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June 2, 2017

1 Profiling and Optimization Hands-On

In [1]: import numpy as np

from math import sin, cos

import matplotlib.pyplot as plt

%matplotlib inline

1.1 Task 1: which is faster?

Given a large 2D array, we will explore different ways to create the array and to calculate its mean.
Determine which one is fastest, using the %timeit notebook function.

1.1.1 setup: define our 2D array:

We’ll make some dummy test data that looks like:
Mij = sin(i) cos(0.1j)
and we will construct this array in multiple ways.

In [2]: def create_array_loop(N,M):

arr = []

for y in range(M):

row = []

for x in range(N):

row.append(sin(x)*cos(0.1*y))

arr.append(row)

return arr

def create_array_list(N,M):

"""a 2D array using a list-comprehension"""

return [[sin(x)*cos(0.1*y) for x in range(N)] for y in range(M)]

def create_array_np(N,M):

""" a 2D array using numpy"""

X,Y = np.meshgrid(np.arange(N), np.arange(M))

return np.sin(X)*np.cos(0.1*Y)

Let’s first just plot the arrays, to see if they are the same:
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In [3]: N=10; M=30 # our array dimensions

plt.figure(figsize=(12,5))

plt.subplot(1,3,1)

plt.imshow( create_array_loop(N,M))

plt.subplot(1,3,2)

plt.imshow( create_array_list(N,M))

plt.subplot(1,3,3)

plt.imshow( create_array_np(N,M))

Out[3]: <matplotlib.image.AxesImage at 0x114a08438>

1.1.2 Task: determine which array creation routine is fastest

And make a plot of the speed of each! Does the result change much when the array size becomes
larger? Try much larger sizes for N and M

Hint: use the %timeit -o magic function to have %timeit return results (see the timeit help)

1.1.3 SOLUTION:

In [4]: N=3000; M=1000

In [5]: res_loop = %timeit -o create_array_loop(N,M)

1.12 s ś 47.7 ms per loop (mean ś std. dev. of 7 runs, 1 loop each)

In [6]: res_list = %timeit -o create_array_list(N,M)

867 ms ś 8.14 ms per loop (mean ś std. dev. of 7 runs, 1 loop each)
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In [7]: res_np = %timeit -o create_array_np(N,M)

140 ms ś 769 ţs per loop (mean ś std. dev. of 7 runs, 10 loops each)

In [8]: plt.plot([res_loop.average, res_list.average, res_np.average], "o")

plt.xticks( np.arange(3), ['loop','list-comp','NumPy'])

plt.ylabel("average execution time (s)")

plt.grid()

1.2 Task 2: determine the fastest way to find the mean of our array

note that create_array_list() and create_array_loop both return a list-of-lists, while
create_array_np returns a 2D numpy array. There are multiple ways to compute the mean of
these arrays. See again which is fastest!

try at least:

1. using the built-in python sum function and either a for-loop or list-comprehension
2. using pure numpy (e.g. array.mean())
3. other ways you can think of!

1.2.1 SOLUTION

In [9]: N=100; M=100

a_list = create_array_list(N,M)

a_np = create_array_np(N,M)
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In [10]: sum([sum(x) for x in a_list])/(N*M)

Out[10]: -0.00017124964340864182

In [11]: a_np.mean()

Out[11]: -0.00017124964340864226

In [12]: %timeit a_np.mean()

11.6 ţs ś 161 ns per loop (mean ś std. dev. of 7 runs, 100000 loops each)

In [13]: %timeit sum([sum(x) for x in a_list])/(N*M)

78.7 ţs ś 803 ns per loop (mean ś std. dev. of 7 runs, 10000 loops each)

1.3 Task 3: Speed up a real-world problem!

Here your task is to speed up an algorithm for finding the solution to the Heat Equation in 2D using
a finite-difference method, given an initial temperature distribution.

the heat equation is defined as:

du
dt

= α∇2u

Where u is the temperature. This can be approximated simply by iterating in time and approx-
imating the spatial gradient using neighboring array elements. For time-step k of width ∆t and
spatial width ∆x:

uk+1
ij − uk

ij

∆t
=

α

(∆x)2

(
uk

i,j−1 + uk
i−1,j − 4uk

i,j + uk
i+1,j + uk

i,j+1

)
Below we give a naïeve way to solve this, using for-loops (which are not ideal in python). See

if you can speed this up by either:

1. re-writing the code to use numpy to get rid of the spatial loops
2. using cython or numba to compile the function (may need to experiment also with some of

their compile options)

You should also try to see what the memory usage is! (hint: use the memory_profiler module).
Is there a memory leak?

the setup: set up the initial condtions (defining the temperature at the boundary, as well as some
hot-spots that are initially at a particular temperature)

In [14]: N=100; M=100 # define the spatial grid

grid = np.zeros(shape=(N,M))

grid[10:40,:] = 100 # a hot-spot on the border

grid[1:-1,1:-1] = 50 # some initial temperature in the middle
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grid[60:80, 40:60] = 150 # a hot-spot initially heated at the start, that will cool down

plt.pcolormesh(grid)

plt.colorbar()

plt.title("initial conditions")

Out[14]: <matplotlib.text.Text at 0x118f81630>

In [15]: def solve_heat_equation_loops(init_cond, iterations=100, delta_x=1.0, alpha=1.0):

delta_t = delta_x**2/(4*alpha)

prev = np.copy(init_cond)

cur = np.copy(init_cond)

N,M = init_cond.shape

for k in range(iterations):

for i in range(1,N-1):

for j in range(1,M-1):

cur[i,j] = prev[i,j] + alpha*delta_t/delta_x**2 * (

prev[i,j-1] + prev[i-1,j] - 4*prev[i,j] + prev[i,j+1] + prev[i+1,j]

)

prev,cur = cur,prev #swap pointers

return prev
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We’ll also define a convenience function to test the results (you can use this same plotter with
your own solver)

In [16]: def plot_heat_equation(solver, iters=(2,10,100,1000)):

fig, axes = plt.subplots(1,len(iters), figsize=(15,3))

for ii, iterations in enumerate(iters):

result = solver(init_cond=grid, iterations=iterations)

axes[ii].pcolormesh(result, vmin=0, vmax=100)

axes[ii].set_title("{} iterations".format(iterations))

In [17]: plot_heat_equation(solver=solve_heat_equation_loops)

Note that our code is quite slow...

1.3.1 Your turn!

Write an improved verson

• how much faster is your version on average?
• how much memory does it use on average? Is it more than the loop version?
• which line is the slowest line?

(hint: if done right, you should get a factor of about 100 speed increase)

In [18]: def my_heat_equation_solver(init_cond, iterations=100, delta_x=1.0, alpha=1.0):

## your code here

return init_cond # replace with real return value

In [19]: #plot_heat_equation(solver=my_heat_equation_solver)

1.3.2 SOLUTION

there are many ways to achieve this...

In [20]: results = {}

r = %timeit -o solve_heat_equation_loops(grid, iterations=50)

results['loop'] = r

882 ms ś 15.8 ms per loop (mean ś std. dev. of 7 runs, 1 loop each)
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using Numba:

In [21]: from numba import jit

solve_heat_equation_numba = jit(solve_heat_equation_loops)

In [22]: r = %timeit -o solve_heat_equation_numba(grid, iterations=50)

results['numba'] = r

362 ţs ś 10.9 ţs per loop (mean ś std. dev. of 7 runs, 1 loop each)

using cython:

In [23]: %load_ext cython

In [24]: %%cython

cimport numpy as cnp

import numpy as np

def solve_heat_equation_cython(init_cond, int iterations=100, double delta_x=1.0, double alpha=1.0):

cdef int i,j,k, N, M

cdef float delta_t

cdef cnp.ndarray[double, mode="c", ndim=2] prev, cur # this seems to give the biggest improvement

delta_t = delta_x**2/(4*alpha)

prev = np.copy(init_cond)

cur = np.copy(init_cond)

N,M = init_cond.shape

for k in range(iterations):

for i in range(1,N-1):

for j in range(1,M-1):

cur[i,j] = prev[i,j] + alpha*delta_t/delta_x**2 * (

prev[i,j-1] + prev[i-1,j] - 4*prev[i,j] + prev[i,j+1] + prev[i+1,j]

)

prev,cur = cur,prev

return prev

In [25]: r = %timeit -o solve_heat_equation_cython(grid, iterations=50)

results['cython'] = r

1.29 ms ś 15.8 ţs per loop (mean ś std. dev. of 7 runs, 1000 loops each)
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with numpy using range-slicing array[start:end,start:end] we can get rid of the inner for-
loops and turn that part into vector operations

In [26]: def solve_heat_equation_numpy(init_cond, iterations=100, delta_x=1.0, alpha=1.0):

delta_t = delta_x**2/(4*alpha)

prev = np.copy(init_cond)

cur = np.copy(init_cond)

# define some slices to make it easier to type

# just avoids too many things like prev[1:-1,1:-1])

z = slice(1,-1) # zero

p = slice(2,None) # plus 1

m = slice(0,-2) # minus 1

for k in range(iterations):

cur[z,z] = (

prev[z,z] + alpha*delta_t/delta_x**2 * (

prev[z,m] + prev[m,z] - 4.0*prev[z,z] + prev[z,p] + prev[p,z]

)

)

prev,cur = cur,prev # swap the pointers

return prev # since we swapped, prev is the most recent

In [27]: r = %timeit -o solve_heat_equation_numpy(grid, iterations=50)

results['numpy'] = r

5 ms ś 44.7 ţs per loop (mean ś std. dev. of 7 runs, 100 loops each)

In [28]: res = [results[x].average for x in results]

names = [x for x in results]

plt.semilogy()

plt.plot(res, "o")

plt.xticks(np.arange(len(res)), names)

plt.ylabel("Time to perform 50 iterations (s)")

plt.grid()
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In [29]: plot_heat_equation(solver=solve_heat_equation_numba)

In [30]: plot_heat_equation(solver=solve_heat_equation_cython)
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In [31]: plot_heat_equation(solver=solve_heat_equation_numpy)

Lets look at memory usage:

In [32]: %load_ext memory_profiler

In [33]: %memit solve_heat_equation_numpy(grid, 5000)

peak memory: 170.14 MiB, increment: 0.01 MiB

In [34]: %memit solve_heat_equation_loops(grid, 5000)

peak memory: 170.14 MiB, increment: 0.00 MiB

In [ ]:
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