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SURFsara & PRACE-5IP WP4

SURFsara
• Offers an integrated ICT research infrastructure and provides services

in the areas of computing, data storage, visualization, networking,
cloud and e-Science.

• Hosts the Dutch National supercomputer since 1984
• The first Dutch national supercomputer – a CDC Cyber 205
• Is a partner of the PRACE project

PRACE - Partnership for Advanced Computing in Europe
• The mission of PRACE is to enable high impact scientific discovery and engineering research and development 

across all disciplines to enhance European competitiveness for the benefit of society.
• PRACE is established as an international not-for-profit association with its seat in Brussels.
• It has 24 member countries whose representative organizations create a pan-European supercomputing 

infrastructure.
• PRACE Fifth Implementation Phase (PRACE-5IP)
• Work Package Four – Training (WP4)
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Best Practices for Scientific Computing
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Write programs for people, not computers.

a) A program should not require its readers to hold more than a handful of facts in memory at once.
b) Make names consistent, distinctive, and meaningful.
c) Make code style and formatting consistent.
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Let the computer do the work.

a) Make the computer repeat tasks.
b) Save recent commands in a file for re-use.
c) Use a build tool to automate workflows.
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Make incremental changes.

a) Work in small steps with frequent feedback and course correction.
b) Use a version control system.
c) Put everything that has been created manually in version control.
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Don’t repeat yourself (or others).

a) Every piece of data must have a single authoritative representation in the system.
b) Modularize code rather than copying and pasting.
c) Re-use code instead of rewriting it.
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Plan for mistakes.

a) Add assertions to programs to check their operation.
b) Use an off-the-shelf unit testing library.
c) Turn bugs into test cases.
d) Use a symbolic debugger.
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Optimize software only after it works correctly.

a) Use a profiler to identify bottlenecks.
b) Write code in the highest-level language possible.
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Document design and purpose, not mechanics.

a) Document interfaces and reasons, not implementations.
b) Refactor code in preference to explaining how it works.
c) Embed the documentation for a piece of software in that software.
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Collaborate.

a) Use pre-merge code reviews.
b) Use pair programming when bringing someone new up to speed and when tackling particularly tricky problems.
c) Use an issue tracking tool.
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PEPs (Python Enhancement Proposals)

PEP 8 Style Guide for Python code
PEP 20 The Zen of Python
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PEP 8 Style GUIDE for Python Code

The guidelines are intended to improve the readability of code
Consistency is the KEY
• Consistency with the style guide is important.
• Consistency within a project is more important.
• Consistency within one module or function is the most important.

A Foolish Consistency is the Hobgoblin of 
Little Minds
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Code Lay-out – Indentation & Line break

Indentation
• Use 4 spaces per indentation level.
• Spaces are the preferred indentation method.
Should a line break before or after a binary operator?
• Consistency is the key

income = (gross_wages
+ taxable_interest
+ (dividends - qualified_dividends)
- ira_deduction 
- student_loan_interest)
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Code Lay-out – Blank Lines

Blank Lines
• Surround top-level function and class definitions with two blank lines.
• Method definitions inside a class are surrounded by a single blank line.

from setuptools import setup
from setuptools.command.test import test as TestCommand

class PyTest(TestCommand):
user_options = [('pytest-args=', 'a', "Arguments to pass into py.test")]

def initialize_options(self):
TestCommand.initialize_options(self)
self.pytest_args = [] 
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Code Lay-out – Imports 

Imports should usually be on separate lines, e.g.:

Yes:

No: 

Imports are always put at the top of the file
Absolute imports are recommended

Wildcard imports ( from module import * ) should be avoided

import mypkg.sibling
from mypkg import sibling
from mypkg.sibling import example

import os
import sys 

import sys, os
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Code Lay-out – Comments 

Comments that contradict the code are worse than no comments. 
Always make a priority of keeping the comments up-to-date when the code changes!
Comments should be complete sentences.
Write your comments in English.
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Code Lay-out – Comments Contd.

Block Comments
• Block comments generally apply to some (or all) code that follows them, and are indented to the same level as that 

code.
• Each line of a block comment starts with a # and a single space.

# Code examples for Good code practice in Python.

Inline Comments
• Use inline comments sparingly.
• Inline comments are unnecessary and in fact distracting if they state the obvious. DON’T do this:

x = x + 1            # Increment x 
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Code Lay-out – Comments Contd.

Documentation Strings (a.k.a. "docstrings”)
• A docstring is a string literal that occurs as the first statement in a module, function, class, or method definition.
• Such a docstring becomes the __doc__ special attribute of that object.
• PEP 257 describes good docstring conventions.

Most importantly, the """ that ends a multiline docstring should be on a line by itself
For one liner docstrings, please keep the closing """ on the same line.

"""Return a foobang.

Optional plotz says to frobnicate the bizbaz first.
""" 
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Docstring Versus Block Comments

The leading comment block is a programmer’s note.
The docstring describes the operation of the function or class and will be shown in an interactive Python session when 
the user types 

# This function slows down program execution for some reason.
def square_and_rooter(x):

"""Return the square root of self times self."""
... 

help(square_and_rooter)
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Self-Documenting Code - Naming

A variable, class, or function name should speak for themselves.

decay()
decay_constant()
get_decay_constant()

p = 100
pressure = 100
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Self-Documenting Code – Simple functions

Functions must be small to be understandable and testable.
It should do ONLY one thing.

import numpy as np

def initial_cond(N, D):
"""Generates initial conditions for N unity masses at rest
starting at random positions in D-dimensional space.
""" 
position0 = np.random.rand(N, D)
velocity0 = np.zeros((N, D), dtype=float)
mass = np.ones(N, dtype=float)
return position0, velocity0, mass 
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PEP 20 The Zen of Python

By Tim Peters
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The Zen of Python

Beautiful is better than ugly.
Explicit is better than implicit.
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Explicit is better than implicit

Bad Good

def make_complex(*args):
x, y = args 
return dict(**locals())

def make_complex(x, y):
return {'x': x, 'y': y} 
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The Zen of Python

Simple is better than complex.
Complex is better than complicated.
Sparse is better than dense.
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Make only one statement per line

Bad Good

print 'one'; print 'two'

if x == 1: print 'one'

if <complex comparison> and
<other complex comparison>:

# do something

print 'one'
print 'two'

if x == 1: 
print 'one' 

 
cond1 = <complex comparison>
cond2 = <other complex comparison>
if cond1 and cond2:

# do something
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The Zen of Python

Errors should never pass silently.
Unless explicitly silenced.
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The Zen of Python

There should be one-- and preferably only 
one --obvious way to do it.
Although that way may not be obvious at 
first unless you're Dutch.
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The Zen of Python

If the implementation is hard to explain, 
it's a bad idea.
If the implementation is easy to explain, it 
may be a good idea.
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>>> import this

Want to see the complete list of The Zen of Python?
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Conventions and Idioms
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Alternatives to checking for equality

Bad Good

if attr == True:
print 'True!' 

 
if attr == None:

print 'attr is None!'

# Just check the value
if attr:

print 'attr is truthy!'

# or check for the opposite
if not attr:

print 'attr is falsey!'

# or, since None is considered false, 
explicitly check for it
if attr is None:

print 'attr is None!'
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Accessing dictionary elements

Bad Good

d = {'hello': 'world'}

if d.has_key('hello'):
print d['hello'] 

else:
print 'default_value'

d = {'hello': 'world'}

print d.get('hello', 'default_value') 
print d.get('thingy', 'default_value')

# Or:
if 'hello' in d:

print d['hello']
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Looping over dictionary keys

d = {'matthew': 'blue', 'rachel': 'green', 'raymond': 'red'}

for k in d:
print k

for k in d.keys():
if k.startswith('r'):

del d[k] 
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Manipulating lists

Bad Good

# Filter elements greater than 4
a = [3, 4, 5] 
b = [] 
for i in a:

if i > 4:
b.append(i) 

# List comprehension
a = [3, 4, 5] 
b = [i for i in a if i > 4]

# Or:
b = filter(lambda x: x > 4, a)
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Manipulating lists Contd.

Bad Good

# Add three to all list members.
a = [3, 4, 5] 
for i in range(len(a)):

a[i] += 3 

# List comprehension
a = [3, 4, 5] 
a = [i + 3 for i in a]

# Or:
a = map(lambda i: i + 3, a) 
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Looping over a collection and indices

What people normally do Better

colors = ['red', 'green', 'blue', 'yellow']

for i in range(len(colors)):
print i, '--->', colors[i] 

for i, color in enumerate(colors):
print i, '--->', color 
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Distinguishing multiple exit points in loops

What people normally do Better

def find(seq, target):
found = False
for i, value in enumerate(seq):

if value == target: 
found = True 
break 

if not found:
return -1 

return i

def find(seq, target):
for i, value in enumerate(seq):

if value == target: 
break 

else: 
return -1 

return i
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Unpacking sequences

What people normally do Better

p = 'Raymond', 'Hettinger', 0x30, 'python@example.com'

fname = p[0] 
lname = p[1] 
age = p[2] 
email = p[3]

fname, lname, age, email = p
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Updating multiple state variables

What people normally do Better

def fibonacci(n):
x = 0 
y = 1 
for i in range(n):

print x 
t = y 
y = x + y 
x = t 

def fibonacci(n):
x, y = 0, 1 
for i in range(n):

print x 
x, y = y, x+y 
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Concatenating strings

What people normally do Better

names = ['raymond', 'rachel', 'matthew', 'roger',
'betty', 'melissa', 'judith', 'charlie'] 

 
s = names[0] 
for name in names[1:]:

s += ', ' + name 
print s

print ', '.join(names)
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How to open and close files

What people normally do Better

f = open('data.txt')
try:

data = f.read() 
finally:

f.close() 

with open('data.txt') as f:
data = f.read() 
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Structuring Your Project
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Sample repository by Kenneth Reitz 
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Pitfalls to avoid

Multiple and messy circular dependencies
Hidden coupling
• Modifying code in one class breaks many tests in unrelated test cases
Heavy use of global state or context
Spaghetti code
• Multiple pages of nested if clauses and for loops with a lot of copy-pasted procedural code and no proper 

segmentation
Ravioli code
• Consists of hundreds of similar little pieces of logic without proper structure
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Decorators

Dynamically alter the functionality of a function, method, or class without having to change the source code of the 
function being decorated
Helps separate business logic from administrative logic

from python_toolbox.caching import cache
@cache()
def f(x): 

print('Calculating...')
return x ** x 
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Dynamic Typing

Avoid using the same variable name for different things
Good discipline: assign a variable only once
Check your code: Pylint, Pyflakes, Flakes8, Pychecker

Bad Good

a = 1 
a = 'a string'
def a(): 

pass  # Do something

items = 'a b c d'  
items = items.split(' ') 
items = set(items)

count = 1
msg = 'a string'
def func():

pass  # Do something

items_string = 'a b c d'
items_list = items_string.split(' ')
items = set(items_list)
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Virtual environment

Keeps dependencies required by different projects in separate places
Keeps your global site-packages directory clean
Very handy when you need a specific version of a package for certain projects
Easy to setup the environment thanks to requirements.txt

$ cd projectname
$ virtualenv –p python2 venv
$ source venv/bin/activate
$ source venv/bin/activate
$ (venv)$ pip install –r requirements.txt



Good code practice in Python52 www.prace-ri.eu

Virtual environment – Use requirements.txt

Method 1:

$ pip freeze > requirements.txt
$ pip install –r requirements.txt

Method 2:
Use pipreqs: generate requirements.txt based on imports

$ pip install pipreqs
$ pipreqs /path/to/project
$ pip install –r requirements.txt
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Testing your code



Good code practice in Python54 www.prace-ri.eu

Why, when and where?

It is important
• Check whether your code works correctly
• Save time in debugging
Always test your code
• When you start, and again when you finish
• Test-Driven Development
• Continuous integration
Separate code from tests as much as possible
• Have a top-level tests/ directory in your project
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Good tests should be

Automated
Fast
Reliable
Informative
• Test functions should have names starting with test_.
• Name of test functions should describe what the test does, it can be very long if needed.
Focused – test just one thing per test
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What and how to test?

Test what is important
• Compare expected outputs versus observed outputs for known inputs
• Should cover behavior from the common to the extreme, but not every single value within those bounds
• Test edge/corner cases
Test frameworks
• unittest – included in Python standard library
• pytest
• nose2
Test coverage
• Can be used to see which part of the code is tested
• Though caution needs to be taken when interpreting the results
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Write tests with unittest

import unittest

class BasicTestSuite(unittest.TestCase):
"""Basic test cases.""" 

 
def test_absolute_truth_and_meaning(self):

assert True 

 
if __name__ == '__main__':

unittest.main()
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Running tests
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Write tests with nose 

from nose.tools import assert_equal
from myproject.fibonacci import fibonacci

def test_fibonacci_0():
# test edge 0
obs = fibonacci(0)
assert_equal(0, obs)

def test_fibonacci_1():
# test edge 1
obs = fibonacci(1)
assert_equal(1, obs)
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Write tests with pytest (1)
import pytest
from myproject.wallet import Wallet, InsufficientAmount

@pytest.fixture
def empty_wallet():

"""Returns a Wallet instance with zero balance"""
return Wallet()

@pytest.fixture
def wallet():

"""Returns a Wallet instance with a balance of 10"""
return Wallet(10)
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Write tests with pytest (2)

@pytest.fixture
def my_wallet():

"""Returns a Wallet instance with a balance of 20"""
return Wallet(20) 

def test_default_initial_amount(empty_wallet):
assert empty_wallet.balance == 0

def test_setting_initial_amount(wallet):
assert wallet.balance == 10

def test_wallet_add_cash(wallet):
wallet.add_cash(90)
assert wallet.balance == 100
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Write tests with pytest (3)

def test_wallet_spend_cash(wallet):
wallet.spend_cash(10)
assert wallet.balance == 0

def
test_wallet_spend_cash_raises_exception_on_insufficient_amount(empty_
wallet):

with pytest.raises(InsufficientAmount):
empty_wallet.spend_cash(100)
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Write tests with pytest (4)

@pytest.mark.parametrize("earned, spent, expected", [
(30, 10, 40), 
(20, 2, 38), 

]) 
def test_transactions(my_wallet, earned, spent, expected):

my_wallet.add_cash(earned)
my_wallet.spend_cash(spent)
assert my_wallet.balance == expected
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