
PYTHON LIBRARIES
Tamás Gál

tamas.gal@fau.de

@tamasgal

https://github.com/tamasgal

1st ASTERICS-OBELICS International School
6-9 June 2017, Annecy, France.

mailto:tamas.gal@fau.de
https://github.com/tamasgal

• Who is this clown?

• Python Introduction

• Basic Python Internals

• Libraries and Tools for Scientific Computing
• NumPy
• Numba
• NumExpr
• SciPy
• AstroPy
• Pandas
• SymPy
• Matplotlib
• Jupyter
• IPython

OVERVIEW

} Make it faster!

} Tools for scientists!

WHO IS THIS CLOWN?
• Tamás Gál, born 1985 in Debrecen (Hungary)
• PhD candidate in astro particle physics at 

Erlangen Centre for Astroparticle Physics (ECAP) working on the KM3NeT project
• Programming background:

• Coding enthusiast since ~1993
• First real application written in Amiga Basic (toilet manager, tons of GOTOs)
• Python, JuliaLang, JavaScript and C/C++/Obj-C for work
• Haskell for fun
• Earlier also Java, Perl, PHP, Delphi, MATLAB, whatsoever…
• I also like playing around with integrated circuits and Arduino

• Some related projects: 
KM3Pipe (core analysis framework in the KM3NeT experiment), 
RainbowAlga (interactive 3D neutrino event display), 
ROyWeb (interactive realtime visualisation/graphing)

3

PYTHON

BRIEF HISTORY OF PYTHON

• Rough idea in the late 1980s

• Meant to descend the ABC language

• First line of code in December 1989 by Guido van Rossum

• Python 2.0 in October 2000

• Python 3.0 in December 2008
5

PYTHONS POPULARITY

“Programming language of the year” in 2007 and 2010.
6

POPULAR LANGUAGES

Python is currently the fourth most popular language 
and rocks the top 10 since 2003.

7

YOUR JOURNEY THROUGH PYTHON?  
(JUST A VERY ROUGH GUESS, NOT A MEAN GAME)

• Have you ever launched the Python interpreter?
• Wrote for/while-loops or if/else statements?
• …your own functions?
• …classes?
• …list/dict/set comprehensions?
• Do you know what a generator is?
• Have you ever implemented a decorator?
• …a metaclass?
• …a C-extension?
• Do you know and can you explain the output of the following line?

print(5 is 7 - 2, 300 is 302 - 2)

Raise your hand and keep it up until you answer a question with “no”.

Explorer

Intermediate

Advanced

Are you
kidding me???

Novice

8

BASIC PYTHON INTERNALS
to understand the performance issues

FROM SOURCE TO RUNTIME

foo.py foo.pyccompiler interpreter runtime

bytecodesource

10

DATA IN PYTHON

• Every piece of data is a PyObject

>>> dir(42)
['__abs__', '__add__', '__and__', '__bool__', '__ceil__', '__class__',
'__delattr__', '__dir__', '__divmod__', '__doc__', '__eq__', '__float__',
'__floor__', '__floordiv__', '__format__', '__ge__', '__getattribute__',
'__getnewargs__', '__gt__', '__hash__', '__index__', '__init__',
'__init_subclass__', '__int__', '__invert__', '__le__', '__lshift__', '__lt__',
'__mod__', '__mul__', '__ne__', '__neg__', '__new__', '__or__', '__pos__',
'__pow__', '__radd__', '__rand__', '__rdivmod__', '__reduce__', '__reduce_ex__',
'__repr__', '__rfloordiv__', '__rlshift__', '__rmod__', '__rmul__', '__ror__',
'__round__', '__rpow__', '__rrshift__', '__rshift__', '__rsub__', '__rtruediv__',
'__rxor__', '__setattr__', '__sizeof__', '__str__', '__sub__',
'__subclasshook__', '__truediv__', '__trunc__', '__xor__', 'bit_length',
'conjugate', 'denominator', 'from_bytes', 'imag', 'numerator', 'real',
'to_bytes']

PyObject
ref.  

counttype

PyIntObject

type ref.  
count

field attr.

field attr.attr.

type
ref.  

count

42

structural  
subtype

PyTypeObject  
(_typeobject)

11

THE TYPE OF A PyObject
“An object has a ‘type’ that determines what it
represents and what kind of data it contains.  
An object’s type is fixed when it is created. Types
themselves are represented as objects. The type itself
has a type pointer pointing to the object representing
the type ‘type’, which contains a pointer to itself!”

— object.h
12

YOUR BEST FRIEND AND WORST ENEMY:

GIL - Global Interpreter Lock

• The GIL prevents parallel execution of (Python) bytecode

• Even though Python has real threads, they never execute
code at the same time

• Context switching between threads creates overhead
(the user cannot control thread-priority)

• Threads perform pretty bad on CPU bound tasks

• They do a great job speeding up I/O heavy tasks

13

THREADS AND CPU BOUND TASKS

This is probably not really what you expected…

single thread: two threads:

14

THREADS FIGHTING FOR THE GIL

By David M Beazley: http://dabeaz.com/GIL/gilvis

15

OS X: 4 threads on 1 CPU (Python 2.6)

http://dabeaz.com/GIL/gilvis

THREADS FIGHTING FOR THE GIL

By David M Beazley: http://dabeaz.com/GIL/gilvis

16

OS X: 4 threads on 4 CPUs (Python 2.6)

http://dabeaz.com/GIL/gilvis

OK, but then: how should Python ever compete with
all those super fast C/Fortran libraries?

C-extensions and interfacing C/Fortran!

Those can release the GIL and do the heavy stuff in
the background.

A DUMB SPEED COMPARISON
CALCULATING THE MEAN OF 1000000 RANDOM NUMBERS

pure Python: NumPy (~13x faster):

Numba (~8x faster):
Julia (~16x faster):

19

CRAZY LLVM COMPILER OPTIMISATIONS
SUMMING UP NUMBERS FROM 0 TO N=100,000,000

pure Python: NumPy (~80x faster):

Numba (~300000x faster):
Julia (~7000000x faster):

20

pushq %rbp
movq %rsp, %rbp
xorl %eax, %eax

Source line: 3
testq %rdi, %rdi
jle L32
leaq -1(%rdi), %rax
leaq -2(%rdi), %rcx
mulq %rcx
shldq $63, %rax, %rdx
leaq -1(%rdx,%rdi,2), %rax

Source line: 6
L32:

popq %rbp
retq
nopw %cs:(%rax,%rax)

PYTHON LIBRARIES
for scientific computing

AstroPy
IPython

Matplotlib

NumPy

pandas

SimPy

Jupyter

SciPy
Numba Numexpr

22

Not part of NumFocus but covered in this talk:

 SCIPY
Scientific Computing Tools for Python

THE SCIPY STACK

• Core packages
• SciPy Library: numerical algorithms, signal processing, optimisation, statistics etc.
• NumPy
• Matplotlib: 2D/3D plotting library
• pandas: high performance, easy to use data structures
• SymPy: symbolic mathematics and computer algebra
• IPython: a rich interactive interface to process data and test ideas
• nose: testing framework for Python code

• Other packages:
• Chaco, Mayavi, Cython, Scikits (scikit-learn, scikit-image), h5py, PyTables and

much more
https://www.scipy.org

24

https://www.scipy.org

SCIPY CORE LIBRARY
• Clustering package (scipy.cluster)
• Constants (scipy.constants)
• Discrete Fourier transforms (scipy.fftpack)
• Integration and ODEs (scipy.integrate)
• Interpolation (scipy.interpolate)
• Input and output (scipy.io)
• Linear algebra (scipy.linalg)
• Miscellaneous routines (scipy.misc)
• Multi-dimensional image processing (scipy.ndimage)
• Orthogonal distance regression (scipy.odr)
• Optimization and root finding (scipy.optimize)
• Signal processing (scipy.signal)
• Sparse matrices (scipy.sparse)
• Sparse linear algebra (scipy.sparse.linalg)
• Compressed Sparse Graph Routines

(scipy.sparse.csgraph)
• Spatial algorithms and data structures (scipy.spatial)
• Special functions (scipy.special)
• Statistical functions (scipy.stats)
• Statistical functions for masked arrays (scipy.stats.mstats)

25

SCIPY INTERPOLATE

26

from scipy import interpolate

x = np.linspace(0, 10, 10)
y = np.sin(x)

x_fine = np.linspace(0, 10, 500)

f_linear = interpolate.interp1d(x, y, kind='linear')
f_bicubic = interpolate.interp1d(x, y, kind='cubic')

plt.plot(x, y, 'o',
 x_fine, f_linear(x_fine), '--',
 x_fine, f_bicubic(x_fine), ‘-.');

 NUMPY
Numerical Python

NUMPY
NumPy is the fundamental package for scientific computing with Python.

• gives us a powerful N-dimensional array object: ndarray

• broadcasting functions

• tools for integrating C/C++ and Fortran

• linear algebra, Fourier transform and random number capabilities

• most of the scientific libraries build upon NumPy

28

NUMPY: ndarray
ndim: 1
shape: (6,)

29

4 5 61 2 3
Continuous array in memory with a fixed type, 

no pointer madness!
C/Fortran compatible memory layout, 

so they can be passed to those 
without any further efforts.

NUMPY: ARRAY OPERATIONS AND ufuncs

30

easy and intuitive
element-wise 
operations

a ufunc, which can operate both on scalars and arrays (element-wise)

RESHAPING ARRAYS
ndim: 1
shape: (6,)

4 5 61 2 3

No rearrangement of the elements
but setting the iterator limits internally!

31

a[0] a[1]

RESHAPING ARRAYS IS CHEAP

32

Don’t worry, we will discover NumPy in the hands-on workshop!

MATPLOTLIB
A Python plotting library which produces publication quality figures in a variety
of hardcopy formats and interactive environments.

• Integrates well with IPython and Jupyter

• Plots, histograms, power spectra, bar charts, error chars, scatterplots, etc. with
an easy to use API

• Full control of line styles, font properties, axes properties etc.

• The easiest way to get started is browsing its wonderful gallery full of
thumbnails and copy&paste examples: 
http://matplotlib.org/gallery.html

34

http://matplotlib.org/gallery.html

MATPLOTLIB EXAMPLE

35

MATPLOTLIB EXAMPLE

36

PANDAS
A Python Data Analysis Library inspired by data frames in R, which

• gives us a powerful data structure: DataFrame

• database-like handling of data

• integrates well with NumPy

• wraps the Matplotlib API

• has a huge number of I/O related functions to parse data: 
CSV, HDF5, SQL, Feather, JSON, HTML, Excel, and more…

38

THE DataFrame

39

A table-like structure, where you can access elements  
by row and column.

THE DataFrame

40

Lots of functions to allow filtering, manipulating 
and aggregating the data to fit your needs.

Don’t worry, we will discover Pandas in the hands-on workshop!

 NUMBA
JIT (LLVM) compiler for Python

sponsored by

NUMBA
Numba is a compiler for Python array and numerical functions that gives you the
power to speed up code written in directly in Python.

• uses LLVM to boil down pure Python code to JIT optimised machine code

• only accelerate selected functions decorated by yourself

• native code generation for CPU (default) and GPU

• integration with the Python scientific software stack (thanks to NumPy)

• runs side by side with regular Python code or third-party C extensions and libraries

• great CUDA support

• N-core scalability by releasing the GIL (beware: no protection from race conditions!)

• create NumPy ufuncs with the @[gu]vectorize decorator(s)

42

FROM SOURCE TO RUNTIME

foo.py foo.pyccompiler runtime

bytecodesource

43

Type inference
Typed

Numba IR

Control flow graph Data flow graph

Numba IR

bytecode
interpretation

Lowering LLVM IR

interpreter

Codegen via
LLVM

NUMBA JIT-EXAMPLE

def sum2d(arr):
 M, N = arr.shape
 result = 0.0
 for i in range(M):
 for j in range(N):
 result += arr[i,j]
 return result

@nb.jit
def sum2d_jit(arr):
 M, N = arr.shape
 result = 0.0
 for i in range(M):
 for j in range(N):
 result += arr[i,j]
 return result

numbers = np.arange(1000000).reshape(2500, 400)

289 ms ± 3.02 ms per loop 2.13 ms ± 42.6 µs per loop

~135x faster, with a single line of code
44

NUMBA VECTORIZE-EXAMPLE

np.abs(a - b) / (np.abs(a) + np.abs(b))

a = np.arange(1000000, dtype='f8')
b = np.arange(1000000, dtype='f8') + 23

23 ms ± 845 µs per loop

3.56 ms ± 43.2 µs per loop

~6x faster
45

@nb.vectorize
def nb_rel_diff(a, b):
 return abs(a - b) / (abs(a) + abs(b))

rel_diff(a, b)

NumPy:

Numba @vectorize:

NUMEXPR
initially written by David Cooke

Routines for the fast evaluation of array expressions elementwise  
by using a vector-based virtual machine.

NUMEXPR USAGE EXAMPLE

import numpy as np
import numexpr as ne

a = np.arange(5)
b = np.linspace(0, 2, 5)

ne.evaluate("a**2 + 3*b”)

array([0. , 2.5, 7. , 13.5, 22.])

47

NUMEXPR SPEED-UP

2 * a**3 - 4 * a**5 + 6 * np.log(a)

a = np.random.random(1000000)

82.4 ms ± 1.88 ms per loop

7.85 ms ± 103 µs per loop

~10x faster
48

ne.set_num_threads(4)

ne.evaluate("2 * a**3 - 4 * a**5 + 6 * log(a)")

NumPy:

Numexpr with 4 threads:

NUMEXPR - SUPPORTED OPERATORS

• Logical operators: &, |, ~

• Comparison operators: 
<, <=, ==, !=, >=, >

• Unary arithmetic operators: -

• Binary arithmetic operators: 
+, -, *, /, **, %, <<, >>

49

NUMEXPR - SUPPORTED FUNCTIONS

• where(bool, number1, number2): number -- number1 if the bool condition is true, number2 otherwise.
• {sin,cos,tan}(float|complex): float|complex -- trigonometric sine, cosine or tangent.
• {arcsin,arccos,arctan}(float|complex): float|complex -- trigonometric inverse sine, cosine or tangent.
• arctan2(float1, float2): float -- trigonometric inverse tangent of float1/float2.
• {sinh,cosh,tanh}(float|complex): float|complex -- hyperbolic sine, cosine or tangent.
• {arcsinh,arccosh,arctanh}(float|complex): float|complex -- hyperbolic inverse sine, cosine or tangent.
• {log,log10,log1p}(float|complex): float|complex -- natural, base-10 and log(1+x) logarithms.
• {exp,expm1}(float|complex): float|complex -- exponential and exponential minus one.
• sqrt(float|complex): float|complex -- square root.
• abs(float|complex): float|complex -- absolute value.
• conj(complex): complex -- conjugate value.
• {real,imag}(complex): float -- real or imaginary part of complex.
• complex(float, float): complex -- complex from real and imaginary parts.
• contains(str, str): bool -- returns True for every string in `op1` that contains `op2`.
• sum(number, axis=None): Sum of array elements over a given axis. Negative axis are not supported.
• prod(number, axis=None): Product of array elements over a given axis. Negative axis are not supported.

50

THE HISTORY OF ASTROPY
(standard situation back in 2011)

• Example Problem: convert from EQ J2000 RA/Dec to Galactic
coordinates

• Solution in Python
• pyast
• Astrolib
• Astrophysics
• PyEphem
• PyAstro
• Kapteyn
• ???

huge discussion
started in June 2011  

series of votes

First public version (v0.2) presented and described in the following paper: 
http://adsabs.harvard.edu/abs/2013A%26A...558A..33A

52

http://adsabs.harvard.edu/abs/2013A%26A...558A..33A

ASTROPY CORE PACKAGE
A community-driven package intended to contain much of the core functionality and
some common tools needed for performing astronomy and astrophysics with Python.

• Data structures and transformations
• constants, units and quantities, N-dimensional datasets, data tables, times and dates,

astronomical coordinate system, models and fitting, analytic functions
• Files and I/O

• unified read/write interface
• FITS, ASCII tables, VOTable (XML), Virtual Observatory access, HDF5, YAML, …

• Astronomy computations and utilities
• cosmological calculations, convolution and filtering, data visualisations, astrostatistics

tools

53

ASTROPY  
AFFILIATED PACKAGES

• Tons of astronomy related packages

• which are not part of the core package,

• but has requested to be included as part of the
Astropy project’s community

54

ASTROPY EXAMPLE

downloading via HTTP

checking some FITS meta
extracting image data

plotting via Matplotlib

ASTROPY EXAMPLE

Don’t worry, we will discover AstroPy in the hands-on workshop!

56

A Python library for symbolic mathematics.

SIMPY

• It aims to become a full-featured computer algebra system (CAS)

• while keeping the code as simple as possible

• in order to be comprehensible and easily extensible.

• SymPy is written entirely in Python.

• It only depends on mpmath, a pure Python library for arbitrary
floating point arithmetic

SIMPY
• solving equations
• solving differential equations
• simplifications: trigonometry, polynomials
• substitutions
• factorisation, partial fraction decomposition
• limits, differentiation, integration, Taylor series
• combinatorics, statistics, …
• much much more

SIMPY EXAMPLE
In [1]: import math

In [2]: math.sqrt(8)
Out[2]: 2.8284271247461903

In [3]: math.sqrt(8)**2
Out[3]: 8.000000000000002B

as
e

Py
th

on

In [4]: import sympy

In [5]: sympy.sqrt(8)
Out[5]: 2*sqrt(2)

In [6]: sympy.sqrt(8)**2
Out[6]: 8

Sy
m

Py

SIMPY EXAMPLE
In [15]: x, y = sympy.symbols('x y')

In [16]: expr = x + 2*y

In [17]: expr
Out[17]: x + 2*y

In [18]: expr + 1
Out[18]: x + 2*y + 1

In [19]: expr * x
Out[19]: x*(x + 2*y)

In [20]: sympy.expand(expr * x)
Out[20]: x**2 + 2*x*y

SIMPY EXAMPLE
In [1]: import sympy

In [2]: from sympy import init_printing, integrate, diff, exp, cos, sin, oo

In [3]: init_printing(use_unicode=True)

In [4]: x = sympy.symbols('x')

In [5]: diff(sin(x)*exp(x), x)
Out[5]:
 x x
ℯ ⋅sin(x) + ℯ ⋅cos(x)

In [6]: integrate(exp(x)*sin(x) + exp(x)*cos(x), x)
Out[6]:
 x
ℯ ⋅sin(x)

In [7]: integrate(sin(x**2), (x, -oo, oo))
Out[7]:
√2⋅√π
%%%%%
 2 62

IPYTHON
• The interactive Python shell!
• Object introspection
• Input history, persistent across sessions
• Extensible tab completion
• “Magic” commands (basically macros)
• Easily embeddable in other Python programs and GUIs
• Integrated access to the pdb debugger and the Python profiler
• Syntax highlighting
• real multi-line editing
• Provides a kernel for Jupyter
• …and such more!

Project Jupyter is an open source project that offers a set of tools  
for interactive and exploratory computing.

JUPYTER
• Born out of the IPython project in 2014

• Jupyter provides a console and a notebook server for all kinds of languages 
(the name Jupyter comes from Julia, Python and R)

• An easy way to explore and prototype

• Notebooks support Markdown and LaTeX-like input and rendering

• Allows sharing code and analysis results

• Extensible (slideshow plugins, JupyterLab, VIM binding, …)

66

JUPYTER CONSOLE
A terminal frontend for kernels which use the Jupyter protocol.

67

JUPYTER NOTEBOOK
• A Web-based application suitable for capturing the whole computation process:

• developing
• documenting
• and executing code
• as well as communicating the results.

• Two main components:
• a web application: a browser-based tool for interactive authoring of documents

which combine explanatory text, mathematics, computations and their rich
media output.

• notebook documents: a representation of all content visible in the web
application, including inputs and outputs of the computations, explanatory text,
mathematics, images, and rich media representations of objects.

68

JUPYTER NOTEBOOK

cells for code/markup input

rendered output
for text/images/tables etc.

69

JUPYTERLAB

70

• The next level of interacting with notebooks

• Extensible: terminal, text editor, image viewer, etc.

• Supports editing multiple notebooks at once

• Drag and drop support to arrange panes

JUPYTERLAB

71

JUPYTERHUB

72

• JupyterHub creates a multi-user Hub which
spawns, manages, and proxies multiple instances of
the single-user Jupyter notebook server

• A nice environment for teaching

• Great tool for collaborations

DOCOPT
creates beautiful command-line interfaces

by Vladimir Keleshev
https://github.com/docopt/docopt

https://github.com/docopt/docopt

ARGPARSE/OPTPARSE

74

Many classes and functions,
default values,
extensive documentation,
very hard to memorise
a basic setup.

DOCOPT
Naval Fate.

Usage:
 naval_fate ship new <name>...
 naval_fate ship <name> move <x> <y> [--speed=<kn>]
 naval_fate ship shoot <x> <y>
 naval_fate mine (set|remove) <x> <y> [--moored|--drifting]
 naval_fate -h | --help
 naval_fate --version

Options:
 -h --help Show this screen.
 --version Show version.
 --speed=<kn> Speed in knots [default: 10].
 --moored Moored (anchored) mine.
 --drifting Drifting mine.

from docopt import docopt
arguments = docopt(__doc__, version='Naval Fate 2.0')

”””

#!/usr/bin/env python
”””

DOCOPT

naval_fate ship Guardian move 10 50 --speed=20

arguments =
{
 "--drifting": false,
 "--help": false,
 "--moored": false,
 "--speed": "20",
 "--version": false,
 "<name>": [
 "Guardian"
],
 "<x>": "10",
 "<y>": "50",
 "mine": false,
 "move": true,
 "new": false,
 "remove": false,
 "set": false,
 "ship": true,
 "shoot": false
}

H2020-Astronomy ESFRI and Research Infrastructure Cluster
(Grant Agreement number: 653477)

And many thanks to Vincent, Jayesh, Nicolas and all the
others in the organising committee!

ACKNOWLEDGEMENT

