

Le contexte

Irfu CCCC saclay Plaçons nous en 2012 ou 2013,

LHC :

- boson(s) de Higgs ?
- > nouvelles particules ?

Mais aurons nous la réponse aux questions suivantes :

- Quel est le mécanisme précis de la brisure de la symétrie électrofaible ?
- > Si nouvelles particules découvertes au LHC, quel modèle ?

⇒ Nouvelle machine complémentaire du LHC/sLHC : un collisionneur e⁺e⁻ linéaire

l'ILC

Précision

- État initial connu
- Énergie connue (~ 10⁻⁴-10⁻⁵)
- Interaction électrofaible
- − Taille des faisceaux réduite \Rightarrow étiquetage des saveurs (b, c, τ^{\pm})
- Rapport S/B favorable
- Luminosité bien connue (~ 10⁻²-10⁻⁴)
- Haute luminosité (~500 fb⁻¹/an)
- Détecteurs de haute précision
- Flexibilité
 - Collisions e⁺e⁻, γe⁻, γγ, e⁻e⁻
 - Polarisations des faisceaux
 - Modulation de l'énergie (GigaZ, 2 M_{top}, M_Z+M_H, seuils en SUSY, etc.)

lrfu

saclay

I'ILC

Programme de physique

Réponse aux questions clefs: rfu Mesures de précision du Modèle Standard • Nouvelle physique • Origine de la brisure de symétrie électrofaible et des masses ⇒ Caractérisation du secteur de Higgs saclay Mesures de précision : • $m_{top} \sim \pm 100 \text{ MeV/c}^2$ • m_{W+} ~ ± 5 MeV/c² • GigaZ $\Rightarrow \Delta \sin^2 \theta_{Weff} / \sin^2 \theta_{Weff} \sim 0.01 \%$ Mesures Indirectes: $\Delta M_{H} / M_{H} \sim 5 \%$ Nouvelle physique : • Susy: $\sqrt[4]{} \sqrt{} s < LHC$. \bigcirc Seuils/Balayages possibles LHC: squarks/gluinos ; ILC: sleptons et Jauginos. Type de brisure SUSY ? Détermination précise : masses, spin, BR, etc. • Technicouleur, Z', etc

Programme de physique (2)

saclay

Le secteur de Higgs:

- > masse (précision ~ 70 MeV/c²)
- > largeur
- section efficace
- > spin-parité (Higgs <-> boson scalaire)
- Rapports de branchement
 - bbar / ccbar / gg / $\tau^+\tau^-$ / $\gamma\gamma$ / W+W-
 - couplage de Yukawa au top
 - événements ttbarH
- potentiel (chapeau mexicain)

Potentiel de Higgs

le couplage trilinéaire peut être mesuré à 15-20 % près dans l'état final HHZ (désintégration en 6-10 fermions)

ILC (la machine)

l r f u

- Collisions ajustables en énergie
 - 200 GeV à 1 TeV
 - Option GigaZ : 10⁹ Z en 1 an,
 soit 2 ordre de magnitude de plus que LEP1
- Luminosité
 - 3 à 5 ab⁻¹
 - typiquement 500 fb⁻¹ / année

Technologie supra.

Irfu CCC saclay

- Avantages:
 - Champs de sillage plus faible
 - ⇒ Basse fréquence et charge plus élevée
 - Efficacité du transfert de puissance entre le champ radio-fréquence et le faisceau
 - ⇒ Consommation électrique réduite (~100 MW pour une puissance par faisceau de ~10 MW)
- Cavités
 - Niobium, hélium superfluide à 2K.
 - Fréq. faible (1.3 GHz)
 - Gradient = 31.5 MV/m

Technologie supra.

- Avantages:
 - Champs de sillage plus faible
 - ⇒ Basse fréquence et charge plus élevée
 - Efficacité du transfert de puissance entre le champ radio-fréquence et le faisceau
 - ⇒ Consommation électrique (~100 MW pour une puissa faisceau de ~10 MW)
- Cavités
 - Niobium, hélium superfluide
 - Fréq. faible (1.3 GHz)
 - Gradient = 31.5 MV/m

23 tests, 11 cavities

9

Structure temporelle du faisceau

Irfu CCC saclay

- 5 Trains de ~1 ms par seconde
- 2820 paquets par train
- 337 ns entre paquets
- 200 ms entre chaque train
 - Données stockées en Front-end
 - Sélection software pendant les 200 ms

Pas de trigger ! (ni temps mort) Conditionne les détecteurs

16 janvier 2009 CEA DSM Irfu

Importance de la résolution des impulsions des particules chargées

Tracker

16 janvier 2009 CEA DSM Irfu

Importance de la résolution en énergie dans le calorimètre

Irfu CCC saclay *calo* Pour séparer W/Z dans des processus comme WW*vv* ou ZZvv, on a besoin d'une très bonne résolution dans **l'énergie des jets** (un facteur 2 mieux qu'au LEP)

13

Importance du nombre de couches dans le détecteur de vertex

Etapes à venir

- *Reference Design Report* prêt depuis août 2007.
- Lettre(s) d'intention pour mars 2009.
- La prochaine étape sera la publication du *Technical Design Report Phase1* (TDR1) pour 2010, puis le TDR2. Dès lors, l'ILC sera prêt pour une approbation et le choix d'un site pourra commencer.
- ~2013 : période clé correspondant à l'acceptation du projet
- La construction devrait alors commencer pour une durée estimée à 7 années.

3 concepts de détecteurs

	principo	vortov	trooling	EM colo	Hadron calo	soleno	Chambres à
	principe	vertex	uacking	ENI Calo	Hadron calo	id	muons
ILD	particle flow	5 ou 6 couches de pixels	TPC	SiW ou W- scintillateur	Scintillateur	3.5 T	Retour de flux instrum.
SiD	particle flow	5 couches	Bandes Si	Si-W	Acier-RPC	5 T	Retour de flux instrum.
4 th	dual read out	5 couches	TPC gaseux	cristaux 2/3 lectures	W/fibres 2/3 lectures	3.5 T	Solenoïde double sans Fe

Un détecteur de vertex pour l'ILC

R&D pour le détecteur de vertex

R&D pour le détecteur de vertex

MAPS (Monolithic Active Pixel Sensor) : principe

lrfu CCC saclay

- Les éléments sensibles et électronique de traitement sur le même substrat utilisant un procédé CMOS standard
- Les particules ionisantes créent des paires e-h dans la couche épitaxiale faiblement dopée
- Les électrons diffusent thermiquement vers la diode N-well/P-épi

Le projet EUDET : R&D pour le collisionneur linéaire

Nb d'instituts : 31 (de 12 pays différents) + 24 instituts associés

Infrastructure de faisceau test EUDET-JRA1

- très grande précision (< 3 μm)
- très grande vitesse de lecture (frame rate > 1 kHz), $T_{integ} \sim 100 \mu s/frame$
- lecture binaire
- facile à utiliser (interfaces bien définies/décries)
- modulaire pour les différents DUT (Device Under Test) (refroidissement, positionnement, champ magnétique)

Principaux utilisateurs :

Détecteurs à pixels, CCD et DEPFET TPC, ...

- setup initial @ DESY
 - < 6 GeV/c électrons
- > Transportable :

rfu

saclay

Développement des chips communs IPHC-IRFU pour ILC et EUDET

Chips, technologie, nombre de pixels, pitch

Avancées techniques et performances acquises

MIMOSA 16 : description

GELIN Marie

MIMOSA 16 (bis)

- Bruit temporel entre 12 et 15 e-
- Efficacité de détection > 99.% (ana et avec des seuils de discri « bas »)
- Rapport Signal/Bruit : 10-16 (selon la sous-matrice)
- Résolution : 5 µm (num.)
- taux de fantômes : $O(10^{-4} 10^{-5})$ avec eff. det. ~ 100 %

MIMOSA 22 : description

26

Buts des tests en laboratoire (réalisés à l'IPHC & Saclay)

saclay

Mesures/caractérisation des sorties analogiques de test :

- Bruit : Bruit Temporel (TN) et bruit spatial fixe (FPN)
- Facteur de conversion Charge tension : CVF
- Efficacité de collection de charge : CCE pour des clusters de 3x3 et 5x5 pixels
- Dispersion des résultats obtenus entre différents détecteurs

Mesures/caractérisation des sorties digitales:

- Caractérisation des DACs internes
- TN and FPN pour les discriminateurs seuls
- TN and FPN pour discriminateurs + pixels
- Etude des pixels bruyants and uniformité de la réponse des pixels aux hits

Conditions de travail :

$$T_{CLK-(chip)}$$
=100 MHz \Rightarrow T_{integ} =92.16 µs ; I_{pix_sf} = 50 µA ; T_{chip} ≈20 °C

16 janvier 2009

M22 : Résultats des sorties analogiques

M22 : dispersion entre les chips

l r f u CEO saclay

Wc	<u>Working conditions</u> : I _{pix_sf} = 50 µA ; T _{chip} ≈15 °C ; Vdd_diode = 0.915 V											
	Ss-matrice	n° Chip	CCE 5x5									
		5	12.6 e⁻	73 %	86 %							
	56	4	12.4 e⁻	73 %	84 %							
	30	3	12.7 e⁻	76 %	86 %							
		1	12.6 e⁻	74 %	85 %							
		5	12.6 e⁻	74%	87%							
	S10	4	13.3 e⁻	77 %	86 %							
	310	3	12.8 e⁻	75 %	85 %							
		1	13.5 e⁻	76 %	86 %							

Résultats similaires pour les différentes puces

M22 : caracterisation discri + pixels

M22 : caractérisation discri + pixels

	r	f	U
(X	Ŋ	С
S	ас	- ;	a v

	S	6	S	7	S	8	S	9	S	\$10			
	mV	e-	mV	mV e-		e-	mV	e-	mV	e-			
TN	0.612	11.5	0.601	10.7	0.615	11.3	0.595	10.0	0.639	11.6			
FPN	0.250	4.7	0.263	0.263 4.6		4.4	0.273	4.6	0.222	4.0			
	S12									0 e- 11.6 4.0 7 e- 11.4 4.7			
	S	12	S	13	S	15	S	16	S	17			
	S ² mV	12 _{e-}	S [°] mV	13 _{e-}	S [°] mV	15 _{e-}	S [°] mV	16 _{e-}	S ² mV	17 _{e-}			
TN	S ² mV 0.636	12 e- 11.2	S [*] mV 0.692	13 e- 13.4	S ² mV 0.682	15 e- 12.8	S ² mV 0.536	16 e- 12.4	S ² mV 0.527	17 e- 11.4			

• Pixel Noise ~ 0.6 mV

• FPN ~ 0.25 mV

 \Rightarrow résultats similaires à ceux du prototype de plus petite taille MIMOSA16

• RadTol pixels (S6, S10, S13) plus bruyants que les pixels standards (~1 e)

Partie numérique : étude des pixels bruyants

16 janvier 2009

CEA DSM Irfu

Partie digitale : Réponse des pixels aux hits

Buts des faisceaux tests

CERN/SPS-H Performances des sorties analogiques : rfu π 120GeV • Bruit été/octobre08 Rapport S/N aux MIPs Résolution spatiale saclay Performances des sorties numériques : Efficacité de détection Taux de hits fantôme Planes 7-8 MIMOSA22 Planes 5-6 Résolution spatiale X4, Y4 X3, Y3 Planes 3-4 Planes 1-2 X2, Y2 Beam X1, Y1 8 planes (x,y) (π, 120 GeV) Scintillators Si-pitch = 50 μ m trigger

Performances des sorties analogiques aux MIPs

- bruit similaire aux mesures en laboratoire
- Rapport S/N ~ 16-21
- résolution spatiale ~1.5 μm

Performances des sorties numériques aux MIPs

 \Rightarrow les différents pixels ont des performances très satisfaisantes

Résultats M22 après irradiations (labo)

16 janvier 2009 CEA DSM Irfu

$\textbf{Mimosa 22} \rightarrow \textbf{Mimosa 22bis}$

• Améliorer les performances des pixels aux radiations

					jedineju	Wijiu	iu șu ș	icicie	يتنابعن	u <mark>e se c</mark>			
alar hadan barlar balar barlar bar													
			-	-									

lrfu

saclay

M22bis : description

_

lrfu	50	Line #0-#159 : <i>structures de test</i>			
	00	160			matr
saciay	S1	32		11 31um ²	S1
	S2	32		TT.OTµIII X	SZ
	S3	32			S3
	S4	32	au	14.62µm²	S4
	S5	32	, isce		S5
	S10	32	fa	15.2um²	S1
	S11	32		· • · – μ· · ·	S1
	S12	20			S1
	012				S1
	513	32			S1-
	S14	32		15.2µm² {	S1
	S15	32			S1
	S16	32			S1
	S17 S18	16 16			S1
					· –

Taille des diodes provenant de M22 : S6 : $4.3x3.4 \ \mu m^2$ S10 & S13 : $3.85x3.95 \ \mu m^2$

Pix	el	Commentaires
matrice	Polari- sation	
S1	SB	Diode RadTol 3.1x3.65 FELT + VST
S2	SB	Diode 3.1x3.65 RadTol
S3	SB	S6 (mi22) + FELT + VST
S4	SB	S6 (mi22) FELT
S5	SB	S6 de MIMOSA22 référence
S10	SB	S13 (mi22) Gain + ~15%
S11	SB	S10 (mi22) Gain modifié
S12	SB	Like S13 grande diode Gain + ~15%.
S13	LOG	S13 (mi22) Gain + ~15%
S14	LOG	S10 (mi22) Gain modifié
S15	SB	Pixel avec nouvel ampli à 2 étages de gain. Le signal de sortie étant inversé.
S16	RST	S13 (mi22)) Gain + ~15%
S17	RST	S10 de MIMOSA22 (référence)
S18	RST	S10 (mi22) Gain modifié. non Rad-Tol.

M22bis : Performances aux MIPs

M22bis : Résultats avant/après irradiation

Conclusions

saclay

Bilans des résultats de M22/M22bis :

- Bruit temporel entre 10.7 et 14 e-
- Efficacité de détection > 99.9% (ana et avec des seuils de discri « bas »)
- Rapport Signal/Bruit : 16-21
- Résolution : 1.5 μ m (ana.) 3.5 μ m (num.)
- taux de fantômes : $O(10^{-4} 10^{-5})$ avec eff. det. ~ 100 %

Conclusions M22/M22bis :

- Matrice de pixels opérationnelle à fréquence nominale et température ambiante (20°C) en laboratoire comme en faisceau test
- Architecture à lecture rapide validée sur un grand chip
- Architectures de pixels avec bruit modéré & performances de détection satisfaisantes
- Bonne tolérance aux radiations démontrée

Conclusions / Perspectives

saclay

Vers le chip final d'EUDET :

> fin 2008: Chip final pour EUDET (MIMOSA26)

- extension de MIMOSA-22 x 9 + \emptyset -circuit (SUZE)
- 1152 col x 576 pixels (1x2 cm²) \Rightarrow run d'engineering
- temps de lecture pour tout le chip ~ 100 μs
- > Tests prévus pour mars 09

Vers l'ILC

- > Vitesse de lecture : gagner un facteur 2 (pour la première couche)
- Améliorer encore la tolérance aux radiations
- Passer du discriminateur (1bit) à un ADC 4 ou 5 bits
- Projets intermédiaires (exemple : STAR)
- Exploration autres techno (exemple : 3D)

16 janvier 2009 CEA DSM Irfu

Performances numériques aux MIPs

Taux de hits fantôme

probabilité qu'un pixel dans 1 ev^t
 passe le seuil du discriminateur
 accidentellement sans MIP.

CEA DSM Irfu

CLIC versus LHC and ILC beam

saclay

lrfu

	LHC		
	ATLAS VX	ILC	CLIC
Energy [TeV]	14	0.5	3
BX spacing [ns]	25	300	0.267
Nb of BX/train	2808	2820	220
train time duration	70µs	1ms	60 ns
Repetition rate [Hz]	40M	5	150
Nb of BX/s	36M	11400	33000
Hit/mm ² /BX at 3cm	0.05	0.05	0.005

Après ~ 3 ans de fonctionnement toute la gamme est couverte.

B.Mansoulié

47

Zero suppression Micro-Circuit : SUZE

1st chip (SUZE-01) with integrated Ø and output memories (no pixels) :

- ➤ 2 steps, raw by raw, logic :
 - *step 1* (inside blocks of 64 columns) :
 - identify up to 6 series of \leq 4 neighbour pixels / row delivering signal > discriminator threshold
 - *step 2* : read-out outcome of step 1 in all blocks and keep up to 9 series of ≤ 4 neighbour pixels
- 4 output memories (512 x 16 bits) taken from AMS I.P. lib.
- surface ~ 3.9 x 3.6 mm²

Test results summary :

- > Back from foundry end of sept.07 \rightarrow (lab) tests completed
- design performances reproduced up to 1.15 x design read-out frequency (T_{room}) : Noise values as predicted, no pattern encoding error

Progress on ADC developments and

plans

lrfu

saclay

Several different ADC architectures under development :

- LPCC (Clermont) : flash 4+1.5-bit ADC
 - 1st proto tested, 2nd proto back from foundry
- LPSC (Grenoble): Ampli + semi-flash (pipe-line) 5-bit ADC
 - 1st proto tested, 2nd proto under test
- IRFU (Saclay) : Ampli + Suc.App.R (4- and) 5-bit ADC
 - 1st proto under test
- IPHC (Strasbourg) : SAR 4-bit and Wilkinson 5-bit ADCs:
 - 1st proto submitted end October 06
 - 2eme proto submitted end 2008

Present outcome of development :

- Typical differences between architectures :
 - ~ factor 2 in power & speed
- Observed pbs: loss of 1–2 bits
- (e.g. due to offset dispersion between columns)
 - solutions under study
 - ⇒ include enhanced signal amplification before ADC

Next steps :

- Final ADC designs expected to come out in 2007
- Submission of 1st col. // pixel array proto equipped with ADCs &

16 janvier 2009 CEA DSM Irfu Ø end 2007

LPCC, new comparator

LPSC, 5-bit ADC

DAPNIA, 6 ADC in //

16 janvier 2009 CEA DSM Irfu

Les jalons physiques du projet

				Process	\mathbf{V} ertex	Track	ing	\mathbf{Cal}	lorimetry	F	vd	Very Fwd		1	ntegi	ration		$\mathbf{Pol.}$
					σ_{IP}	$\delta p/p^2$	ϵ	δE	$\delta \theta, \delta \phi$	Trk	Cal	θ^e_{min}	δE_{jet}	M_{jj}	$\ell\text{-}\mathrm{Id}$	V^0 -Id	$Q_{jet/vtx}$	
Irtu				$ee \rightarrow Zh \rightarrow \ell\ell X$		х									х			
		Sß		$ee \rightarrow Zh \rightarrow jjbb$	x	х	х			х				х	x			
\sim		Ň		$ee \to Zh, h \to bb/cc/\tau\tau$	х		х							х	х			
æ		Zer		$ee \to Zh, h \to WW$	х		х		х				х	х	х			
000.	ល			$ee \rightarrow Zh, \ h \rightarrow \mu\mu$	x	х									х			
	- C	а,	5	$ee \rightarrow Zh, \ h \rightarrow \gamma\gamma$				х	х		х							
saclay	ect	nit	1	$ee \to Zh, h \to \mathrm{i} nvisible$			х			х	х							
)et	asl	С Ю	$ee \rightarrow \nu \nu h$	х	х	х	х			х			х	х			
		Ĕ	00	$ee \rightarrow tth$	х	х	х	х	х		х	х	х		х			
	Ľ	Ϋ́	Ō	$ee \rightarrow Zhh, \nu\nu hh$	х	х	х	х	х	х	х		х	х	х	х	х	х
	he	ທ່	eX	$ee \rightarrow WW$										х			х	
	r t	da,	ά Ω	$ee \rightarrow \nu \nu WW/ZZ$						х	х		х	х	х			
	fo	ka	Ļ.	$ee \rightarrow \tilde{e}_R \tilde{e}_R$ (Point 1)		х						х			х			х
	ks	0	Ň	$ee \rightarrow \tilde{\tau}_1 \tilde{\tau}_1$	x	х						х						
	าลเ	Ϋ́	, a	$ee \rightarrow \tilde{t}_1 \tilde{t}_1$	х	х							х	х		х		
	hr	Ň	90	$ee \rightarrow \tilde{\tau}_1 \tilde{\tau}_1$ (Point 3)	х	х			х	х	х	х	х					
	uc uc	¥		$ee \to \tilde{\chi}_2^0 \tilde{\chi}_3^0$ (Point 5)									х	х				
	Be	3aı	ς Ω	$ee \rightarrow HA \rightarrow bbbb$	х	х								х	х			
	SC	Ë.	lar	$ee \rightarrow \tilde{\tau}_1 \tilde{\tau}_1$			х											
	y sic	g	\geq	$\tilde{\chi}_1^0 \to \gamma + E$					х									
	Ę.	gli	Û	$\tilde{\chi}_1^{\pm} \to \tilde{\chi}_1^0 + \pi_{soft}^{\pm}$			х					х						
		tta		$ee \rightarrow tt \rightarrow 6 \ jets$	х		х						х	х	х			
		a Da		$ee \rightarrow ff \ [e, \mu, \tau; b, c]$	х		х				х		х		х		х	х
		5		$ee \rightarrow \gamma G \text{ (ADD)}$				х	х			х						х
		2		$ee \rightarrow KK \rightarrow ff$		х									х			
				$ee \rightarrow ee_{fwd}$						х	х	х						
				$ee \rightarrow Z\gamma$		х		х	х	х	х							

Pourquoi un collisionneur linéaire ?

lrfu CCC saclay

Collision e⁺e⁻ : réactions très simples

- État initial très bien défini
- Topologies plutôt simples de l'état final
 - Ratio signal /fond favorable
- Environnement expérimental très propre
 - Recherche de nouveaux phénomènes

« facile »

Mesures & études de très grande précision

Le particules flow

lrfu

 \sim How to measure the energy of a jet?

- Classical method: Calorimetry
 - $-\operatorname{typical}$ event: 30% electromagnetic and 70% hadronic energy
 - typical resolution: $10\%/\sqrt{E}$ for Ecal and $50\%/\sqrt{E}$ for Hcal
 - $\Longrightarrow \Delta E/E > 45\%/\sqrt{E}$ for jets
 - \bullet The particle flow method
 - typical event: 60% charged tracks 30% electromagnetic and 10% neutral hadronic energy
 - $-\operatorname{tracking}$ resolution negligible on this scale
 - $\Rightarrow \Delta E/E = 20\%/\sqrt{E}$ for jets possible in principle

Beamstrahlung (2)

CEA DSM Irfu

The CLIC Two Beam Scheme

Two Beam Scheme: Drive Beam supplies RF power

- · 12 GHz bunch structure
- low energy (2.4 GeV 240 MeV)
- high current (100A)

Main beam for physics

- high energy (9 GeV 1.5 TeV)
- current 1.2 A

Lucie Linssen, LCWS 19/11/2008

No individual RF power sources

3

ILC: 1 train = 2820 bunches 337 ns apart 5 Hz

Consequences for CLIC detector:

Assess need for detection layers with time-stamping
Innermost tracker layer with sub-ns resolution
Additional time-stamping layers for photons and for neutrons
Readout electronics will be different from ILC
Power pulsing at 50 Hz, instead of 5 Hz

Lucie Linssen, LCWS 19/11/2008

1

Extrapolation ILC = > CLIC

Full LDC detector simulation at 3 TeV Simulation of e⁺e⁻ pairs from beamstrahlung origin

Courtesy: Adrian Vogel, DESY

•Conclusion of the comparison:

•ILC, use 100 BX (1/20 bunch train) •CLIC, use full bunch train (312 BX)

•CLIC VTX: O(10) times more background •CLIC TPC: O(30) times more background

LDC 3 TeV, with forward mask

Lucie Linssen, LCWS 19/11/2008

16

CEA DSM Irfu

GELIN Marie