Ultra high energy neutrinos at the Pierre Auger Observatory

K. Payet¹, for the Pierre Auger Collaboration

¹LPSC, UJF Grenoble 1, CNRS/IN2P3, INPG

Pierre Auger Observatory (southern site)

Completed in 2008 !!!

GWHEN 2009

18/05/2009

UHE Neutrinos detection with the SD

Detection = Discrimination from every other primaries Easy for very inclined showers

UHE Neutrinos detection with the SD (2) 2 channels

18/05/2009

Selection of UHE neutrinos (1)

18/05/2009

Selection of UHE neutrinos (2)

18/05/2009

GWHEN 2009

6

Selection of UHE neutrinos (3)

Discriminating variables

Useful informations to test if a shower is inclined:

Arrival times, coordinates of triggered stations

```
Variables ?
```

i) Reconstructed zenith angle

But not only:

Selection of UHE neutrinos (4)

Discriminating variables

Useful informations to test if a shower is young:

- Number of TOT triggers (Time Over Threshold)
- Signals of the first triggered stations:

Variables:

18/05/2009

- RiseTime of the Signal (ex: Time to reach 50% of the total signal)

Earth Skimming Neutrinos Optimized cuts

Very inclined showers

18/05/2009

0.29 ≤ <V> ≤ 0.31 m ns⁻¹

Young showers

60% of triggered stations = « young shower » station: ≥ 13 bins (25 ns) with signal ≥ 0.2 VEM &&

Area over Peak ≥ 1.4

Earth Skimming Neutrinos (2) Results

Selection criteria + Data 01/2004-08/2007

→ Upper limit on the diffuse flux of UHE tau neutrinos from the Pierre Auger Observatory The Pierre Auger Collaboration, *Phys. Rev. Lett.* **100**, 211101 (2008)

Update: Selection criteria + Data 01/2004-02/2009 = **0 candidate again**

Downgoing Neutrinos Optimized cuts

Very inclined showers

18/05/2009

Downgoing Neutrinos (2) Fisher discriminant

Fisher discriminant f = linear combination of:

AoP, AoP², AoP₁ x AoP₂ x AoP₃ x AoP₄, $\langle AoP \rangle_{early} - \langle AoP \rangle_{late}$)

f allows the best separation possible between two populations of events: Data vs Simulated neutrinos

Implication of Auger results on neutrino sources

Very large uncertainties remain in the expected UHE neutrino fluxes

How to gain a better insight ?

Ultra High Energy Cosmic Rays experiments

→ The Pierre Auger Observatory

Implication of Auger results on neutrino sources (2) Individual sources

Most interesting result: Correlation of the highest energy cosmic rays with nearby AGNs

Implication of Auger results on neutrino sources (3) Individual sources

Accumulation \rightarrow FRI galaxies as sources of UHECRs ?:

Lots of temptative calculations

But why no event detected from M87 (virgo cluster) ?

Border of Auger field of view ? FRI not sources of UHECRs ?

Right now, we cannot state what the sources of UHECRs are.

Correlation compatible with many sites already in the short list for UHECR's sources

Implication of Auger results on neutrino sources (4) Cosmogenic Neutrinos

Implication of Auger results on neutrino sources (5) GZK Neutrinos

AGN correlation + Energy spectrum above 10¹⁸ eV compatible with GZK effect

But,

UHE Neutrinos detection with the SD (1)

