

Gamma-Ray Burst Follow-Up: Lessons & Prospects

Derek B. Fox Penn State University

19 May 2009

GWH

ris

GRB Follow-Up

- 40 years of GRB studies
- May be GWHEN sources
- Even if not...
 - Unpredictable
 - Hard to localize
 - Faint, transient counterparts
 - Cosmological distance
- Seems likely that...
 - Photonic observers can contribute
 - May even be required (for some science)
 - Most useful at the start!

Lesson 1: Localization, Localization, Localization

Localization.

- Vela localization by time delay
 - Design feature (exclude Solar flares)
 - Established GRBs as cosmic phenomena (extra-Solar system)
- Compton GRO
 - Coded-aperture Xray experiment excluded
 - Cue: Beppo-SAX

3 '

Localization...

- IPN provided best BATSE-era positions
 - Numerous searches of ~10 arcmin² boxes
 - "No-host problem"
 - Missed cluster for SHB 790613
- Mainly concern for HEN
 - Sources likely at cosmological distance
 - Compare luminosity function to L⁻²...
- What about GW?

Gal-Yam et al. 2008

Abbott et al. 2008

Ofek et al. 2008

Localization...

- But localization is hard!
 - GRB observers know
 - GRB observers sympathize
- Photons can help
 - (see Part 2 of talk)
- To that end...

Lesson 2: Minimal Delay, Maximal Distribution

Time Delays

- The GRB example
 - "Seconds matter"
 - At least sometimes
 - GRB 990123 (BATSE alert + Beppo-SAX localization)
 - SN 2008D
- Most other scenarios less demanding
 - Delays of minutes? Hours?
- Impending IceCube upgrade from hours → minutes (A. Franckowiak)

Distribution

- LIGO-VIRGO opening up coincidence triggers (F. Marion)
- IceCube partnered with ROTSE and open to new collaborations (A.Franckowiak)
- Great to hear
- GRB positions restricted for a long time
- GRB 970228 observed in optical "by accident"
- Positions immediately public soon thereafter
- Public positions get more follow-up \rightarrow more, better science

Abbott et al. 200

Summary Lessons

- 40 years of GRB studies
 - 30/35 years to distance scale
 - Let's not do that again
- Localization
 - Made the difference for GRBs, over and over
 - Mainly an issue for HEN (cosmological)
 - Consider in design/upgrades
- Distribution
 - Minimal delays
 - Maximal distribution

Fox et al. 20

Prospect 1: Triggered Photonic Searches

Quenched-Jet Supernovae • Proto-GRB inside a 10

- Proto-GRB inside a 10 M hydrogen envelope
- Jet is quenched \rightarrow No GRB
- Relatively ordinary, nearby supernova with HEN emission
- Opportunity for triggered optical searches
- Monday talks by P. Mészáros, E. Waxman, S. Ando

Orphan Afterglows

- Believe GRBs result from collimated outflows:
 - Energetics
 - Theoretical and numerical models
 - "Jet breaks" in afterglow light curves
- Both short and long bursts
- Implies orphan afterglows
 - Not yet observed
 - Brightest orphans will be from nearest bursts

Jets and Jet Breaks

Orphan Expectations

- Orphan peak magnitude is

 afterglow magnitude at break
- Rise time: ~ 0.1 t_{jet}
- Fading as power-law
 - Power-law index $\alpha \sim 2.3$
 - Referenced to burst time
- Observational signatures: Brightness, power-law spectrum, lightcurve
- Rate determined by burst rate + beaming fraction
- Focus on short bursts
 - Higher local rate
 - Stronger connection to GW
- Long bursts orphans also interesting

SHB Orphans and GW

- 30:1 to 500:1 odds against any given GRB illuminating Earth
- GW distances strictly limited
- Nearest merger events will not be GRBs!
- "Orphan afterglow" searches increase LIGO sensitivity by 1.5x

K.Thorne / NSF Review

Short Burst Beaming

GRB	Z	t_{jet}	Beaming	Break
050709	0.16	10d	30:1	<i>i</i> = 25.8
051221	0.55	4d	130:1	<i>r</i> = 24.8

050709 at 10 Mpc: I > 16.4 mag ($M_I > -13.6 \text{ mag}$) 051221 at 10 Mpc: r > 12.3 mag ($M_r > -17.7 \text{ mag}$)

Rau et al. 2009

Palomar Transient

• New 7-deg² 100 Mpix camera

- (former CFHT 12k)
- Dedicated use of Oschin Schmidt telescope at Palomar
- Three year dedicated project, 2009-2012
- Focus on fast transients and supernovae
- R and g' band
- Depths of R, $g' \approx 21 \text{ mag}$, cadence of (<1d, 5d)
- Aim for 150 fields per night
 - $-1000 \text{ deg}^2 \text{ per night}$
 - 6000 deg² monitoring
- TOO mode for LIGO-VIRGO and IceCube

Oschin Schmidt Telescope

SkyMapper

- New 1.3-m, 8-deg² telescope at Siding Springs Obs.
- 5.7-deg² camera
- Five-year "Southern Sky Survey", 2009-2014, 20k deg²
- Primary goal: 5-band imaging
- Transient survey "piggy backed"
- Single-epoch depth to griz~21.5 mag
- T00-capable for LIG0-VIRG0 and IceCube

SkyMapper

Searches Summary

- Triggered searches
 - Excellent progress
 - ROTSE + IceCube active
 - PTF & SkyMapper coming online
- Consider also:
 - ATA and other radio
 - Nearby galaxy screen for narrow-fov facilities
- Orphan afterglow searches
 - Potential discovery of the new generation of optical surveys
 - Useful as GW input
 - Expect detection in PS4 / LSST era

Oschin Schmidt Telescope

Prospect 2: A GWHEN Mission

High-Energy Photonics

- Swift
 - Best sensitivity (but few short bursts)
 - Arcsec localizations (incl. external triggers)
 - Sees 1/8 of sky
- Fermi
 - GBM positions >degrees
 - Sees 1/2 of sky
 - LAT data for few (albeit very interesting) bursts
- IPN
 - All-sky, all the time
 - Brightest bursts
 - Poor localizations
 - Delaved by ~day from burst

A GWHEN Mission

- All-sky, all the time
- Real-time alerts
- Sub-arcmin positions
- Brighter bursts
- Node of the IPN @ L1
- PMT: D=13 cm, h=7.5 cm
- Two modules
- All-sky, 123 GRBs

A GWHEN Mission

- All-sky, all the time
 - Booster launch into highapogee orbit
 - Low, stable background
- Real-time alerts
 - Onboard position calculation
- Brighter bursts
 - Konus-grade sensitivity fine
 - 100 GRB year⁻¹ goal
- Cheap
 - NaI + PMT
 - No position-sensitive detectors
- Sub-arcmin positions

 ?

Sub-arcmin positions?

- Rotation Modulation Collimator
 - Rotation-dependent shadowing
 - Position via timing analysis
- BOLT SMEX mission proposal (PI Chuck Hailey, Columbia)
 - All-PMT, spin-stabilized, 1
 Hz
 - 6000 cm² NaI (~36 K-W modules)
 - <10" positions for bright
 bursts</pre>
 - >10x BATSE sensitivity over 3.1 sr

Mission Proposal

- Pair of RMCs oriented normal to each face of octahedron

 8 on top, 8 on bottom - 16 total
- Effective area per-face comparable to KONUS-Wind
- Fits within SMEX envelope 1m diameter, 2m height (but.. booster?)
- Individual rotating collimators (only complex element)
- Position resolution improves with burst brightness
- Sub-arcmin readily achievable

HERMES

 High-Energy
 Reconnaissance for
 Multimessenger
 Event
 Science

Conclusions

GRB Follow-Up and GWHEN Lessons

- 1. Localization
 - All the difference
- 2. Distribution
 - Minimal delays, maximal distribution

Prospects

- 1. Triggered searches
 - Already begun
 - Next-generation facilities well suited
- 2. A GWHEN mission
 - All-sky, all the time for bright bursts
 - Providing localizations for maximum science

Special thanks to Chuck Hailey for providing his BOLT proposal materia

