CARES: Recent results

J.J. Hernández-Rey, IFIC on behalf of the ANTARE Collab.

Workshop on GW & HEN, APC, Paris, 18-20 May 2009

Data taking periods:

(multi-) muon Event

15/5/2009

F. Salesa

Neutrino candidate

Example of a reconstructed up-going muon (i.e. a neutrino candidate) detected in 6/12 detector lines:

15/5/2009

F. Salesa

Time distribution in agreement with MC

Data-MC comparison for downgoing events (5linoc)

- No quality cuts applied
- Agreement within (substantial) theoretical + MC uncertainty

Main experimental errors

Reducing systematic

Summary of the results for the blue data (statistical error only)

Epoch	λ_{att}^{eff} (in m)	$\lambda_{\rm abs}$ (in m)	λ_{set}^{eff} (in m)
July 1998	60.6 ± 0.4	68.6 ± 1.3	265 ± 4
March 1999	51.9 ± 0.7	61.2 ± 0.7	228 ± 11
June 2000	46.4 ± 1.9	49.3 ± 0.3	301 ± 3

•OM efficiency at high angles w.r.t. to PMT axis is a source of systematics for downgoing muons.

- Measurements in lab (water tank) is difficult.
- Systematics evaluated through dedicated MC simulation.

- Measurements with autonomous lines.
- Special beacon runs being taken to re-measure it.
- · Aim: 5% error level.
- Delicate measurement: different sources of systematics,

deconvolution of absorption and scattering.

Two independent methods

MC: 164±3 (stat)± 33(theor)±16 (syst)

Observed: 185 events + 3 **MC**: 218± 4 (stat) ±41(theor) (syst) -42

Point source

• Stringent cuts to ensure low background and good resolution.

• Search applied to 25 selected sources.

Source	DECL	AR	Nevents	pvalueBIN	pvalueUNBIN
PSR B1259-63	-63.8339	195.703	0	1	1
RCW 86	-62.4833	220.679	0	1	1
ESO 139-G12	-59.9414	264.414	0	1	1
HESS J1023-575	-57.7639	155.825	1	0.062	0.004
Cir X-1	-57.1667	230.171	0	1	1
HESS J1614-518	-51.82	243.579	1	0.086	0.088
PKS 2005-489	-48.8219	302.372	0	1	1
GX 339	-48.7897	255.704	0	1	1
RX J0852.0-4622	-46.3667	133	o	1	1
Centaurus A	-43.0191	201.364	0	1	1
RX J1713.7-3946	-39.75	258.25	0	1	1
PKS 0548-322	-32.2712	87.6692	0	1	1
H 2356-309	-30.6275	359.784	0	1	1
PKS 2155-304	-30.2217	329.721	O	1	1
Galactic Center	-29.0061	266.421	1	0.140	0.055
1ES 1101-232	-23.4919	165.909	0	1	1
W28	-23.335	270.425	0	1	1
LS 5039	-14.825	276.562	0	1	1
1ES 0347-121	-11.9908	57.3459	0	1	1
HESS J1837-069	-6.95	279.408	0	1	1
3C 279	-5.78917	194.046	1	0.110	0.030
RGB J0152+017	1.78861	28.1667	0	1	1
SS 433	4.98278	287.958	0	1	1
HESS J0632+057	5.80556	98.2416	O	1	1
IceCube HotSpot	11	153	0	1	1

• Two independent statistical methods used : one binned and another unbinned.

• Blinding policy followed and several "challenges" performed on scrambled data before final analysis.

GRB flux after 5 years skims the predictions of W&B

Dark matter

$\Box \Phi v \mu + v \mu$ from the Sun

Dark matter

ANTARES (5 lines, 68 days) Macro (4.89 years) Baksan (10.6 years)

SuperK (4.6 years)

Dark matter

$_4$ Φνμ+νμ from the Sun

Total factor = 2.4 * 9.6 = 23

Pierre Auger Observatory

Ongoing talks on: • restricted access to non-published data. • rules for possible Correlation of UHECRs with AGNs positions: 20 out of 27 CRs with E>57 EeV correlate (within 3.20) with nearby AGNs from the Véron-Cetty&Véron catalogue (292 AGNs with D < 75 Mpc).

Multi-messenger approach

- Possible common sources
 (GRB-core collapse into BH; SGR – powerful magnetars; hidden sources)
- · Sky regions in common
- Expected low signals, coincidences increase chances of detection

Figure 2. Examples of spatial probability distribution functions (SPDFs). (a) SPDF of a LIGO event with $\tau = 4$ msec and $\delta \tau = 440 \,\mu$ sec. (b) SPDF of an IceCube event with $\sigma_{\nu} = 2^{\circ}$. The plots are shown in Earth based coordinates with the z-axis pointing along the north pole. Both SPDFs are normalized to 1 for integration over the sphere.

Acoustic detection

• AMADEUS comprises a series of hydrophones in IL and Line 12

- This is a test bench to study the feasibility of a large acoustic UHE neutrino detector
- Study of acoustic environment and backgrounds
- Methods to reconstruct direction (beamforming, time differences)

Other Analyses

nammas look for giant

Other Analyses

Search of monopoles

 Extremely high energy deposition
 Direct Cherenkov light for β > 0.74

• Through δ -rays for $\beta > 0.51$

• Monte Carlo generation done (study

Search of nuclearites (strangelets, quark nuggets, Q-balls). Very characteristic signature:an extended source of photons "heated wire" Analysis ongoing. Good prospects for limits

Summary

• The ANTARES telescope took data in its 5-line configuration in 2007 and is taking data with 10 or more lines since Dec 2007.

• Work on the full understanding of the detector is proceeding well. Downgoing tracks are especially useful (and challenging) for this. Work on reducing systematics is ongoing.

• More than 1000 upgoing events have been reconstructed (Jan 09). Agreement with MC is good, further work is needed to ascertain that the expected performances have been reached (angular resolution, effective area, etc).

• The search for point-like sources with the 5-line data has provided the more stringent upper limit for the southern sky. Work on ≥ 10 -line detector is ongoing.

- The multi-messenger approach is being strongly pursued in ANTARES: LIGO/VIRGO, GCN, TAROT, Auger). For expected low level signals this is a must.
- While the deployment of a still larger telescope in the northern hemisphere (KM3NeT) takes place, ANTARES could give some surprises.

Backup slides

Methods of point-like sources coarch The **background** from atmospheric neutrinos and muons will be **dominant**. 4 It is crucial to have an **algorithm** able to **point out the accumulation** of the signal events over this background. The background is right acconsion independent and declination dependent. **ANTARES**: 1 year sample Very good angular resolution: < 0.3° for $\delta = 47^{\circ}$ $E_V > 10 \text{ TeV}.$ δ(°) 3.5 з Sources are visible up to $\delta = 47^{\circ}$. 2.5 GC is visible (63% of the time). 2 **Binned** methods: 1.5 Grid (square shape). Cone (circular shape). 0.5 Background-**Unbinned** methods: ML ratio. -180° 180° α_{RA} (°) EM.

Signal-like

BIN: Cone method

- 4 In the **all sky** search each event is taken as the cone centre.
- □ In a **fixed-source** search the source position is taken as the cone centre.
- The cone size is optimized to get the better signal/background ratio: MDF (all sky search) and MRF (fixedsource search).
- The probability for the background to produce a given number of events can be computed analytically.

$$P_i = \sum_{n=N_0}^{N_{total}} \left(\sum_{\sigma \in C_n^{N_{total}}} \left(\prod_{j \in \sigma} p_{j,i} \times \prod_{k \notin \sigma} (1 - p_{k,i}) \right) \right)^{-1}$$

Probability for the event *j* to be inside the cone defined for the event *i*.

4 BIN: Cone method

15/5/2009

F. Salesa

UNBIN: EM algorithm

EM is a general approach to maximum likelihood estimation for finite mixture models.
 Mixture models: different groups of data are described by different density components.

$$p(\mathbf{x}) = \sum_{j=1}^{g} \pi_j p(\mathbf{x}; \boldsymbol{\theta}_j) \qquad \begin{array}{l} \text{g = number of mixture models} \\ \pi_i = \text{mixture proportions, where} \quad \sum_{j=1}^{g} \pi_j = 1 \end{array}$$

Previous step: change from incomplete to complete data set.

{**x**}
$$\mathbf{x}_i = (\boldsymbol{\alpha}_i^{\text{ra}}, \boldsymbol{\delta}_i) \longrightarrow \{y\} \mathbf{y}_i = (\boldsymbol{\alpha}_i^{\text{ra}}, \boldsymbol{\delta}_i, \mathbf{z}_i)$$

The vector **zi** is a class indicator that indicates if the event *i* belongs to the background or the source.

Expectation step

- Start with a set of initial parameters $\Psi(m) = \{\pi 1, \pi 2, \mu, \Sigma\}$

- Expectation of the complete data log-likelihood, conditional on the observed data {x}

 $Q(\Psi, \Psi^{(m)}) = E[\log(g(\lbrace \mathbf{y} \rbrace; \Psi)) | p(\lbrace \mathbf{x} \rbrace; \Psi^{(m)})]$

Maximization step

 Find Ψ = Ψ(m + 1) that maximizes Q(Ψ, Ψ(m))

Signal & hackground

UNBIN: EM algorithm

RESULTS

15/5/2009

F. Salesa

Fixed-source

<u>coarch</u>

24 sources in the ANTARES field of view have been selected among the most promising neutrino source candidates (galactic and extragalactic) for the 5Line point-like source analysis.

		Equatorial coordinates		Galactic coordinates		
Name	Class	RA	δ	1	ь	Vis.
Galactic Sources						
HESS J0632-057	AMB	$6^{h} 32^{m} 58^{s}$	5° 48′ 20″	205.66	-1.44	0.46
RX J0852.0-4622	SNR	$8^{h} 52^{m} 00^{s}$	-46° 22′ 00″	266.28	-1.24	0.91
HESS J1023-575	AMB	$10^{h} 23^{m} 18^{s}$	-57° $45'$ $50''$	284.19	-0.39	1
PSR B1259-63	Binary Pulsar	$13^h \ 02^m \ 49^s$	-63° 50′ 02″	304.19	-0.99	1
RCW 86	SNR	$14^h \ 42^m \ 43^s$	-62° 29′ 00″	315.79	-1.46	1
Cir X-1	XRB	$15^h \ 20^m \ 41^s$	-57° 10′ 00.26′′	322.12	0.04	1
HESS J1614-518	NCO	$16^{h} \ 14^{m} \ 19^{s}$	-51° 49′ 12″	331.52	0.58	1
GX 339	XRB	$17^{h} \ 02^{m} \ 49^{s}$	-48° 47′ 23″	338.94	-4.33	0.99
RX J1713.7-3946	SNR	$17^{h} \ 13^{m} \ 00^{s}$	-39° 45′ 00″	347.28	-0.38	0.75
Galactic Center	AMB	$17^{h} \ 45^{m} \ 41^{s}$	-29° 00′ 22″	359.95	-0.05	0.66
W28	SNR	$18^{h} \ 01^{m} \ 42^{s}$	-23° 20′ 06″	6.66	-0.27	0.62
LS 5039	XRB	$18^h \ 26^m \ 15^s$	-14° 49′ 30″	16.90	-1.28	0.57
HESS J1837-069	AMB	$18^h \ 37^m \ 38^s$	$-6^{\circ} 57' 00''$	25.18	-0.12	0.52
SS 433	XRB	$19^{h} \ 11^{m} \ 50^{s}$	4° 58′ 58″	39.69	-2.24	0.48
extra-Galactic Sources						
RGB J0152+017	HBL	$1^{h} 52^{m} 40^{s}$	1° 47′ 19″	152.38	-26.61	0.49
1ES 0347-121	HBL	$3^{h} 49^{m} 23^{s}$	-11° 59′ 27″	201.93	-45.71	0.55
PKS 0548-322	HBL	$5^h 50^m 40.6^s$	-32° 16′ 16.4″	237.56	-26.14	0.69
1ES 1101-232	HBL	$11^h \ 03^m \ 38^s$	-23° 29′ 31″	273.19	33.08	0.62
3C 279	FSRQ	$12^{h} 56^{m} 11^{s}$	-5° 47′ 21′′	305.10	57.06	0.51
Centaurus A	Sy2	13 ^h 25 ^m 27.6 ^s	-43° 01′ 08.8″	309.52	19.46	0.81
ESO 139-G12	Sy2	17 ^h 37 ^m 39.5 ^s	-59° 56′ 29″	334.04	-13.77	1
PKS 2005-489	HBL	$20^{h} \ 09^{m} \ 29^{s}$	-48° 49′ 19″	350.39	-32.61	1.
PKS 2155-304	HBL	$21^{h} 58^{m} 53^{s}$	-30° 13′ 18″	17.74	-52.25	0.67
H 2356-309	HBL	$23^{h} 59^{m} 08^{s}$	-30° 37' 39''	12.84	-78.04	0.67

24 selected sources + IceCube Hot Spot $(\delta = 11^{\circ} \alpha = 153^{\circ})$

Sky coverage of 3%

15/5/2009

F. Salesa

Fixed-source

RESULTS

coarch

The **p-value** is the probability of the background to produce the measured (or higher) **observable** (**BIC** for the EM algorithm or **nevents** for the con

петноа)				
DECL	AR	Nevents	pvalueBIN	pvalueUNBIN
-63.8339	195.703	0	1	1
-62.4833	220.679	0	1	1
-59.9414	264.414	0	1	1
-57.7639	155.825	1	0.062	0.004
-57.1667	238.171		-1	1
-51.82	243.579	1	0.086	0.088
-48.8219	302.372	0	1	i
-48.7897	255.704	0	1	1
-46.3667	133	0	1	1
-43.0191	201.364	0	1	1
-39.75	258.25	0	1	1
-32.2712	87.6692	0	1	1
-30.6275	359.784	0	1	1
-30.2217	329.721	0	1	1
-29.0061	266.421	1	0.140	0.055
-23.4919	165.909	0	1	1
-23.335	270.425	0	1	1
-14.825	276.562	0	1	1
-11.9908	57.3459	0	1	1
-6.95	279.408	0	1	1
-5.78917	194.046	1	0.110	0.030
1.78861	28.1667	0	1	1
5.80556	98.2416	0	1	1
4.98278	287.958	0	1	1
11	153	0	1	1

F. Salesa

The lowest value corresponds to a **p-value pre-trial of 2.8** σ found with UNBINNED method. It is expected in 10% of the experiments when looking at 25 sources (post-trial probability).

very close to the source location.

15/5/2009

Fixed-source

<u>eoarch</u>

Upper limits obtained with 2007 data (5 lines), compared with 1 year of complete detector (12 lines) and other experiments.

15/5/2009

F. Salesa

All-sky search

Sky man with the 94 Events selected for pointlike source analysis with 2007 data.

First neutrino sky map of ANTARES

15/5/2009

F. Salesa

All-sky search

40 Declination (deg) 0 20 -٠ -20 -40 -60 -80 300 350 0 50 100 150 200 250 RA (deg) 15/5/2009 Coll. Meeting F. Salesa

In our sample : **BICobs = 1.4** (highest value) **p-value = 0.3** (1 σ excess) (δ = -63.7° RA =243.9°)

No significant excess was found

