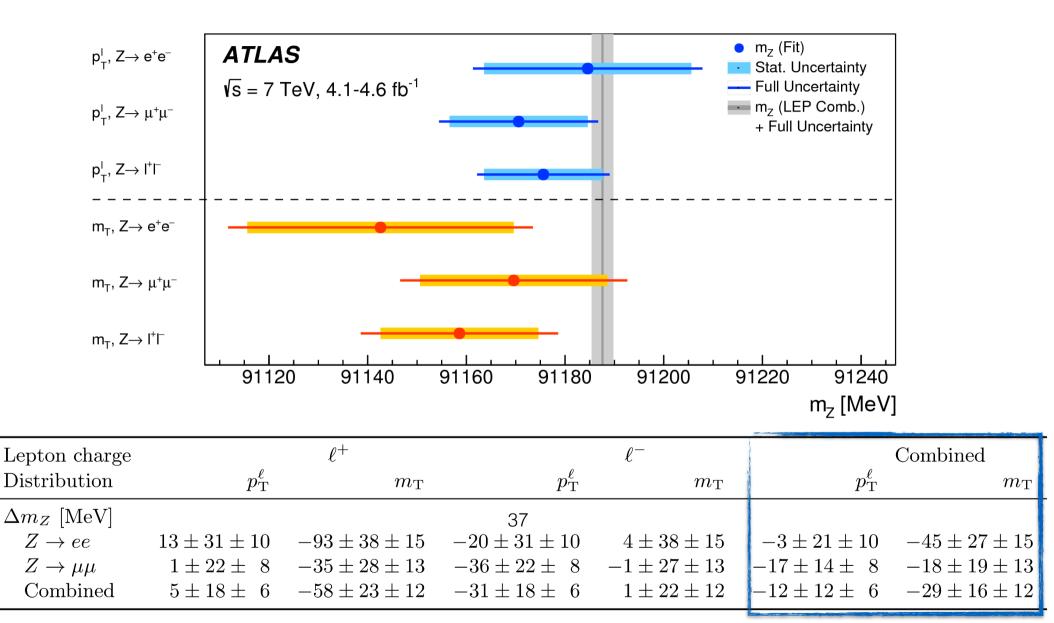

-	W-boson cha	rge			W^+			7—	Com	oined
	Kinematic dis	stribution			p_{T}^ℓ	m_{T}	p_{T}^ℓ	m_{T}	$p_{ ext{T}}^\ell$	m_{T}
-	$\delta m_W [{ m MeV}]$									
	Fixed-order	PDF uncertainty		1	3.1 1	14.9	12.0	14.2	8.0	8.7
	AZ tune			3.0	3.4	3.0	3.4	3.0	3.4	
QC	▶ Charm-qua	rk mass		1.2	1.5	1.2	1.5	1.2	1.5	
	- Parton sho	wer $\mu_{ m F}$ with heavy-flavour dec	on	5.0	6.9	5.0	6.9	5.0	6.9	
	Parton sho	wer PDF uncertainty		3.6	4.0	2.6	2.4	1.0	1.6	
	Angular co	efficients			5.8	5.3	5.8	5.3	5.8	5.3
-	Total			1	5.9 1	18.1	14.8	17.2	11.6	12.9
-										
		Decay channel	W -	$\rightarrow ev$	W	$\rightarrow \mu$	ν			
		Kinematic distribution	p_{T}^ℓ	m_{T}	p_{T}^{ℓ}	K	n _T			
		δm_W [MeV]								
	EW	FSR (real)	< 0.1	< 0.1	< 0.1	1 <	0.1			
		Pure weak and IFI corrections	3.3	2.5	3.5	2	2.5			
		FSR (pair production)	3.6	0.8	4.4	C). <mark>8</mark>			
		Total	4.9	2.6	5.6	2	2.6			

The PDF uncertainties are the dominant followed by p_T(W) uncertainty due to the heavy-flavour initiated production.

Validation and results

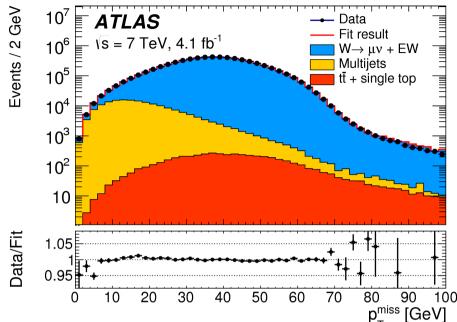

Cross checks with Z events


Z tranverse momentum and rapidity distributions in e, mu channels


Cross checks with Z events

Tranverse momentum and transverse mass distributions in e, mu channels

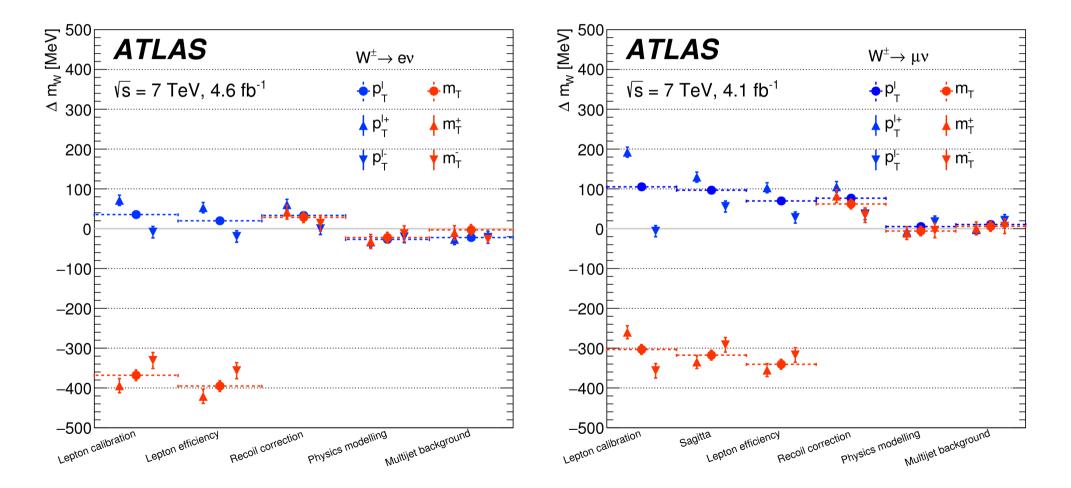
Cross checks with Z events

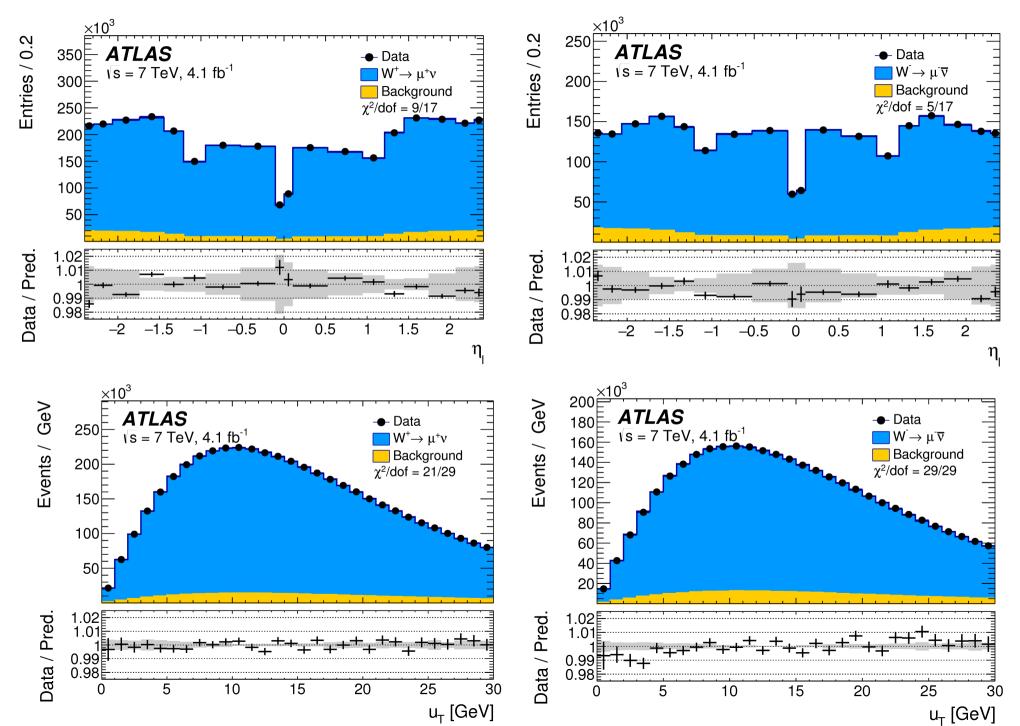

Results are consistent with the combined LEP value of m_z within experimental uncertainties

Backgrounds in W

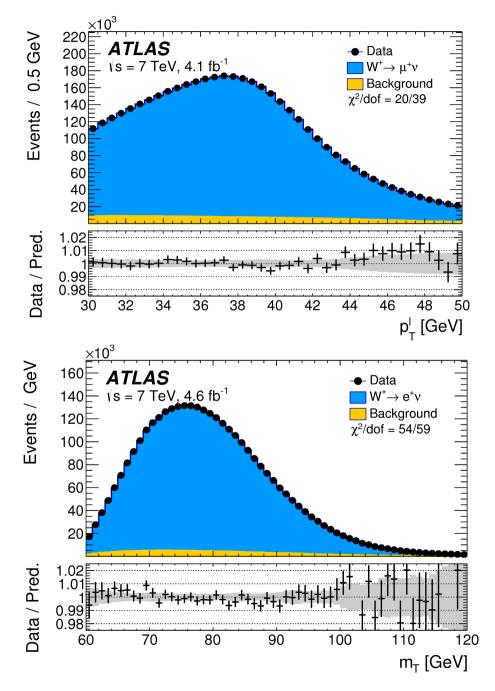
Electroweak and top-quark backgrounds are determined from simulation

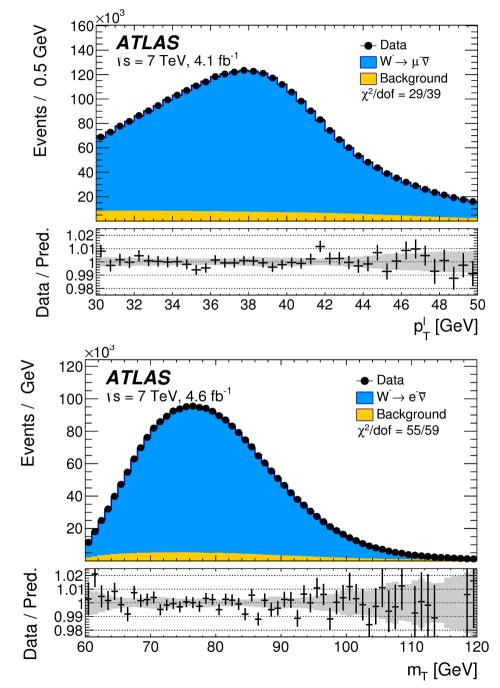
Multijet background is determined using data-driven techniques:


- define background-dominated fit regions with relaxed cuts of the event selection
- template fits in these regions to 3 observables: $p_T{}^{miss},\,m_T$ and $p_T{}^{l}/m_T$
- control regions are obtained by inverting the lepton isolation requirements

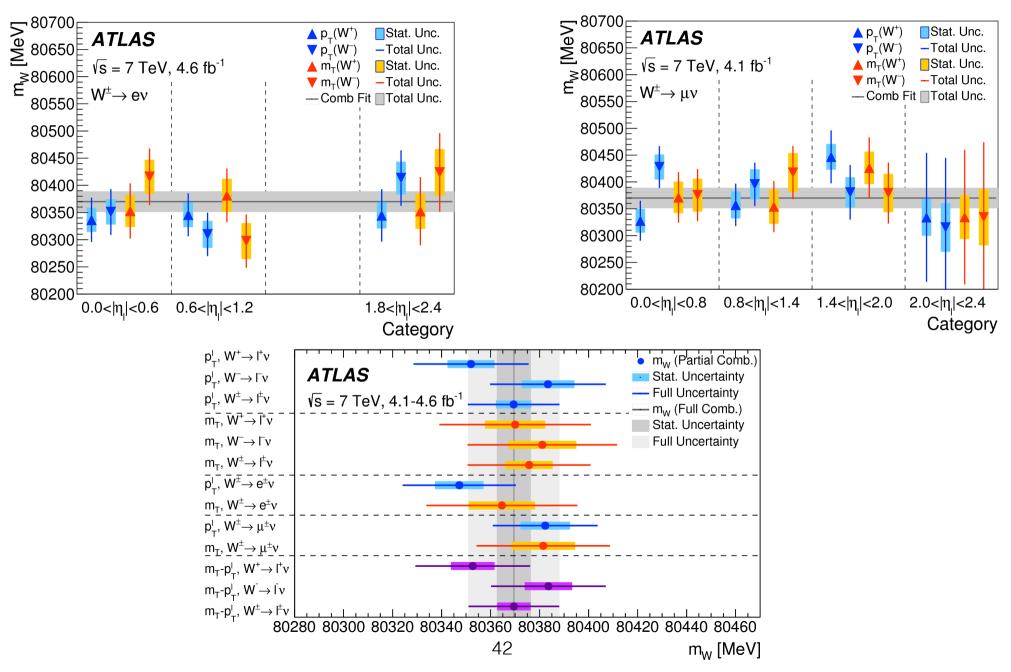

		$W \rightarrow$	μu												
Category	$W \to \tau \nu$	$Z \to \mu \mu$	$Z \to \tau \tau$	Top	Dibosons	Multijet	Kinematic distribution	p_{T}^ℓ							
W^{\pm} 0.0 < $ \eta < 0.8$	1.04	2.83	0.12	0.16	0.08	0.72	Decay channel	$W - W^+$	$\rightarrow e\nu$ W^-	$W - W^+$	$ \rightarrow \mu \nu $ W^{-}	$W - W^+$	$\rightarrow e\nu$ W^-	$W - W^+$	$ \rightarrow \mu \nu $ W^{-}
$W^{\pm} 0.8 < \eta < 1.4$	1.01	4.44	0.11	0.12	0.07	0.57	W-boson charge	VV ·	VV	VV	VV	VV ·	VV	VV	VV
$W^{\pm} 1.4 < \eta < 2.0$	0.99	6.78	0.11	0.07	0.06	0.51	$\delta m_W [{ m MeV}]$								
$W^{\pm} 2.0 < \eta < 2.4$ W^{\pm} all η bins	1.00 1.01	$8.50 \\ 5.41$	$\begin{array}{c} 0.10 \\ 0.11 \end{array}$	$\begin{array}{c} 0.04 \\ 0.10 \end{array}$	0.05 0.06	$\begin{array}{c} 0.50 \\ 0.58 \end{array}$	$W \to \tau \nu$ (fraction, shape)	0.1	0.1	0.1	0.2	0.1	0.2	0.1	0.3
W^+ all η bins	0.99	4.80	$0.11 \\ 0.10$	0.10 0.09	0.06	$0.50 \\ 0.51$	$Z \rightarrow ee$ (fraction, shape)	3.3	4.8	_	_	4.3	6.4	_	_
W^- all η bins	1.04	6.28	0.14	0.12	0.08	0.68	$Z \to \mu \mu$ (fraction, shape)	_	—	3.5	4.5	—	—	4.3	5.2
		$W \rightarrow$	eν				$Z \to \tau \tau$ (fraction, shape)	0.1	0.1	0.1	0.2	0.1	0.2	0.1	0.3
Catagony	$W \to \tau \nu$	$Z \rightarrow ee$	$Z \rightarrow \tau \tau$	Тор	Dibosons	Multijet	WW, WZ, ZZ (fraction)	0.1	0.1	0.1	0.1	0.4	0.4	0.3	0.4
Category	1			-		0	Top (fraction)	0.1	0.1	0.1	0.1	0.3	0.3	0.3	0.3
$W^{\pm} \ 0.0 < \eta < 0.6$		3.34	0.13	0.15	0.08	0.59	Multijet (fraction)	3.2	3.6	1.8	2.4	8.1	8.6	3.7	4.6
$W^{\pm} 0.6 < \eta < 1.2$	1.00	3.48	0.12	0.13	0.08	0.76	Multijet (shape)	3.8	3.1	1.6	1.5	8.6	8.0	2.5	2.4
$W^{\pm} 1.8 < \eta < 2.4$ $W^{\pm} \text{ all } \eta \text{ bins}$	$0.97 \\ 1.00$	$3.23 \\ 3.37$	$\begin{array}{c} 0.11 \\ 0.12 \end{array}$	$\begin{array}{c} 0.05 \\ 0.12 \end{array}$	$\begin{array}{c} 0.05 \\ 0.07 \end{array}$	$\begin{array}{c} 1.74 \\ 1.00 \end{array}$		<i>C</i> 0	<i>C</i> 0	4.9	<u>۲</u> 0	10.0	19.4	<u> </u>	7.4
W^+ all η bins	0.98	3.37 2.92	$0.12 \\ 0.10$	$0.12 \\ 0.11$	0.07	0.84	Total	6.0	6.8	4.3	5.3	12.6	13.4	6.2	7.4
W^- all η bins	1.04	3.98	$0.10 \\ 0.14$	$0.11 \\ 0.13$	0.08	1.21									

Summary of different corrections

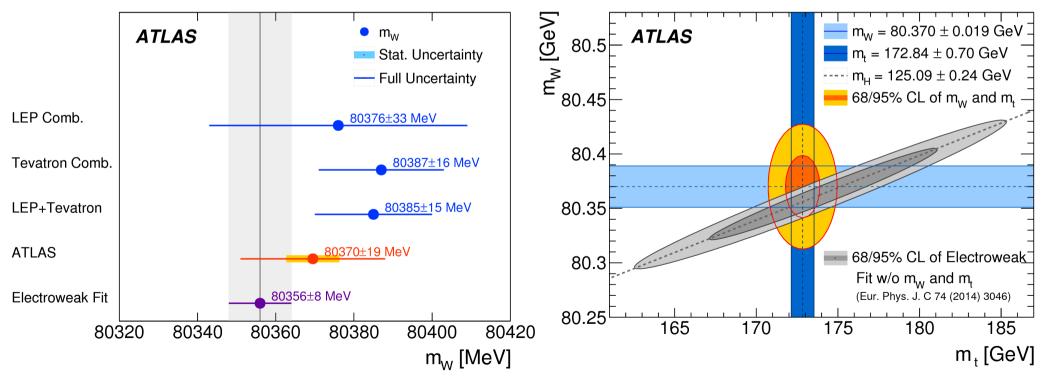

After all corrections are applied, consistent results are achieved between different channels, observables, categories, charges and only after results were unblinded.



W control distributions: eta, pT


W mass-sensitive distributions: p_T^I and m_T

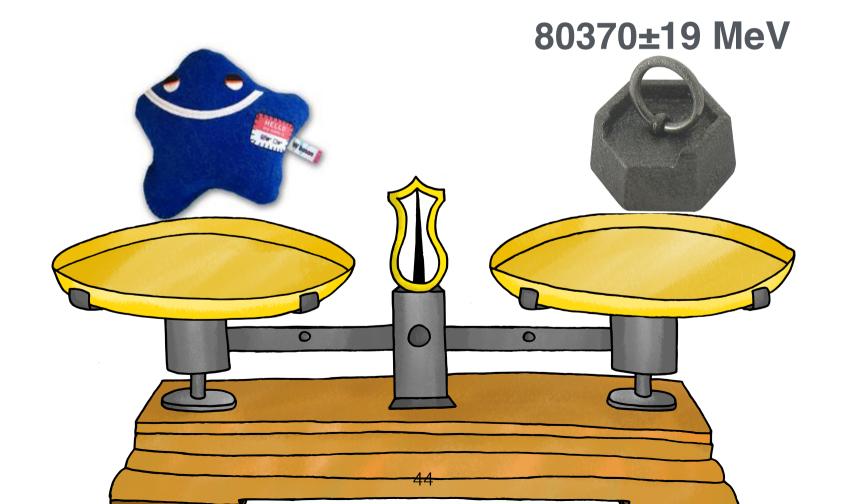
Consistency of the results


The consistency of the results was checked in the different categories but also in different pileup, u_T and u_{ll} bins

Results $m_W = 80369.5 \pm 6.8 \text{ MeV}(\text{stat.}) \pm 10.6 \text{ MeV}(\text{exp. syst.}) \pm 13.6 \text{ MeV}(\text{mod. syst.})$ = 80369.5 ± 18.5 MeV,

Combined	Value	Stat.	Muon	Elec.	Recoil	Bckg.	QCD	EWK	PDF	Total	χ^2/dof
categories	[MeV]	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	of Comb.
m_{T} - p_{T}^{ℓ} , W^{\pm} , e- μ	80369.5	6.8	6.6	6.4	2.9	4.5	8.3	5.5	9.2	18.5	29/27

$$m_{W^+} - m_{W^-} = -29 \pm 28 \text{ MeV}$$



The result is consistent with the SM expectation, compatible with the world average and competitive in precision to the currently leading measurements by CDF and D0

Conclusion

The first LHC measurement of mW = 80370 + /-19 MeV is public now arXiv: 1701.07240v1 after many years of effort in the ATLAS collaboration.

The central value is consistent with the SM prediction and with the current world average value.

Perspectives

The uncertainty is dominated by theoretical modelling uncertainties, therefore more work in this direction is required and *a fully consistent model within one simulation tool* is needed

Number of theoretical papers

Not yet the same picture as for the 750 GeV excess :) $\int_{0}^{200} \int_{0}^{100} \int_{0}^{10}$

More data are available with the 8 and 13 TeV datasets which can be used to improve the analysis and to further constrain the PDFs. Experimentally, with the increase of the statistics in Z sample, most of the calibration uncertainties can be reduced. While more work is needed (already started) on the recoil with the increasing pileup.