Workshop on Gravitational Waves and High-Energy Neutrinos@Paris, May 18, 2009

Joint emitters of GW and HEV: What and how frequent are they?

Shin'ichiro Ando California Institute of Technology

Requirements for potential sources

- Massive
- Violent (time scale less than sec)
- Energetic
- Contain rich baryons (to produce neutrinos)
- Close enough
- Frequent enough

List of GW+HEv sources

- Galactic sources
 - Soft γ repeaters
 - Micro quasars
- Extragalactic sources
 - Long GRBs
 - Short GRBs
 - Low-luminosity GRBs

List of GW+HEv sources

- Galactic sources
 - Soft γ repeaters
 - Micro quasars
- Extragalactic sources
 - Long GRBs
 - Short GRBs
 - Low-luminosity GRBs

Stellar collapase (supernova, hypernova)

GW	core collapse, jets
ΗEν	jets (particle acceleration)

GW	core collapse, jets					
ΗEν	jets (particle acceleration)					

Luminous collapse

- Luminous collapse
 - GRBs, supernovae, hypernovae

GW	core collapse, jets
ΗEν	jets (particle acceleration)

- Luminous collapse
 - GRBs, supernovae, hypernovae
 - Also bright in photons and MeV neutrinos (if in the Galaxy), providing valuable timing information

GW	core collapse, jets
ΗEν	jets (particle acceleration)

- Luminous collapse
 - GRBs, supernovae, hypernovae
 - Also bright in photons and MeV neutrinos (if in the Galaxy), providing valuable timing information
- Dark collapse: unidentified

GW	core collapse, jets
ΗEν	jets (particle acceleration)

- Luminous collapse
 - GRBs, supernovae, hypernovae
 - Also bright in photons and MeV neutrinos (if in the Galaxy), providing valuable timing information
- Dark collapse: unidentified
 - Potentially interesting for GW/HEv search

Long GRB-supernova association

Hjorth et al. 2003; Stanek et al. 2003

- Supernova/hypernova is likely a source of long GRBs
- What's the underlying relation between them?

	SN	GRB
Energy	10 ⁵¹ erg	10 ⁵¹ erg
Rate	~l cen ⁻¹ gal ⁻¹	~I Myr ⁻¹ gal ⁻¹
Г	~	~I00–I0 ³

Are there sources in between?

• Why are GRB jets relativistic? — compactness problem

E.g., Piran 2005

Without relativistic effect:

- Size of the emitting region $\lesssim c\delta t$ - Density of photons $\frac{4\pi d^2 F}{\bar{E}_{\gamma}c^3\delta t^2}$ - Opacity for YY absorption $\frac{f_e \sigma_T 4\pi d^2 F}{\bar{E}_{\gamma}c^2\delta t} \approx 10^{15}$

• Why are GRB jets relativistic? — compactness problem

E.g., Piran 2005

Without relativistic effect: With relativistic effect: - Size of the emitting region $\lesssim c\delta t$ - Density of photons $4\pi d^2 F$ $\overline{\bar{E}_{\gamma}c^3\delta t^2}$ - Opacity for yy absorption $\frac{f_e \sigma_T 4\pi d^2 F}{\bar{E}_{\gamma} c^2 \delta t} \approx 10^{15}$

• Why are GRB jets relativistic? — compactness problem

E.g., Piran 2005

Without relativistic effect: With relativistic effect: - Size of the emitting region $\leq c \delta t \Gamma^2$ - Density of photons $4\pi d^2 F$ $\overline{ar{E}_{\gamma}c^{3}\delta t^{2}}$ - Opacity for yy absorption $\frac{f_e \sigma_T 4\pi d^2 F}{\bar{E}_{\gamma} c^2 \delta t} \approx 10^{15}$

• Why are GRB jets relativistic? — compactness problem

E.g., Piran 2005

Without relativistic effect: With relativistic effect: - Size of the emitting region $\leq c \delta t \, \Gamma^2$ - Density of photons $\Gamma^{-4} \frac{4\pi d^2 F}{\bar{E}_{\gamma} c^3 \delta t^2}$ - Opacity for yy absorption $\frac{f_e \sigma_T 4\pi d^2 F}{\bar{E}_{\gamma} c^2 \delta t} \approx 10^{15}$

• Why are GRB jets relativistic? — compactness problem

E.g., Piran 2005

Without relativistic effect: With relativistic effect: - Size of the emitting region $\leq c \delta t \, \Gamma^2$ - Density of photons $\Gamma^{-4} \frac{4\pi d^2 F}{\bar{E}_{\gamma} c^3 \delta t^2}$ - Opacity for yy absorption $\Gamma^{-2-2\alpha} \frac{f_e \sigma_T 4\pi d^2 F}{\bar{E}_{\alpha} c^2 \delta t} \approx 10^{15} \Gamma^{-2-2\alpha}$

• Why are GRB jets relativistic? — compactness problem

E.g., Piran 2005

Without relativistic effect: With relativistic effect: - Size of the emitting region $\leq c \delta t \, \Gamma^2$ - Density of photons $\Gamma^{-4} \frac{4\pi d^2 F}{\bar{E}_{\gamma} c^3 \delta t^2}$ - Opacity for yy absorption $\Gamma^{-2-2\alpha} \frac{f_e \sigma_T 4\pi d^2 F}{\bar{E}_{\alpha} c^2 \delta t} \approx 10^{15} \Gamma^{-2-2\alpha}$

So, we need $\Gamma = O(100)$ for nonthermal spectra

Are there "dark" GRBs?

- If Γ < 100, photons don't escape from the source → no GRB-like signal
- This doesn't mean these sources don't exist
 - They might be even more frequent

$$M_{\rm ej} = \frac{E_K}{\Gamma c^2} \approx 10^{-5} M_{\odot} \left(\frac{E_K}{10^{51} \text{ erg}}\right) \left(\frac{\Gamma}{100}\right)^{-1}$$

• Tension of low-baryon issue is loosened for Γ ~3 burst

More baryons → more neutrino production Could be strong GW sources Unknown rate but could be large

Unrevealed supernova-GRB connection?

	SN	"Failed" GRB	GRB
Energy	10 ⁵¹ erg	10 ⁵¹ erg	10 ⁵¹ erg
Rate/gal	~10 ⁻² yr ⁻¹	10 ⁻⁵ -10 ⁻² yr ⁻¹	~10 ⁻⁵ yr ⁻¹
Г	~	~3–100	~100–10 ³
	Barion rich Nonrelativistic Frequent	Similar kinetic energy	Baryon poor Relativistic jets Rare

• Evidence of mildly relativistic jets:

Kulkarni et al. 1998; Berger et al. 2003; Totani 2002; Granot & Ramirez-Ruiz 2004; van Putten 2004; Soderberg et al. 2004, 2006, 2008, etc.

Model

Razzaque, Meszaros, & Waxman (2004)

- Consider internal shocks of $E_K = 3 \times 10^{51}$ erg, $\Gamma = 3$ jets ejecta
- Kinetic energy is converted to thermal energy with protons accelerated as E_p^{-2} spectrum
- Some fraction (10%) goes to electrons and magnetic fields

- Mesons either lose energy or decay
- Energy-loss processes
 - πp, Kp interaction (hadronic cooling)
 - Synchrotron, inverse-Compton (radiative cooling)

- Mesons either lose energy or decay
- Energy-loss processes
 - πp, Kp interaction (hadronic cooling)
 - Synchrotron, inverse-Compton (radiative cooling)

- Mesons either lose energy or decay
- Energy-loss processes
 - πp, Kp interaction (hadronic cooling)
 - Synchrotron, inverse-Compton (radiative cooling)

- Mesons either lose energy or decay
- Energy-loss processes
 - πp, Kp interaction (hadronic cooling)
 - Synchrotron, inverse-Compton (radiative cooling)

- Mesons either lose energy or decay
- Energy-loss processes
 - πp, Kp interaction (hadronic cooling)
 - Synchrotron, inverse-Compton (radiative cooling)

- Mesons either lose energy or decay
- Energy-loss processes
 - πp, Kp interaction (hadronic cooling)
 - Synchrotron, inverse-Compton (radiative cooling)

- Mesons either lose energy or decay
- Energy-loss processes
 - πp, Kp interaction (hadronic cooling)
 - Synchrotron, inverse-Compton (radiative cooling)

$$t_{\text{decay}} = \tau \frac{E}{m}$$
$$t_{\text{hc}} = \frac{E}{c\sigma_h n_p \Delta E}$$
$$t_{\text{rc}} = \frac{3m^4 c^3}{4\sigma_T m_e^2 E(U_\gamma + U_B)}$$

Neutrino spectrum

- K-decay neutrinos have higher break energies because
 - Lifetime is twice shorter
 - 4 times massive, significantly less radiative loss (t_{rc}~m⁴)
 - Neutrino carries larger fraction of meson energy

Events at km³ detectors

Ando & Beacom, Phys. Rev. Lett. 95, 061103 (2005)

- Kaon contribution dominates
- Expected events above 100 GeV:
 - ~30 @ 10 Mpc ~3 @ 30 Mpc
- These events cluster within 10 s time and 3° angular bins
 - Extremely low background

Neutrinos from reverse shocks

Horiuchi & Ando, Phys. Rev. D 77, 063007 (2008)

How frequent are they?

- Neutrino horizon for km³ detectors: 10–30 Mpc
- Core-collapse supernova rate sets the upper limit
- Estimate of R_{SN}
 - UV/opt/IR luminosity conversion
 - Direct number count
 - I.8 MeV ²⁶Al line (Galactic)
 - Count of supernova remnants (Galactic)
 - Etc.

Summary of Galactic supernova rate estimate

Diehl et al., Nature 439, 45 (2006)

methods

Authors	SFR	SNR	Comments				
	[M _∞ y⁻¹]	[century ⁻¹]					
Smith et al. 1978	5.3	2.7					
Talbot 1980	0.8	0.41					
Guesten et al. 1982	13.0	6.6					
Turner 1984	3.0	1.53					
Mezger 1987	5.1	2.6					
McKee 1989	3.6 (R)	1.84					
	2.4 (IR)	1.22					
van den Bergh 1990	2.9 ± 1.5	1.5 ± 0.8	"the best estimate"				
van den Bergh & Tammann 1991	7.8	4	extragalactic scaling				
Radio Supernova Remnants	6.5 ± 3.9	3.3 ± 2.0	very unreliable				
Historic Supernova Record	11.4 ± 4.7	5.8 ± 2.4	very unreliable				
Cappellaro et al. 1993	2.7 ± 1.7	1.4 ± 0.9	extragalactic scaling				
van den Bergh & McClure 1994	4.9 ± 1.7	2.5 ± 0.9	extragalactic scaling				
Pagel 1994	6.0	3.1					
McKee & Williams 1997	4.0	2.0	used for calibration				
Timmes, Diehl, Hartmann 1997	5.1 ± 4	2.6 ± 2.0	based on ²⁶ AI method				
Stahler & Palla 2004	4 ± 2	2 ± 1	Textbook				
Reed 2005	2-4	1-2					
Diehl et al. 2005	3.8 ± 2.2	1.9 ± 1.1	this work				
Table 1: Star formation and core-collapse supernova rates from different							

 All methods converge at R_{SN} ~ a few / century

 No neutrino burst in the last 25 years sets upper limit: < 9.2 / century (90% CL)

> Alekseev & Alekseeva 2002; Raffelt 2007

Supernova rate with galaxy catalog

- Galaxy catalog (name, distance, morphology, luminosity, etc.) by
 Karachentsev et al. (2004)
- Conversion to SN rate with calibration by Cappellaro et al. (1999)
 - Underestimating starbursts?
- R_{SN} ~ I / yr within I0
 Mpc

Direct supernova count in nearby galaxies

List of Supernovae

As of May 13, 2009 at

www.cfa.harvard.edu/iau/lists/Supernovae.html

This page gives details on all supernovae reported since 1885, as well as four earlier galactic supernovae. All coordinates given in the table below are J2000.0 positions. Date refers to the date of discovery, Mag. to the magnitude at discovery and Offset to the offset from the nucleus of the host galaxy as reported at time of discovery. Disc. Ref. is the reference to the discovery report, Posn. Ref. is the source of the accurate position and Type is the supernova's type (as reported at or near the time of discovery). Note that the preferred hierarchy for host-galaxy catalogue designations is M/NGC/IC, UGC, MCG; all other catalogues are considered "Anon" below.

Links are provided to the references, but access to recent circulars requires a subscription.

This list may be freely pointed-to from your own Web site, but must not be copied to your own site or otherwise redistributed. If you use information from this list in the preparation of any publication, please acknowledge this URL and <u>CBAT</u>.

A list of recent supernovae is also available.

SN	Host Galaxy	Date	R.A.	Decl.	Offset	Mag.	Disc. Ref.	SN Pos	sition	Posn. Ref	. Туре	SN	Discovere	r(s)	
2009	el ESO 269-74	2009	05 12	2 13 14	4.3 -46 (07	15.3	CBET 1797	13 14	20.47 -46	06 44.9	CBET 1	797	? ;	2009el Pignata et al. (CHASE)
2009	ek Anon.	2009 04	23 1	5 19.8	+48 32	1E	OS 20.7	CBET 1796	15 19	46.76 +4	8 31 50.6	CBET	1796	la	2009ek Sands et al.
2009	ej Anon.	2009 04	22 1	5 11.0	+06 33	1E	3S 19.0	CBET 1796	15 10	59.53 +06	33 10.0	CBET	1796	la	2009ej Sands et al.
2009	a Anon.	2009 04	22 1	4 32.3	+25 36		20.9 🧰	ET 1796	14 32 17	.26 +25 3	6 1 5.8 📿	BET 17	9 <u>6</u> la	20	09ei Sands et al.
2009	eh Anon.	2009 04	103 1	5 20.6	+07 40	1E	2S 21.2	CBET 1796	15 20	38.08 +0	7 39 32.5	CBET	1796	la	2009eh Sands et al.
2009	eg Anon.	2009 03	3 3 1 1	4 54.3	+18 58	7W	1N 17.6	CBET 1796	145	4 15.47 +	8 57 52.8	B <u>CBE</u>	<u>71796</u>	la	2009eg Sands et al.
2009	ef Anon.	2009 03	23 1	5 19.2	+06 21	2E	1N 21.8	CBET 1796	15 19	12.57 +0	6 21 29.2	CBET	1796	lb	2009ef Sands et al.
2009	e IC 2738	2009 0	5 09	11 21.4	4 +34 20	288	E 61S 17.	5 <u>CBET 179</u>	5 11	21 25.30 -	+34 20 23	.3 <u>CB</u>	<u>ET 1795</u>	?	2009ee LOSS
2009	ed Anon.	2009 04	124 0	9 23.7	+50 24	3W	22S 17.9	CBET 1792	09 2	23 41.42 +	50 24 11.	2 <u>CBE</u>	T1792	?	2009ed Drake et al. (CRTS)
2009	ec Anon.	2009 04	19 1	1 06.5	+24 05	2W	ON 18.3	<u>CBET 1792</u>	110	6 28.89 +2	4 05 15.4	CBE	<u>71792</u>	?	2009ec Drake et al. (CRTS)
2009	b Anon.	2009 04	17 0	9 54.7	+19 11	1E	3N 17.7	CBET 1792	09 54	40.35+1	9 11 12.7	CBE7	1792	?	2009eb Drake et al. (CRTS)
2009	ea Anon.	2009 04	03 1	4 47.1	+09 58	2E	10N 18.1	CBET 1792	14.4	7 02.39 +0	9 57 37.4	CBE	<u>71792</u>	?	2009ea Drake et al. (CRTS)
2009	iz Anon.	2009 04	103 1	2 35.6	+01 52	2E	5N 18.1	CBET 1792	12 35	5 35.77 +0	1 52 12.6	CBE7	1792	?	2009dz Drake et al. (CRTS)
2009	ly Anon.	2009 04	1 22 1	5 01.1	+43 13	1E	OS 18.4	<u>CBET 1791</u>	15 01	04.03 +4	3 13 13.9	<u>CBET</u>	1791	la	2009dy Drake et al. (CRTS)
2009	ix Anon.	2009 04	121 1	6 49.4	+05 53	0W	4S 18.8	CBET 1791	164	9 25.67 +0)5 52 48.1	CBE	<u>71791</u>	la	2009dx Drake et al. (CRTS)
2009	dw Anon.	2009 0	4 21	13 36.2	2 +34 03	2 W	15 19.2	CBET 1791	133	6 09.45 +	34 03 19.0	0 <u>CBE</u>	<u>71791</u>	IIP	2009dw Drake et al. (CRTS)
2009	dv Anon.	2009 04	118 1	3 24.7	+16 34	14E	13N 19.3	3 <u>CBET 1791</u>	13 2	24 40.15 +	16 34 05.	5 <u>CBI</u>	<u>71791</u>	IIF	2009dv Drake et al. (CRTS)
2009	du Anon.	2009 04	4171	13 39.8	-21 27		19.4 📿	<u>ET 1791</u>	13 39 46	6.36 -21 2	7 19.1 📿	SET 179	<u>91</u> la	20	09du Drake et al. (CRTS)
2009	it IC 5169	2009 0	4 28	22 10.	2 -36 06	9W	24S 17.2	2 CBET 1785	22 1	0 09.27 -	36 05 42.6	6 <u>CBE</u>	<u>71785</u>	lc	2009dt Pignata et al. (CHASE)
2009	Is NGC 3905	2009	04 28	3 11 49	9.1 -09 4	44 12	2W 3N 16	5.8 <u>CBET 178</u>	<u>84</u> 11	1 49 04.11	-09 43 44	4.9 🧕	<u>BET 1784</u>	1	a 2009ds Itagaki
2009	ir Anon.	2009 04	17 1	4 44.7	+49 44		20.3 📿	<u>3ET 1783</u>	14 44 42	2.08 +49 4	3 44.9 🕻	BET 17	' <mark>83</mark> la	? 20	009dr "Palomar Transient Factory" of
2009	ia IC 2554	2009.0	4 2 4	10 08.	8 - 67 02	2 W	35 15.2	CBET 1781	10.0	8 49.94 -6	7 01 57.3	CBET	71781	llb	2009dg Pignata et al. (CHASE)

Direct supernova count: recent progress

Efficiency of SN discovery improved in late-1990s

Direct supernova count: productive galaxies

Galaxy	Distance (Mpc)	Known supernova
NGC 2403	3.3	1954J, 2002kg, 2004dj
NGC 5236 (M 83)	4.5	1923A, 1945B, 1950B, 1957D, 1968L, 1983N
NGC 6946	5.6	1917A, 1939C, 1948B, 1968D, 1969P, 1980K, 2002hh, 2004et, 2008S
NGC 5457 (M 101)	7.4	1909A, 1951H, 1970G

NGC 6946.

Direct supernova count: Last decade

Direct supernova count: Last decade

• 20 (6) SNe within 10 (4) Mpc in the last decade (most likely lower limit)

Direct supernova count: Last decade

• 20 (6) SNe within 10 (4) Mpc in the last decade (most likely lower limit)

• Within 10 Mpc, $R_{SN} > 2-3 \text{ yr}^{-1}$, much larger than previous estimate 1 / yr

Nearby starburst: NGC 253

• Edge-on galaxy at 2.5–3.9 Mpc

Mauersberger et al. 1996; Karachentsev et al. 2004

 Heavily dusty starburst galaxy, very bright in IR band

• Estimated SN rate = 0.1 / yr

 However, only one SN (1940E) has been discovered

Nearby starburst: M82

"Cigar" Galaxy M82 Spitzer Space Telescope • IRAC NASA / JPL-Caltech / R. Kennicutt (Cambridge, University of Arizona) and the SINGS team ssc2006-09

- Same as NGC 253, but at 3.5 Mpc
- Two SNe (1986D; 2004am) so far

Nearby starburst: M82

 "Cigar" Galaxy M82
 Spitzer Space Telescope • IRAC

 NASA / JPL-Caltech / R. Kennicutt (Cambridge, University of Arizona) and the SINGS team
 ssc2006-09

• Same as NGC 253, but at 3.5 Mpc

• Two SNe (1986D; 2004am) so far

Many SNe have likely been missed by dust extinction!!

 Using galaxy luminosity is likely significant underestimate of the true rate

 Using galaxy luminosity is likely significant underestimate of the true rate

- Using galaxy luminosity is likely significant underestimate of the true rate
- Direct count implies that lower limit is 2–3 yr⁻¹ within 10 Mpc

- Using galaxy luminosity is likely significant underestimate of the true rate
- Direct count implies that lower limit is 2–3 yr⁻¹ within 10 Mpc

- Using galaxy luminosity is likely significant underestimate of the true rate
- Direct count implies that lower limit is 2–3 yr⁻¹ within 10 Mpc
- Many SNe in starbursts have likely been missed

- Using galaxy luminosity is likely significant underestimate of the true rate
- Direct count implies that lower limit is 2–3 yr⁻¹ within 10 Mpc
- Many SNe in starbursts have likely been missed
- The true rate could be significantly larger!

Fraction of jetted population in SNe

- We expect $R_{SN}(< 10 \text{ Mpc}) \sim 3 \text{ yr}^{-1}$, $R_{SN}(< 30 \text{ Mpc}) \sim 90 \text{ yr}^{-1}$
- But what fraction of SNe have relativistic jets?
 - Determined by mass, rotation, magnetic fields, etc...(?)
 - If only mass determines it:

Mass threshold	R _{SN} (<10 Mpc)	R _{SN} (<30 Mpc)
> 8 M _{sun}	3 yr-1	90 yr ⁻¹
> 30 M _{sun}	0.4 yr ⁻¹	10 yr ⁻¹
> 50 M _{sun}	0.2 yr ⁻¹	6 yr ⁻¹
> 70 M _{sun}	0.1 yr-1	3 yr-1

Conclusions I

- Stellar collapse is promising source for GW/HEV
- Baryon-rich (failed) GRB
 - Rate can be very large
 - Good for neutrino production
- For the model with E_K=3x10⁵¹ erg and Γ=3, we expect ~30 neutrino events at km³ detectors from a 10-Mpc burst
- Kaon decays give important contribution than π decays

Conclusions 2

- Supernova rate in the Galaxy is ~I-3 century⁻¹
- Supernova rate in the local Universe is ~I-3 yr⁻¹ (within 10 Mpc)
- But it could be much larger because of
 - Starbursts (M 82, NGC 253) around 3 Mpc
 - Virgo cluster around 17 Mpc
- Good fraction might be associated with jets
- If 10%, then $R_{\text{failed GRB}} \sim 10 \text{ yr}^{-1}$ within 30 Mpc

Supernova Search: KAIT (since 1998)

http://astro.berkeley.edu/~bait/kait.html

- PI: Alex Filippenko (UC Berkeley)
- Robotic telescope of 76-cm diameter, dedicated for supernova search
- Discovering ~80–100 SNe each year
- No comparable effort in southern hemisphere