
Profiling and 
Optimization

Karl Kosack
CEA Paris-Saclay

ASTERICS-OBELICS International School
Annecy, June 2017

H2020-Astronomy ESFRI and Research Infrastructure Cluster 
(Grant Agreement number: 653477).



“Premature optimization is the root of 
all evil…

- probably Don Knuth



Why optimize?
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Why optimize?
However… once code is working, you do want it to be efficient! 

•want a balance between usability/cleanness and speed/
memory efficiency


• These are not always both achievable, so err on the side of 
usability
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Why optimize?
However… once code is working, you do want it to be efficient! 

•want a balance between usability/cleanness and speed/
memory efficiency


• These are not always both achievable, so err on the side of 
usability


Some things: 

• Python is interpreted (though some compilation happens), and 
can therefore be slow


• For-loops in particular are 100 - 1000x slower than C loops…


• There are some nice ways to speed up code, however, and get 
close to low-level language speed
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Steps to optimization

1) Make sure code works correctly  first 

• DO NOT optimize code you are writing or debugging!

2) Identify use cases for optimization: 

• how often is the code called? Is it useful to optimize it?


• If it is not called often and finishes with reasonable time/memory, 
stop!


3) Profile the code to identify bottlenecks in a more scientific way 

• Profile time spent in each function, line, etc


• Profile memory use

4) try to re-write as little as possible to achieve improvement 
5) refactor if it is still problematic…
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Speed profiling 1: the notebook
Simplest method: timeit 

• no need to calculate start and stop times, python's standard lib has a nice 
module to help with that… 

• easiest way is to use interactive %timeit  magic ipython function 

DEMO NOTEBOOK 

• Usage:  
| %timeit <python statement> 

Why not just roll your own? 
| start = time.now() 

| [code] 

| stop = time.now() 

| print(stop-start) 

this measures only wall-clock time!  You want CPU time… then you want many trials, etc… 

note you can also import the `timeit` module and use it similar to the magic %timeit function 5



Speed profiling 2: profiler!

A profiler is better than a simple %timeit, in that it 
checks the time in all functions and sub-functions at 
once and generates a report.


Python provides several profilers, but the most 
common is cProfile (note: gprof for c++) 

Profile an entire script: 

• Run your script with the additional options:

| python -m cProfile -o output.pstats  <script> 

• this generates a binary data file (output.pstats) 
that contains the info… you need a way to view it


• There is a built-in pstats module that displays it, 
for example
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An example from CTA low-level data 
analysis…

""" 
The most basic pipeline, using no special features of the framework 
other than a for-loop. This is useful for debugging and profiling of 
speed. 
""" 

from ctapipe.io.hessio import hessio_event_source 
from ctapipe.calib import (HessioR1Calibrator, CameraDL1Calibrator,  
                           CameraDL0Reducer) 
import sys 

if __name__ == '__main__': 

    filename = sys.argv[1] 

    source = hessio_event_source(filename) 

    cal_r0 = HessioR1Calibrator(None,None) 
    cal_dl0 = CameraDL0Reducer(None,None) 
    cal_dl1 = CameraDL1Calibrator(None,None) 

    for event in source: 

        print("EVENT", data.r0.event_id) 
        cal_r0.calibrate(event) 
        cal_dl0.reduce(event) 
        cal_dl1.calibrate(event) 
         

% python -m cProfile -o output.pstats 
simple_pipeline.py ~/Data/CTA/Prod3/
gamma.simtel.gz 

I/O block extended by 256776 to 1256776 bytes 
Trying to read event data before run header. 
Skipping this data block. 
I/O block extended by 370044 to 1626820 bytes 
I/O block extended by 1385148 to 3011968 bytes 
WARNING: ErfaWarning: ERFA function "taiutc" yielded 
1 of "dubious year (Note 4)" [astropy._erfa.core] 
EVENT 6911 
EVENT 20505 
EVENT 20514 
EVENT 32700 
EVENT 32704 
EVENT 32708 
EVENT 32710 
EVENT 32711 
I/O block extended by 368640 to 3380608 bytes 
EVENT 32718 
…

Generate Profile



% python -m pstats output.pstats 

  
Welcome to the profile statistics browser. 

output.pstats% sort cumtime 
output.pstats% stats 10 

Wed Apr 19 14:48:12 2017    output.pstats 

         3975674 function calls (3926391 primitive calls) in 18.386 seconds 

   Ordered by: cumulative time 
   List reduced from 6335 to 10 due to restriction <10> 

   ncalls  tottime  percall  cumtime  percall filename:lineno(function) 
   1347/1    0.047    0.000   18.388   18.388 {built-in method builtins.exec} 
        1    0.002    0.002   18.387   18.387 simple_pipeline.py:4(<module>) 
      100    0.010    0.000    9.626    0.096 /Users/kosack/Projects/CTA/Working/ctapipe/ctapipe/calib/camera/dl1.py:221(calibrate) 
      307    0.006    0.000    9.183    0.030 /Users/kosack/Projects/CTA/Working/ctapipe/ctapipe/calib/camera/charge_extractors.py:271(extract_charge) 
      307    0.004    0.000    8.456    0.028 /Users/kosack/Projects/CTA/Working/ctapipe/ctapipe/calib/camera/charge_extractors.py:309(get_peakpos) 
      307    7.299    0.024    8.452    0.028 /Users/kosack/Projects/CTA/Working/ctapipe/ctapipe/calib/camera/charge_extractors.py:464(_obtain_peak_position) 
      101    0.030    0.000    6.508    0.064 /Users/kosack/Projects/CTA/Working/ctapipe/ctapipe/io/hessio.py:70(hessio_event_source) 
      221    5.638    0.026    5.640    0.026 /Users/kosack/anaconda/lib/python3.6/site-packages/pyhessio/__init__.py:273(move_to_next_event) 
   1310/6    0.006    0.000    1.949    0.325 <frozen importlib._bootstrap>:958(_find_and_load) 
   1310/6    0.005    0.000    1.949    0.325 <frozen importlib._bootstrap>:931(_find_and_load_unlocked) 

View stats with builtin stats viewer 

most time is spent 
in extract_charge

Note that the data are really hierarchical so we'd 
like to select only stats for functions called within 
extract_charge to see where the slowness is…  you 
can do this with the command-line, but…



As usual there is a better way…
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GUI stats viewing 
| % conda install snakeviz 

| % snakeviz output.pstats 

• interactive call statistics 
viewer


• this is not the only one, but 
it's nice and simple and runs 
in your browser.


• Click and zoom to see the 
results



Profiling in a Notebook

You can also run the profiler directly on a statement in a 
notebook. 

• use the magic %prun function

| %prun <python statement> 

• Pops up a sub-window with the results (the same as if you 
ran cProfile and then pstats (though you don't get an 
interactive viewer)
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Another stats viewer

You can also view pstats output 
with KDE's kcachegrind GUI, just 
like you would with C++ profiling 
output: 

| % pip install pyprof2calltree 

| % pyprof2calltree -i output.pstats -k 

Then, open the resulting file with 
KCacheGrind
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disclaimer: I have not tried this, but have 
used KCacheGrind for C++ projects, and 
it's nice!



Line Profiling
Sometimes you need more detail than function-level stats… 
What about time spent in each line of code? 

The line_profiler module can help: 

| %  conda install line_profiler 

•mark code with @profile:

| from line_profiler import profile 

| @profile 

| def slow_function(a, b, c): 

|     ... 

• Then run:

➤ % kernprof -l script_to_profile.py 

•which generates a .lprof file that can be viewed with:

➤ % python -m line_profiler script_to_profile.py.lprof
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File:	pystone.py	

Function:	Proc2	at	line	149	

Total	time:	0.606656	s	

Line	#						Hits									Time		Per	Hit			%	Time		Line	Contents	

==============================================================	

			149																																											@profile	

			150																																											def	Proc2(IntParIO):	

			151					50000								82003						1.6					13.5						IntLoc	=	IntParIO	+	10	

			152					50000								63162						1.3					10.4						while	1:	

			153					50000								69065						1.4					11.4										if	Char1Glob	==	'A':	

			154					50000								66354						1.3					10.9														IntLoc	=	IntLoc	-	1	

			155					50000								67263						1.3					11.1														IntParIO	=	IntLoc	-	IntGlob	

			156					50000								65494						1.3					10.8														EnumLoc	=	Ident1	

			157					50000								68001						1.4					11.2										if	EnumLoc	==	Ident1:	

			158					50000								63739						1.3					10.5														break	

			159					50000								61575						1.2					10.1						return	IntParIO	



Line-profiling in a Notebook

Like with cProfile and timeit, you can do line profiling 
in a notebook: 

• unlike %timeit, need to load an extension first:

| %load_ext line_profiler 

• Then, if you have a function defined, you must "mark" 
it to be profiled by adding "-f <func>"

| %lprun -f <function name> <python statement that uses function> 

for example:


| %lprun -f myfunc myfunc(100,100) 

Note you can mark more than one func
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Memory Profiling

Use of CPU is not the only thing to worry about… what 
about RAM?  Let's first check for memory leaks… 

| % conda install memory_profiler 

| % mprof run python <script> 

| % mprof plot 
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Memory Profiling in detail
Cumulative is nice, but we want to see the memory for a particular function or 
class… 

• decorate the function you want to profile (line-wise) with memory_profiler.profile

| % python -m memory_profiler <script>
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Filename: simple_pipeline.py 

Line #    Mem usage    Increment   Line Contents 
================================================ 
    19     87.8 MiB      0.0 MiB   @profile 
    20                             def main(): 
    21                              
    22     87.8 MiB      0.0 MiB       filename = sys.argv[1] 
    23                              
    24     87.8 MiB      0.0 MiB       source = hessio_event_source(filename, max_events=10, 
    25     87.8 MiB      0.0 MiB                                    allowed_tels=np.arange(279,423)) 
    26                              
    27     87.8 MiB      0.0 MiB       cal_r0 = HessioR1Calibrator(None,None) 
    28     87.8 MiB      0.0 MiB       cal_dl0 = CameraDL0Reducer(None,None) 
    29     87.8 MiB      0.0 MiB       cal_dl1 = CameraDL1Calibrator(None,None) 
    30                              
    31    929.2 MiB    841.4 MiB       for data in source: 
    32                              
    33    929.2 MiB      0.0 MiB           print("EVENT", data.r0.event_id) 
    34    929.2 MiB      0.0 MiB           cal_r0.calibrate(data) 
    35    929.2 MiB      0.0 MiB           cal_dl0.reduce(data) 
    36    935.6 MiB      6.4 MiB           cal_dl1.calibrate(data) 

from memory_profiler import profile 

@profile 
def main(): 

    filename = sys.argv[1] 

    source = hessio_event_source(filename) 

    cal_r0 = HessioR1Calibrator() 
    cal_dl0 = CameraDL0Reducer() 
    cal_dl1 = CameraDL1Calibrator() 

    for data in source: 

        print("EVENT", data.r0.event_id) 
        cal_r0.calibrate(data) 
        cal_dl0.reduce(data) 
        cal_dl1.calibrate(data) 
         

if __name__ == '__main__': 
    main() 

Not so exciting, of course all memory is in the data reader, 
but you get the idea…

Decorate what we 
want to measure



Memory Profiling: jump to debugger

Automatic Debugger breakpoints: 

• you can automatically start the debugging if the code tries to 
go above a memory limit, to see where the allocation is 
happening:

| % python -m memory_profiler ——pdb-mmem=100  <script> 

will break and enter debugger after 100 MB is allocated, on the line where the last 
allocation occurred


Print out memory usage during program execution: 
| from memory_profiler import memory_usage 

| mem_usage = memory_usage(-1, interval=.2, timeout=1) 

| print(mem_usage) 

|     [7.296875, 7.296875, 7.296875, 7.296875, 7.296875] 

• see the docs. you can also write it to a log periodically, etc.
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Memory Profiling in a Notebook
Again, you can do memory profiling using magic commands in an iPython 
(Jupyter) notebook 

• Enable the memory profiling notebook extension:

| %load_ext memory_profiler 

• Now you have access to several magic functions:

Like %timeit, but for memory usage:


| %memit <python statement> 

or a more full-featured report:


| %mprun -f <function name> <statement> 

Caveats: 

• the peak memory usage shown in the notebook may not relate to the 
function you are testing! It is the sum of all memory already allocated that has 
not yet been garbage collected. (so look at the "increment" instead).  


•%mprun only works if your functions are defined in a file (not a notebook) 
and imported into the notebook
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SO WE'VE IDENTIFIED SLOW CODE 
NOW WHAT?



Speeding up python code: Numpy
Use NumPy vector operations as much as possible 

• don't call a function on many small pieces of data when you can call it on 
an array all at once


• numpy is implemented in C and it uses fast numerical libraries, optimized 
for your CPU (e.g. Intel Math Kernel Library, BLAS, etc)


• usually just vectorizing your code to avoid some for-loops, will give you 
great performance.


➤ bad: 
| for ii in range(100): 

|     x = ii*0.1 

|     y[ii] = f(x) 

➤ Good: 
| x = np.linspace(0,10,100) 

| y = f(x) 
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Speeding up 2: cython
cython is a special meta-language that lets you write C code with python syntax. It can be 
used to speed up core routines with minimal effort 

You get access to all of C's functionality: 

• compiled code (uses GCC or clang) with fast loops


• call C code directly


• explicit data types


• functions can be C-only for more speed, or have automatic python interfaces

And: 

• numpy operations natively supported

To try it out in a notebook:
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see documentation here: 
Cython: C-Extensions for Python

http://cython.org/


There is a LOT of functionality 
in cython, but the simplest thing 
that increases speed is to define 
your variable types with  

    cdef type variable

for numpy arrays, you can define their type as 
follows: 
cimport numpy as cnp 

cdef cnp.ndarray[double, mode="c", ndim=2] my_array



Speeding up 3: Numba
Even newer technology:  

• takes python code and directly uses introspection to compile it under LLVM (no python-
to-c or cython translation)


• Pretty automatic, but doesn't always help! Still need code written in a way that can be 
optimized (for-loops are actually good here, it can't do much with numpy operations since 
they are already compiled code)


• Can generate NumPy "ufuncs" directly (function that works on scalars but is run on all 
elements of an array), which are too slow to write in python normally.


• the "pro" version can also generate GPU code!   (@jit


Super simple to try though: 
from numba import jit 
from numpy import arange 

# jit decorator tells Numba to compile this function. 
# The argument types will be inferred by Numba when function is called. 
@jit 
def sum2d(arr): 
    M, N = arr.shape 
    result = 0.0 
    for i in range(M): 
        for j in range(N): 
            result += arr[i,j] 
    return result 

a = arange(9).reshape(3,3) 
print(sum2d(a)) 
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just add this decorator, 
and it's magic



from timeit import default_timer as timer 
from matplotlib.pylab import imshow, jet, show, ion 
import numpy as np 

from numba import jit 

@jit 
def mandel(x, y, max_iters): 
    """ 
    Given the real and imaginary parts of a complex number, 
    determine if it is a candidate for membership in the Mandelbrot 
    set given a fixed number of iterations. 
    """ 
    i = 0 
    c = complex(x,y) 
    z = 0.0j 
    for i in range(max_iters): 
        z = z*z + c 
        if (z.real*z.real + z.imag*z.imag) >= 4: 
            return i 

    return 255 

@jit 
def create_fractal(min_x, max_x, min_y, max_y, image, iters): 
    height = image.shape[0] 
    width = image.shape[1] 

    pixel_size_x = (max_x - min_x) / width 
    pixel_size_y = (max_y - min_y) / height 
    for x in range(width): 
        real = min_x + x * pixel_size_x 
        for y in range(height): 
            imag = min_y + y * pixel_size_y 
            color = mandel(real, imag, iters) 
            image[y, x] = color 

    return image 

image = np.zeros((500 * 2, 750 * 2), dtype=np.uint8) 
s = timer() 
create_fractal(-2.0, 1.0, -1.0, 1.0, image, 20) 
e = timer() 
print(e - s) 
imshow(image)

example from the Numba docs

➤ note that you need 
to "jit" not only the 
parent function, but 
any function that it 
calls that needs to 
be sped up



Advanced Numba

import numpy as np 

from numba import guvectorize 

@guvectorize(['void(float64[:], intp[:], float64[:])'], '(n),()->(n)') 
def move_mean(a, window_arr, out): 
    window_width = window_arr[0] 
    asum = 0.0 
    count = 0 
    for i in range(window_width): 
        asum += a[i] 
        count += 1 
        out[i] = asum / count 
    for i in range(window_width, len(a)): 
        asum += a[i] - a[i - window_width] 
        out[i] = asum / count 

arr = np.arange(20, dtype=np.float64).reshape(2, 10) 
print(arr) 
print(move_mean(arr, 3))

example from the Numba docs

Numba includes a lot of advanced features and options to jit that can help speed things up 
when automatic methods fail 

• e.g. specify the input and output type mapping, rather than infer it


Ufunc generation with   vectorize  and guvectorize (generalized)  

Options like target='GPU' for producing CUDA code or similar
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def tailcuts_clean(geom, image, picture_thresh, boundary_thresh): 

    clean_mask = image >= picture_thresh   
    boundary_mask = image >= boundary_thresh  
    boundary_ids = [pix_id for pix_id in geom.pix_id[boundary_mask] 
                    if clean_mask[geom.neighbors[pix_id]].any()] 

    clean_mask[boundary_ids] = True 
    return clean_mask 

def tailcuts_clean(geom, image, picture_thresh, boundary_thresh): 

    pixels_in_picture = image >= picture_thresh 
    pixels_above_boundary = image >= boundary_thresh 
    pixels_with_picture_neighbors = (pixels_in_picture 
                                     * geom.neighbor_matrix).any(axis=1) 

    return (pixels_above_boundary 
            & pixels_with_picture_neighbors) | pixels_in_picture 

example: tailcuts cleaning
An example from CTA data processing: 

• a simple 2-threshold nearest-
neighbor image cleaning routine that 
works on non-cartesian pixel layouts
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list-comprehension → numpy expression



Future

Generally the CPython python "interpreter" speed increases 
with each release 

There are a few projects to replace CPython with fully JIT-
compiled python, in particular PyPy 

• all PyPy code is JIT-compiled with LLVM 


• support for most (but not all) of NumPy


• some support for C-extensions, but not all c-code can be 
run yet 


• supports (so far) Python language up to version 3.5.3 
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