
Parallel and concurrent programming1 www.prace-ri.eu

H2020-Astronomy ESFRI and Research Infrastructure Cluster
(Grant Agreement number: 653477).

1st ASTERICS-OBELICS International School
6-9 June 2017, Annecy, France.

Parallel and concurrent programming2 www.prace-ri.eu

NUMBA Cython and OpenMP

SURFsara

Damian Podareanu

Parallel and concurrent programming3 www.prace-ri.eu

At the speed of Python

One Python’s major drawbacks is its speed. Even for optimized algorithms like string manipulation,
Python falls way behind in the category of “faster” languages. www.raid6.com.au/~onlyjob/posts/arena/

Parallel and concurrent programming4 www.prace-ri.eu

Cython and NUMBA

The most common two speedup options are:

• Cython, an optimizing static compiler as well as a compiled language which generates Python modules
that can be used by regular Python code.

- it is Python with C data types.
- any piece of Python code is valid Cython code, which the Cython compiler will convert into C

code.

• Numba, a Numpy-aware optimizing just-in-time/ahead-of-time compiler.
- just-in-time compilation refers to the process of compiling during execution rather than before-

hand. It uses the LLVM infrastructure to compile Python code into machine code.
- ahead-of-time compilation produces a compiled extension module which does not depend on

Numba: you can distribute the module on machines which do not have Numba installed (but Numpy is
required).

Parallel and concurrent programming5 www.prace-ri.eu

Numba

• Numba provides a Just-In-Time compiler for Python code.

• Just-in-time compilation refers to the process of compiling
during execution rather than before-hand.

• It uses the LLVM infrastructure to compile Python code into
machine code.

• Central to the use of Numba is the numba.jit decorator.

@numba.jit
def f(x):

return x**2-x

def integrate_f(a, b,
N):

s = 0
dx = (b-a)/N
for i in range(N):

s += f(a+i*dx)
return s * dx

timeit function

Timing:
3.98660914803 # N = 10.000.000

NUMBA basics

Parallel and concurrent programming6 www.prace-ri.eu

import numba
from numba import float64, int32

@numba.jit
def f(x):

return x**2-x

@numba.jit(float64(float64, float64,
int32))
def integrate_f(a, b, N):

s = 0
dx = (b-a)/N
for i in range(N):

s += f(a+i*dx)
return s * dx

timeit function

• You can also specify the signature of
the function.

•
Otherwise Numba will generate
separate compiled code for every
possible type.

Timing:
0.0191540718079 # N =
10.000.000

NUMBA basics

Parallel and concurrent programming7 www.prace-ri.eu

Cython code must, unlike Python, be compiled. This happens in two stages:
1. A .pyx file is compiled by Cython to a .c file, containing the code of a Python extension module.
2. The .c file is compiled by a C compiler to a .so file (or .pyd on Windows) which can be imported

directly into a Python session.

Cython preparation

The basic steps to compiling a Cython extension are as follows:
1. In helloworld.pyx: print "Hello, World!
2. Create setup.py, your python “makefile”.

3. $ python setup.py build_ext –inplace à generates helloworld.so.
4. >>> import helloworld

Hello, World!

from distutils.core import setup
from Cython.Build import cythonize
setup(

ext_modules =
cythonize("helloworld.pyx"))

Parallel and concurrent programming8 www.prace-ri.eu

• Cython enforces static typing
• Python is obviously dynamically-typed but for performance-critical code, this may be undesirable.
• Using static typing allows the Cython compiler to generate simpler, faster C code.
• The use of static typing, however, is not “pythonic” and results in less-readable code so you are

encouraged to only use static typing when the performance improvements justify it.
• Cython supports all built-in C types as well as the special Cython types bint, used for C boolean

values (int with 0/non-0 values for False/True), and Py_ssize_t, for (signed) sizes of Python
containers.

• Also, the Python types list, dict, tuple, etc. may be used for static typing, as well as any user defined
extension types.

Cython static typing

Parallel and concurrent programming9 www.prace-ri.eu

Basics of Cython

The cdef statement is used to declare C variables, as well as C struct, union and enum types.

cdef int i, j, k
cdef float f, g[42], *h

cdef struct Node:
int id
float size

cdef union Data:
char *str_data
float *fl_data

cdef enum Color:
red, blue, green

Cython static typing

Parallel and concurrent programming10 www.prace-ri.eu

Static typing

Consider the following purely Python code.

def f(x):
return x**2-x

def integrate_f(a, b, N):
s = 0
dx = (b-a)/N
for i in range(N):

s += f(a+i*dx)
return s * dx

print(timeit.timeit("integrate_f(0.0,
5.0,10000000)", setup="from cydemo
import integrate_f", number=1))

Using Python’s timeit module, the call
integrate_f(0, 5, 100000000) took about
4.198 seconds.

By just compiling with Cython, the call
took about 2.137 seconds.

Cython static typing

Parallel and concurrent programming11 www.prace-ri.eu

A Cythonic version of this code might look
like this:

def f(double x):
return x**2-x

def integrate_f(double a, double b,
int N):

cdef int i
cdef double s, dx
s = 0
dx = (b-a)/N
for i in range(N):

s += f(a+i*dx)
return s * dx

timeit code here

• Pure Python code took about 4.198
seconds.

• By just compiling with Cython, the call
took about 2.137 seconds.

• By performing some static typing, the
call
took about 0.663 seconds.

Cython static typing

Parallel and concurrent programming12 www.prace-ri.eu

Cython functions

• Within a Cython module, Python functions and C functions can call each other freely, but only Python
functions can be called from outside the module by interpreted Python code.

- any functions that you want to “export” from your Cython module must be declared as Python
functions using def.
• Python functions take Python objects as parameters and return Python objects.

• There is also a hybrid function, called cpdef.
• A cpdef function can be called from anywhere, but uses the faster C calling conventions when being

called from other Cython code.

• C functions are defined using the cdef statement. They take either Python objects or C values as
parameters, and can return either Python objects or C values.

Parallel and concurrent programming13 www.prace-ri.eu

Typing functions

When using Cython, Python function calls
are extra expensive because one might
need to convert to and from Python objects
to do the call. We can create some more
speedup just by typing our functions.

cdef double f(double x):
return x**2-x

def integrate_f(double a, double b,
int N):

cdef int i
cdef double s, dx
s = 0
dx = (b-a)/N
for i in range(N):

s += f(a+i*dx)
return s * dx

timeit code here

Time
0.0377948284149

Parallel and concurrent programming14 www.prace-ri.eu

Some Results

module N = 10.000.000 N = 100.000.000

cydemo 4.198 41.69

cydemo2 2.137 22.74

cydemo3 .663 5.90

cydemo4 .0377 0.382

numba 0.0191540718079

• cydemo: pure Python implementation.
• cydemo2: pure Python compiled with Cython.
• cydemo3: static typing.
• cydemo4: static typing and function typing.
• numba: the numba implementation.

Parallel and concurrent programming15 www.prace-ri.eu

How is OpenMP typically used?

OpenMP is usually used to parallelize loops:
Find your most time consuming loops.
Split them up between threads.

void main()
{

int i, k, N=1000;
double A[N], B[N],

C[N];
for (i=0; i<N; i++) {

A[i] = B[i] + k*C[i]
}

}

Sequential Program
#include “omp.h”
void main()
{

int i, k, N=1000;
double A[N], B[N],

C[N];
#pragma omp parallel for

for (i=0; i<N; i++) {
A[i] = B[i] + k*C[i];

}
}

Parallel Program

Parallel and concurrent programming16 www.prace-ri.eu

Single Program Multiple Data (SPMD)

(Cont.)

Thread 0

void main()
{
int i, k, N=1000;
double A[N], B[N], C[N];
lb = 0;
ub = 250;
for (i=lb;i<ub;i++) {
A[i] = B[i] + k*C[i];

}
}

Thread 1

void main()
{
int i, k, N=1000;
double A[N], B[N], C[N];
lb = 250;
ub = 500;
for (i=lb;i<ub;i++) {
A[i] = B[i] + k*C[i];

}
}

Thread 2

void main()
{
int i, k, N=1000;
double A[N], B[N], C[N];
lb = 500;
ub = 750;
for (i=lb;i<ub;i++) {
A[i] = B[i] + k*C[i];

}
}

Thread 3

void main()
{
int i, k, N=1000;
double A[N], B[N], C[N];
lb = 750;
ub = 1000;
for (i=lb;i<ub;i++) {
A[i] = B[i] + k*C[i];

}
}

#include “omp.h”
void main()
{
int i, k, N=1000;
double A[N], B[N], C[N];

#pragma omp parallel for
for (i=0; i<N; i++) {
A[i] = B[i] + k*C[i];

}
}

Parallel Program

Parallel and concurrent programming17 www.prace-ri.eu

OpenMP Fork-and-Join model

printf(“program begin\n”);
N = 1000;

#pragma omp parallel for
for (i=0; i<N; i++)

A[i] = B[i] + C[i];

M = 500;

#pragma omp parallel for
for (j=0; j<M; j++)

p[j] = q[j] – r[j];

printf(“program done\n”); Serial

Serial

Parallel

Serial

Parallel

Parallel and concurrent programming18 www.prace-ri.eu

OpenMP’s constructs:
1. Parallel Regions
2. Worksharing (for/DO, sections, …)
3. Data Environment (shared, private, …)
4. Synchronization (barrier, flush, …)
5. Runtime functions/environment variables

(omp_get_num_threads(), …)

Parallel and concurrent programming19 www.prace-ri.eu

THANK YOU FOR YOUR ATTENTION

www.prace-ri.eu

Parallel and concurrent programming20 www.prace-ri.eu

Aknowledgement

H2020-Astronomy ESFRI and
Research Infrastructure Cluster
(Grant Agreement number: 653477).

