
Parallel and concurrent programming1 www.prace-ri.eu

H2020-Astronomy ESFRI and Research Infrastructure Cluster
(Grant Agreement number: 653477).

1st ASTERICS-OBELICS International School
6-9 June 2017, Annecy, France.

Parallel and concurrent programming2 www.prace-ri.eu

Parallelism and concurrency

SURFsara

Damian Podareanu

Parallel and concurrent programming3 www.prace-ri.eu

SURFsara

History:
1971: Founded by the VU, UvA, and CWI
2013: SARA (Stichting Academisch
Rekencentrum A’dam) becomes part of SURF
Cartesius (Bull supercomputer):
40.960 Ivy Bridge / Haswell cores: 1327 TFLOPS
56GBit/s Infiniband
64 nodes with 2 GPUs each: 210 TFLOPS
NVIDIA Tesla K40m GPU
Broadwell & KNL extension (Nov 2016)
177 BDW and 18 KNL nodes: 284TFLOPS
7.7 PB Lustre parallel file-system
Top500 position
#45 2014/11
#97 2016/11

Parallel and concurrent programming4 www.prace-ri.eu

Today’s plan:

Parallel and concurrent programming5 www.prace-ri.eu

“[…] give up on parallelism already. It's not going
to happen. End users are fine with roughly on the
order of four cores, and you can't fit any more
anyway without using too much energy to be
practical in that space. And nobody sane would
make the cores smaller and weaker in order to fit
more of them - the only reason to make them
smaller and weaker is because you want to go
even further down in power use, so you'd still not
have lots of those weak cores.

Linus Torvalds
(2014)

If you want to do low-power ubiquotous computer vision etc, I can pretty much
guarantee that you're not going to do it with code on a GP CPU. You're likely not even
going to do it on a GPU because even that is too expensive (power wise), but with
specialized hardware, probably based on some neural network model.

Give it up. The whole "parallel computing is the future" is a bunch of crock.

Parallel and concurrent programming6 www.prace-ri.eu

“Everybody who learns concurrency thinks they understand it, ends up finding
mysterious races they thought weren’t possible, and discovers that they didn’t actually
understand it yet after all.

Herb Sutter
chair of the ISO C++ standards committee, Microsoft

Parallel and concurrent programming7 www.prace-ri.eu

“Free lunch is over” (Dennard scaling)

Before

1. Clock speed (dead)
2. Execution optimization (dead)
3. Cache

After

1. Hyperthreading
2. Multicore
3. Cache

Parallel and concurrent programming8 www.prace-ri.eu

Threads

Thread: a sequential flow of instructions that performs some task

• Each thread has a PC + processor registers and accesses the shared memory
• Each processor provides one (or more) hardware threads (or harts) that actively execute

instructions
• Operating system multiplexes multiple software threads onto the available hardware threads

8

Parallel and concurrent programming9 www.prace-ri.eu

Hardware Parallelism

• Computing: execute instructions that operate on data.

• Flynn’s taxonomy (Michael Flynn, 1967) classifies computer architectures based on the number of
instructions that can be executed and how they operate on data.

Computer

Instructions Data

Parallel and concurrent programming10 www.prace-ri.eu

Flynn’s taxonomy

• Single Instruction Single Data (SISD)
- Traditional sequential computing systems

• Single Instruction Multiple Data (SIMD)
• Multiple Instructions Multiple Data (MIMD)
• Multiple Instructions Single Data (MISD)

Computer Architectures

SISD SIMD MIMD MISD

Parallel and concurrent programming11 www.prace-ri.eu

• At one time, one instruction operates on one data
• Traditional sequential architecture

SISD

Parallel and concurrent programming12 www.prace-ri.eu

• At one time, one instruction operates on many data
- Data parallel architecture
- Vector architecture has similar characteristics, but achieve the parallelism with pipelining.

• Array processors

SIMD

Parallel and concurrent programming13 www.prace-ri.eu

• Multiple instruction streams operating on multiple data streams
• Classical distributed memory or SMP architectures

MIMD

Parallel and concurrent programming14 www.prace-ri.eu

MISD

• Not commonly seen.
• Systolic array is one example of an MISD architecture.

Parallel and concurrent programming15 www.prace-ri.eu

Problem partitioning

Domain decomposition
• Single Program, Multiple Data
• Input domain
• Output domain
• Both

Functional decomposition
• Multiple Programs, Multiple Data
• Independent tasks
• Pipelining

Parallel and concurrent programming16 www.prace-ri.eu

Multiprocessor Execution Model

• Each processor has its own PC and executes an independent stream of instructions (MIMD)
• Different processors can access the same memory space
• Processors can communicate via shared memory by storing/loading to/from common locations
• Two ways to use a multiprocessor:

1. Deliver high throughput for independent jobs via job-level parallelism
2. Improve the run time of a single program that has been specially crafted to run on a

multiprocessor - a parallel-processing program

Use term core for processor (“Multicore”) because “Multiprocessor Microprocessor” too
redundant

Parallel and concurrent programming17 www.prace-ri.eu

Parallel programming is hard

• Need to optimize for performance
• Understand management of resources
• Identify bottlenecks
• No one technology fits all needs
• Zoo of programming models, languages, run-times
• Hardware architecture is a moving target
• Parallel thinking is not intuitive
• Parallel debugging is not fun

But there is no better
alternative!!!

Parallel and concurrent programming18 www.prace-ri.eu

Multitude of terms leads to confusion

acquire, and-parallel, associative, atomic, background,
cancel, consistent, data-driven, dialogue, dismiss, fairness,
fine-grained, fork-join, hierarchical, interactive, invariant,
isolation, message, nested, overhead, performance,
priority, protocol, read, reduction, release, structured,
repeatable, responsiveness, scalable, schedule,
serializable update, side effect, systolic, timeout,
transaction, throughput, virtual, wait, write,...

• Just to name a few – and these are just the concurrency
related terms

• So for now, it is key to KISS (Keep It Small and
Simple/Keep It Simple S….)

Problem
Domain

Mathematical
Abstraction

Computational
Model

Programming
Language

Parallel and concurrent programming19 www.prace-ri.eu

Sequential processing

• They have one “thread” of execution
• One step follows another in sequence
• One processor is all that is needed to run the algorithm

Rob Pike's GOphers

Parallel and concurrent programming20 www.prace-ri.eu

A system in which:
• Multiple tasks can be executed at the same time
• The tasks may be duplicates of each other, or distinct tasks
• The overall time to perform the series of tasks is reduced

Concurrent Systems

Parallel and concurrent programming21 www.prace-ri.eu

• Concurrent processes can reduce duplication.
• The overall runtime of the algorithm can be significantly reduced.
• More real-world problems can be solved than with sequential algorithms alone.

Advantages of concurrency

• Runtime is not always reduced, so careful planning is required
• Concurrent algorithms can be more complex than sequential algorithms
• Shared data can be corrupted
• Communication between tasks is needed

Disadvantages of concurrency

Parallel and concurrent programming22 www.prace-ri.eu

CPU 1 CPU 2

Memory

bus

Many computers today have more than one processor (multiprocessor machines)

Achieving concurrency

Parallel and concurrent programming23 www.prace-ri.eu

CPU

task 1
task 2

task 3
ZZZZ

ZZZZ

Concurrency can also be achieved on a computer with only one processor:
• The computer “juggles” jobs, swapping its attention to each in turn
• “Time slicing” allows many users to get CPU resources
• Tasks may be suspended while they wait for something, such as device I/O

Achieving concurrency

Parallel and concurrent programming24 www.prace-ri.eu

Concurrency is the execution of multiple tasks at the same
time, regardless of the number of processors.

Parallelism is the execution on multiple processors of the
same task.

Concurrency vs Parallelism

Parallel and concurrent programming25 www.prace-ri.eu

• Multiprogramming
• Multiprocessing
• Multitasking
• Distributed Systems

Types of Concurrent Systems

Parallel and concurrent programming26 www.prace-ri.eu

• Share a single CPU among many users or tasks.
• May have a time-shared algorithm or a priority algorithm for determining which

task to run next
• Give the illusion of simultaneous processing through rapid swapping of tasks

(interleaving).

Multiprogramming

Parallel and concurrent programming27 www.prace-ri.eu

Memory
User 1
User 2

CPU

User1 User2

Parallel and concurrent programming28 www.prace-ri.eu

1

2

3

4

1 2 3 4
CPU’s

T
a
s
k
s
/
U
s
e
r
s

Parallel and concurrent programming29 www.prace-ri.eu

Multiprocessing

• Executes multiple tasks at the same time
• Uses multiple processors to accomplish the tasks
• Each processor may also timeshare among several tasks
• Has a shared memory that is used by all the tasks

Parallel and concurrent programming30 www.prace-ri.eu

Memory
User 1: Task1
User 1: Task2
User 2: Task1

CPU

User1 User2

CPU CPU

Parallel and concurrent programming31 www.prace-ri.eu

1

2

3

4

1 2 3 4
CPU’s

T
a
s
k
s
/
U
s
e
r
s

Shared
Memory

Parallel and concurrent programming32 www.prace-ri.eu

• A single user can have multiple tasks running at the same time.
• Can be done with one or more processors.
• Used to be rare and for only expensive multiprocessing systems, but now most

modern operating systems can do it.

Multitasking

Parallel and concurrent programming33 www.prace-ri.eu

Memory
User 1: Task1
User 1: Task2
User 1: Task3

CPU

User1

Parallel and concurrent programming34 www.prace-ri.eu

1

2

3

4

1 2 3 4
CPU’s

T
a
s
k
s Single User

Parallel and concurrent programming35 www.prace-ri.eu

Central
Bank

ATM 1 ATM 2

ATM 4
ATM 3

Multiple computers working together with no central program “in charge.”

Distributed Systems

Parallel and concurrent programming36 www.prace-ri.eu

Advantages:
• No bottlenecks from sharing processors
• No central point of failure

Disadvantages:
• Complexity
• Communication overhead
• Distributed control

Distributed Systems

Parallel and concurrent programming37 www.prace-ri.eu

• Using multiple processors to solve a single task.
• Involves:
• Breaking the task into meaningful pieces
• Doing the work on many processors
• Coordinating and putting the pieces back together.

Parallelism

Parallel and concurrent programming38 www.prace-ri.eu

Parallelism

CPU

Memory

Network
Interface

Parallel and concurrent programming39 www.prace-ri.eu

1

2

3

4

1 2 3 4
CPU’s

T
a
s
k
s

Parallel and concurrent programming40 www.prace-ri.eu

• Repeating a sequence of operations or pieces of a task.
• Allocating each piece to a separate processor and chaining them together produces a

pipeline, completing tasks faster.

A B C D
input output

Pipeline processing

Parallel and concurrent programming41 www.prace-ri.eu

Example

Suppose you have a choice between a washer and a dryer each having a 30 minutes cycle or
A washer/dryer with a one hour cycle

The correct answer depends on how much work you have to do.

Parallel and concurrent programming42 www.prace-ri.eu

One Load

wash dry

combo

Transfer
Overhead

Parallel and concurrent programming43 www.prace-ri.eu

Three Loads

wash dry

combo

wash

wash

dry

dry

combocombo

Parallel and concurrent programming44 www.prace-ri.eu

Task Queues

P1 P2 P3 Pn

Super Task Queue

• A supervisor processor maintains a queue of tasks to be performed in shared memory.
• Each processor queries the queue, dequeues the next task and performs it.
• Task execution may involve adding more tasks to the task queue.

Parallel and concurrent programming45 www.prace-ri.eu

How much gain can we get from parallelizing an
algorithm?

Parallel and concurrent programming46 www.prace-ri.eu

Amdahl’s law

Amdahl’s law states that in parallelization, if P is
the proportion of a system or program that can be
made parallel, and 1-P is the proportion that
remains serial, then the maximum speedup that
can be achieved using N number of processors is
1/((1-P)+(P/N).

If N tends to infinity then the maximum speedup
tends to 1/(1-P).

Speedup is limited by the total time needed for the
sequential (serial) part of the program. For 10
hours of computing, if we can parallelize 9 hours
of computing and 1 hour cannot be parallelized,
then our maximum speedup is limited to 10x.

Parallel and concurrent programming47 www.prace-ri.eu

Product Complexity

• Got done in O(N) time, better than O(N2)
• Each time “chunk” does O(N) work
• There are N time chunks.
• Thus, the amount of work is still O(N2)

Product complexity is the amount of work per “time chunk” multiplied by the number of “time chunks” –
the total work done.

Parallel and concurrent programming48 www.prace-ri.eu

Ceiling of Improvement

Parallelization can reduce time, but it cannot reduce work. The product complexity
cannot change or improve.
How much improvement can parallelization provide?

Given an O(NLogN) algorithm and Log N processors, the algorithm will take at least
O(?) time.

Given an O(N3) algorithm and N processors, the algorithm will take at least O(?)
time.

O(N) time.

O(N2) time.

Parallel and concurrent programming49 www.prace-ri.eu

Number of Processors

• Processors are limited by hardware.
• Typically, the number of processors is a power of 2
• Usually: The number of processors is a constant factor, 2K

• Conceivably: Networked computers joined as needed.

Parallel and concurrent programming50 www.prace-ri.eu

Adding Processors

• A program on one processor
• Runs in X time
• Adding another processor
• Runs in no more than X/2 time
• Realistically, it will run in X/2 + e time because of overhead
• At some point, adding processors will not help and could degrade performance.

Parallel and concurrent programming51 www.prace-ri.eu

Overhead of Parallelization

• Parallelization is not free.
• Processors must be controlled and coordinated.
• We need a way to govern which processor does what work; this involves extra work.
• Often the program must be written in a special programming language for parallel systems.
• Often, a parallelized program for one machine (with, say, 2K processors) is not optimal on other

machines (with, say, 2L processors).

Parallel and concurrent programming52 www.prace-ri.eu

What We Know about Tasks

• Relatively isolated units of computation
• Should be roughly equal in duration
• Duration of the unit of work must be much greater than overhead time
• Policy decisions and coordination required for shared data
• Simpler algorithm are the easiest to parallelize

Parallel and concurrent programming53 www.prace-ri.eu

• The Global Interpreter Lock refers to the fact that the Python interpreter is not thread safe.
• There is a global lock that the current thread holds to safely access Python objects.
• Because only one thread can acquire Python Objects/C API, the interpreter regularly releases and

reacquires the lock every 100 bytecode of instructions. The frequency at which the interpreter checks for
thread switching is controlled by the sys.setcheckinterval()function.

• In addition, the lock is released and reacquired around potentially blocking I/O operations.
• It is important to note that, because of the GIL, the CPU-bound applications won't be helped by threads.

In Python, it is recommended to either use processes, or create a mixture of processes and threads.

Python – The Global Interpreter Lock

Parallel and concurrent programming54 www.prace-ri.eu

Concurrency in Python

• With Python, there is no shortage of options for concurrency, the standard library includes support for
threading, processes, and asynchronous I/O.

• In many cases Python has removed much of the difficulty in using these various methods of concurrency
by creating high-level modules such as asynchronous, threading, and subprocess.

• Outside of the standard library, there are 3rd party solutions such as twisted, stackless, and the
processing module, to name a few.

Parallel and concurrent programming55 www.prace-ri.eu

Process and threads in Python

• It is important to first define the differences between processes and threads.
• Threads are different than processes in that they share state, memory, and resources.
• This simple difference is both a strength and a weakness for threads.
• On one hand, threads are lightweight and easy to communicate with, but on the other hand, they bring up

a whole host of problems including deadlocks, race conditions, and sheer complexity.
• Fortunately, due to both the GIL and the queuing module, threading in Python is much less complex to

implement than in other languages.

Parallel and concurrent programming56 www.prace-ri.eu

Sequential

Concurrent

Parallel

Parallel and concurrent programming57 www.prace-ri.eu

THANK YOU FOR YOUR ATTENTION

www.prace-ri.eu

Parallel and concurrent programming58 www.prace-ri.eu

Aknowledgement

H2020-Astronomy ESFRI and
Research Infrastructure Cluster
(Grant Agreement number: 653477).

