
Good code practice in Python1 www.prace-ri.eu

H2020-Astronomy ESFRI and Research Infrastructure Cluster
(Grant Agreement number: 653477).

1st ASTERICS-OBELICS International School
6-9 June 2017, Annecy, France.

Good code practice in Python2 www.prace-ri.eu

Good code practice in
Python

Zheng Meyer-Zhao
SURFsara

Good code practice in Python3 www.prace-ri.eu

Outline

About SURFsara & PRACE
Best practices for scientific computing
PEP 8 & PEP 20
Conventions and Idioms
Structuring your project
Testing your code

Good code practice in Python4 www.prace-ri.eu

SURFsara & PRACE-5IP WP4

SURFsara
• Offers an integrated ICT research infrastructure and provides services

in the areas of computing, data storage, visualization, networking,
cloud and e-Science.

• Hosts the Dutch National supercomputer since 1984
• The first Dutch national supercomputer – a CDC Cyber 205
• Is a partner of the PRACE project

PRACE - Partnership for Advanced Computing in Europe
• The mission of PRACE is to enable high impact scientific discovery and engineering research and development

across all disciplines to enhance European competitiveness for the benefit of society.
• PRACE is established as an international not-for-profit association with its seat in Brussels.
• It has 24 member countries whose representative organizations create a pan-European supercomputing

infrastructure.
• PRACE Fifth Implementation Phase (PRACE-5IP)
• Work Package Four – Training (WP4)

Good code practice in Python5 www.prace-ri.eu

Best Practices for Scientific Computing

Good code practice in Python6 www.prace-ri.eu

Write programs for people, not computers.

a) A program should not require its readers to hold more than a handful of facts in memory at once.
b) Make names consistent, distinctive, and meaningful.
c) Make code style and formatting consistent.

Good code practice in Python7 www.prace-ri.eu

Let the computer do the work.

a) Make the computer repeat tasks.
b) Save recent commands in a file for re-use.
c) Use a build tool to automate workflows.

Good code practice in Python8 www.prace-ri.eu

Make incremental changes.

a) Work in small steps with frequent feedback and course correction.
b) Use a version control system.
c) Put everything that has been created manually in version control.

Good code practice in Python9 www.prace-ri.eu

Don’t repeat yourself (or others).

a) Every piece of data must have a single authoritative representation in the system.
b) Modularize code rather than copying and pasting.
c) Re-use code instead of rewriting it.

Good code practice in Python10 www.prace-ri.eu

Plan for mistakes.

a) Add assertions to programs to check their operation.
b) Use an off-the-shelf unit testing library.
c) Turn bugs into test cases.
d) Use a symbolic debugger.

Good code practice in Python11 www.prace-ri.eu

Optimize software only after it works correctly.

a) Use a profiler to identify bottlenecks.
b) Write code in the highest-level language possible.

Good code practice in Python12 www.prace-ri.eu

Document design and purpose, not mechanics.

a) Document interfaces and reasons, not implementations.
b) Refactor code in preference to explaining how it works.
c) Embed the documentation for a piece of software in that software.

Good code practice in Python13 www.prace-ri.eu

Collaborate.

a) Use pre-merge code reviews.
b) Use pair programming when bringing someone new up to speed and when tackling particularly tricky problems.
c) Use an issue tracking tool.

Good code practice in Python14 www.prace-ri.eu

PEPs (Python Enhancement Proposals)

PEP 8 Style Guide for Python code
PEP 20 The Zen of Python

Good code practice in Python15 www.prace-ri.eu

PEP 8 Style GUIDE for Python Code

The guidelines are intended to improve the readability of code
Consistency is the KEY
• Consistency with the style guide is important.
• Consistency within a project is more important.
• Consistency within one module or function is the most important.

A Foolish Consistency is the Hobgoblin of
Little Minds

Good code practice in Python16 www.prace-ri.eu

Code Lay-out – Indentation & Line break

Indentation
• Use 4 spaces per indentation level.
• Spaces are the preferred indentation method.
Should a line break before or after a binary operator?
• Consistency is the key

income = (gross_wages
+ taxable_interest
+ (dividends - qualified_dividends)
- ira_deduction
- student_loan_interest)

Good code practice in Python17 www.prace-ri.eu

Code Lay-out – Blank Lines

Blank Lines
• Surround top-level function and class definitions with two blank lines.
• Method definitions inside a class are surrounded by a single blank line.

from setuptools import setup
from setuptools.command.test import test as TestCommand

class PyTest(TestCommand):
user_options = [('pytest-args=', 'a', "Arguments to pass into py.test")]

def initialize_options(self):
TestCommand.initialize_options(self)
self.pytest_args = []

Good code practice in Python18 www.prace-ri.eu

Code Lay-out – Imports

Imports should usually be on separate lines, e.g.:

Yes:

No:

Imports are always put at the top of the file
Absolute imports are recommended

Wildcard imports (from module import *) should be avoided

import mypkg.sibling
from mypkg import sibling
from mypkg.sibling import example

import os
import sys

import sys, os

Good code practice in Python19 www.prace-ri.eu

Code Lay-out – Comments

Comments that contradict the code are worse than no comments.
Always make a priority of keeping the comments up-to-date when the code changes!
Comments should be complete sentences.
Write your comments in English.

Good code practice in Python20 www.prace-ri.eu

Code Lay-out – Comments Contd.

Block Comments
• Block comments generally apply to some (or all) code that follows them, and are indented to the same level as that

code.
• Each line of a block comment starts with a # and a single space.

Code examples for Good code practice in Python.

Inline Comments
• Use inline comments sparingly.
• Inline comments are unnecessary and in fact distracting if they state the obvious. DON’T do this:

x = x + 1 # Increment x

Good code practice in Python21 www.prace-ri.eu

Code Lay-out – Comments Contd.

Documentation Strings (a.k.a. "docstrings”)
• A docstring is a string literal that occurs as the first statement in a module, function, class, or method definition.
• Such a docstring becomes the __doc__ special attribute of that object.
• PEP 257 describes good docstring conventions.

Most importantly, the """ that ends a multiline docstring should be on a line by itself
For one liner docstrings, please keep the closing """ on the same line.

"""Return a foobang.

Optional plotz says to frobnicate the bizbaz first.
"""

Good code practice in Python22 www.prace-ri.eu

Docstring Versus Block Comments

The leading comment block is a programmer’s note.
The docstring describes the operation of the function or class and will be shown in an interactive Python session when
the user types

This function slows down program execution for some reason.
def square_and_rooter(x):

"""Return the square root of self times self."""
...

help(square_and_rooter)

Good code practice in Python23 www.prace-ri.eu

Self-Documenting Code - Naming

A variable, class, or function name should speak for themselves.

decay()
decay_constant()
get_decay_constant()

p = 100
pressure = 100

Good code practice in Python24 www.prace-ri.eu

Self-Documenting Code – Simple functions

Functions must be small to be understandable and testable.
It should do ONLY one thing.

import numpy as np

def initial_cond(N, D):
"""Generates initial conditions for N unity masses at rest
starting at random positions in D-dimensional space.
"""
position0 = np.random.rand(N, D)
velocity0 = np.zeros((N, D), dtype=float)
mass = np.ones(N, dtype=float)
return position0, velocity0, mass

Good code practice in Python25 www.prace-ri.eu

PEP 20 The Zen of Python

By Tim Peters

Good code practice in Python26 www.prace-ri.eu

The Zen of Python

Beautiful is better than ugly.
Explicit is better than implicit.

Good code practice in Python27 www.prace-ri.eu

Explicit is better than implicit

Bad Good

def make_complex(*args):
x, y = args
return dict(**locals())

def make_complex(x, y):
return {'x': x, 'y': y}

Good code practice in Python28 www.prace-ri.eu

The Zen of Python

Simple is better than complex.
Complex is better than complicated.
Sparse is better than dense.

Good code practice in Python29 www.prace-ri.eu

Make only one statement per line

Bad Good

print 'one'; print 'two'

if x == 1: print 'one'

if <complex comparison> and
<other complex comparison>:

do something

print 'one'
print 'two'

if x == 1:
print 'one'

cond1 = <complex comparison>
cond2 = <other complex comparison>
if cond1 and cond2:

do something

Good code practice in Python30 www.prace-ri.eu

The Zen of Python

Errors should never pass silently.
Unless explicitly silenced.

Good code practice in Python31 www.prace-ri.eu

The Zen of Python

There should be one-- and preferably only
one --obvious way to do it.
Although that way may not be obvious at
first unless you're Dutch.

Good code practice in Python32 www.prace-ri.eu

The Zen of Python

If the implementation is hard to explain,
it's a bad idea.
If the implementation is easy to explain, it
may be a good idea.

Good code practice in Python33 www.prace-ri.eu

>>> import this

Want to see the complete list of The Zen of Python?

Good code practice in Python34 www.prace-ri.eu

Conventions and Idioms

Good code practice in Python35 www.prace-ri.eu

Alternatives to checking for equality

Bad Good

if attr == True:
print 'True!'

if attr == None:

print 'attr is None!'

Just check the value
if attr:

print 'attr is truthy!'

or check for the opposite
if not attr:

print 'attr is falsey!'

or, since None is considered false,
explicitly check for it
if attr is None:

print 'attr is None!'

Good code practice in Python36 www.prace-ri.eu

Accessing dictionary elements

Bad Good

d = {'hello': 'world'}

if d.has_key('hello'):
print d['hello']

else:
print 'default_value'

d = {'hello': 'world'}

print d.get('hello', 'default_value')
print d.get('thingy', 'default_value')

Or:
if 'hello' in d:

print d['hello']

Good code practice in Python37 www.prace-ri.eu

Looping over dictionary keys

d = {'matthew': 'blue', 'rachel': 'green', 'raymond': 'red'}

for k in d:
print k

for k in d.keys():
if k.startswith('r'):

del d[k]

Good code practice in Python38 www.prace-ri.eu

Manipulating lists

Bad Good

Filter elements greater than 4
a = [3, 4, 5]
b = []
for i in a:

if i > 4:
b.append(i)

List comprehension
a = [3, 4, 5]
b = [i for i in a if i > 4]

Or:
b = filter(lambda x: x > 4, a)

Good code practice in Python39 www.prace-ri.eu

Manipulating lists Contd.

Bad Good

Add three to all list members.
a = [3, 4, 5]
for i in range(len(a)):

a[i] += 3

List comprehension
a = [3, 4, 5]
a = [i + 3 for i in a]

Or:
a = map(lambda i: i + 3, a)

Good code practice in Python40 www.prace-ri.eu

Looping over a collection and indices

What people normally do Better

colors = ['red', 'green', 'blue', 'yellow']

for i in range(len(colors)):
print i, '--->', colors[i]

for i, color in enumerate(colors):
print i, '--->', color

Good code practice in Python41 www.prace-ri.eu

Distinguishing multiple exit points in loops

What people normally do Better

def find(seq, target):
found = False
for i, value in enumerate(seq):

if value == target:
found = True
break

if not found:
return -1

return i

def find(seq, target):
for i, value in enumerate(seq):

if value == target:
break

else:
return -1

return i

Good code practice in Python42 www.prace-ri.eu

Unpacking sequences

What people normally do Better

p = 'Raymond', 'Hettinger', 0x30, 'python@example.com'

fname = p[0]
lname = p[1]
age = p[2]
email = p[3]

fname, lname, age, email = p

Good code practice in Python43 www.prace-ri.eu

Updating multiple state variables

What people normally do Better

def fibonacci(n):
x = 0
y = 1
for i in range(n):

print x
t = y
y = x + y
x = t

def fibonacci(n):
x, y = 0, 1
for i in range(n):

print x
x, y = y, x+y

Good code practice in Python44 www.prace-ri.eu

Concatenating strings

What people normally do Better

names = ['raymond', 'rachel', 'matthew', 'roger',
'betty', 'melissa', 'judith', 'charlie']

s = names[0]
for name in names[1:]:

s += ', ' + name
print s

print ', '.join(names)

Good code practice in Python45 www.prace-ri.eu

How to open and close files

What people normally do Better

f = open('data.txt')
try:

data = f.read()
finally:

f.close()

with open('data.txt') as f:
data = f.read()

Good code practice in Python46 www.prace-ri.eu

Structuring Your Project

Good code practice in Python47 www.prace-ri.eu

Sample repository by Kenneth Reitz

Good code practice in Python48 www.prace-ri.eu

Pitfalls to avoid

Multiple and messy circular dependencies
Hidden coupling
• Modifying code in one class breaks many tests in unrelated test cases
Heavy use of global state or context
Spaghetti code
• Multiple pages of nested if clauses and for loops with a lot of copy-pasted procedural code and no proper

segmentation
Ravioli code
• Consists of hundreds of similar little pieces of logic without proper structure

Good code practice in Python49 www.prace-ri.eu

Decorators

Dynamically alter the functionality of a function, method, or class without having to change the source code of the
function being decorated
Helps separate business logic from administrative logic

from python_toolbox.caching import cache
@cache()
def f(x):

print('Calculating...')
return x ** x

Good code practice in Python50 www.prace-ri.eu

Dynamic Typing

Avoid using the same variable name for different things
Good discipline: assign a variable only once
Check your code: Pylint, Pyflakes, Flakes8, Pychecker

Bad Good

a = 1
a = 'a string'
def a():

pass # Do something

items = 'a b c d'
items = items.split(' ')
items = set(items)

count = 1
msg = 'a string'
def func():

pass # Do something

items_string = 'a b c d'
items_list = items_string.split(' ')
items = set(items_list)

Good code practice in Python51 www.prace-ri.eu

Virtual environment

Keeps dependencies required by different projects in separate places
Keeps your global site-packages directory clean
Very handy when you need a specific version of a package for certain projects
Easy to setup the environment thanks to requirements.txt

$ cd projectname
$ virtualenv –p python2 venv
$ source venv/bin/activate
$ source venv/bin/activate
$ (venv)$ pip install –r requirements.txt

Good code practice in Python52 www.prace-ri.eu

Virtual environment – Use requirements.txt

Method 1:

$ pip freeze > requirements.txt
$ pip install –r requirements.txt

Method 2:
Use pipreqs: generate requirements.txt based on imports

$ pip install pipreqs
$ pipreqs /path/to/project
$ pip install –r requirements.txt

Good code practice in Python53 www.prace-ri.eu

Testing your code

Good code practice in Python54 www.prace-ri.eu

Why, when and where?

It is important
• Check whether your code works correctly
• Save time in debugging
Always test your code
• When you start, and again when you finish
• Test-Driven Development
• Continuous integration
Separate code from tests as much as possible
• Have a top-level tests/ directory in your project

Good code practice in Python55 www.prace-ri.eu

Good tests should be

Automated
Fast
Reliable
Informative
• Test functions should have names starting with test_.
• Name of test functions should describe what the test does, it can be very long if needed.
Focused – test just one thing per test

Good code practice in Python56 www.prace-ri.eu

What and how to test?

Test what is important
• Compare expected outputs versus observed outputs for known inputs
• Should cover behavior from the common to the extreme, but not every single value within those bounds
• Test edge/corner cases
Test frameworks
• unittest – included in Python standard library
• pytest
• nose2
Test coverage
• Can be used to see which part of the code is tested
• Though caution needs to be taken when interpreting the results

Good code practice in Python57 www.prace-ri.eu

Write tests with unittest

import unittest

class BasicTestSuite(unittest.TestCase):
"""Basic test cases."""

def test_absolute_truth_and_meaning(self):

assert True

if __name__ == '__main__':

unittest.main()

Good code practice in Python58 www.prace-ri.eu

Running tests

Good code practice in Python59 www.prace-ri.eu

Write tests with nose

from nose.tools import assert_equal
from myproject.fibonacci import fibonacci

def test_fibonacci_0():
test edge 0
obs = fibonacci(0)
assert_equal(0, obs)

def test_fibonacci_1():
test edge 1
obs = fibonacci(1)
assert_equal(1, obs)

Good code practice in Python60 www.prace-ri.eu

Write tests with pytest (1)
import pytest
from myproject.wallet import Wallet, InsufficientAmount

@pytest.fixture
def empty_wallet():

"""Returns a Wallet instance with zero balance"""
return Wallet()

@pytest.fixture
def wallet():

"""Returns a Wallet instance with a balance of 10"""
return Wallet(10)

Good code practice in Python61 www.prace-ri.eu

Write tests with pytest (2)

@pytest.fixture
def my_wallet():

"""Returns a Wallet instance with a balance of 20"""
return Wallet(20)

def test_default_initial_amount(empty_wallet):
assert empty_wallet.balance == 0

def test_setting_initial_amount(wallet):
assert wallet.balance == 10

def test_wallet_add_cash(wallet):
wallet.add_cash(90)
assert wallet.balance == 100

Good code practice in Python62 www.prace-ri.eu

Write tests with pytest (3)

def test_wallet_spend_cash(wallet):
wallet.spend_cash(10)
assert wallet.balance == 0

def
test_wallet_spend_cash_raises_exception_on_insufficient_amount(empty_
wallet):

with pytest.raises(InsufficientAmount):
empty_wallet.spend_cash(100)

Good code practice in Python63 www.prace-ri.eu

Write tests with pytest (4)

@pytest.mark.parametrize("earned, spent, expected", [
(30, 10, 40),
(20, 2, 38),

])
def test_transactions(my_wallet, earned, spent, expected):

my_wallet.add_cash(earned)
my_wallet.spend_cash(spent)
assert my_wallet.balance == expected

Good code practice in Python64 www.prace-ri.eu

References (1)

• Best Practices for Scientific Computing
Wilson G, Aruliah DA, Brown CT, Chue Hong NP, Davis M, et al. (2014) Best Practices for
Scientific Computing. PLOS Biology 12(1):
e1001745.https://doi.org/10.1371/journal.pbio.1001745

• Best Practices in Scientific Computing – Software Carpentry
http://swcarpentry.github.io/slideshows/best-practices/#slide-0

• The Hitchhacker’s guide to Python by Kenneth Reitz, Tanya Schlusser. Publisher: O'Reilly
Media, Inc.
http://python-guide-pt-br.readthedocs.io/en/latest/

• Transforming Code into Beautiful, Idiomatic Python by Raymond Hettinger – PyCon 2013
https://www.youtube.com/watch?v=OSGv2VnC0go

Good code practice in Python65 www.prace-ri.eu

References (2)

• Raymond Hettinger - Beyond PEP 8 -- Best practices for beautiful intelligible code - PyCon
2015
https://www.youtube.com/watch?v=wf-BqAjZb8M

• Effective Computation in Physics by Anthony Scopatz, Kathryn D. Huff. Publisher: O'Reilly
Media, Inc.
http://physics.codes/

• Ned Batchelder: Getting Started Testing - PyCon 2014
https://www.youtube.com/watch?v=FxSsnHeWQBY

• A nice pytest tutorial
https://semaphoreci.com/community/tutorials/testing-python-applications-with-pytest

• About context managers
https://jeffknupp.com/blog/2016/03/07/python-with-context-managers/

Good code practice in Python66 www.prace-ri.eu

Acknowledgement

H2020-Astronomy ESFRI and Research Infrastructure
Cluster (Grant Agreement number: 653477).

