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CiFriNiH 9 Coulomb Excitation Studies
o)

1) Study of #*Ca,*®Ar and %3S through Coulomb excitation at Intermediate energies

S Calinescu, O. Sorlin et al. =GANIL, IFIN-HH ..

I) Study of magicity and pygmy dipole resonance in the neutron-rich %8Ni
I. Matea, S Calinescu et al. — IPN ORSAY, GANIL, IFIN-HH

lll) Future plans
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Magicity at N=28: 4°Ar

Coulomb excitation:

B(E2;0* - 27) = 196(39)e?fm*

H. Scheit et al., Phys.Rev.Lett 77 (1996)
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A. Gade et al., Phys. Rev. C 74 (2006)
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Lifetime measurement

B(E2;0* - 27) = 570(335)e2fm*
D. Mengoni et al., Phys.Rev.C 82 (2010)
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Experimental set—up
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D. Cline et al., N. Phys. A 204, 1973. 574
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Absolute cross section measurement

] B.=0.253(5)
2001~ B,=0. 0.35(4)
150 :— : s:)(ﬁl'omb + nuclear
L — coulomb only
100
50—
0_ Js.

1 2 3 4 5 6 7
Angle [degrees]

Best fit for safe zone : B(E2) = 475 (42) e*fm*
Adopted value in literature :  B(E2) = 473 (20) e*fm*

Weighted average value
from (e,e’), Coulex, DSAM etc.: B(E2) = 495(35) e?fm*

Very good agreement between the measured value of the B(E2)
in this experiment and the adopted value from literature!



46Ar

Extraction of B(E2:0,*->2,*) in*Ar from absolute cross section measurement and relative to the known B(E2) in 4Ca
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In agreement with previous
Coulomb excitation measurements

Phys. Rev. C 93, 044333 (2016)
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Doubly magic %Ni ?

B(E2:0,*->2,*) = 280(60) e*fm*

What is the nature of the PDR in °éNi ?
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Theoretical predictions
Until now, the only measurements of PDR of in ¢8Ni were made using electromagnetic probes.

This work  Literature
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Content

Low-energy

Coulomb excitation of 7°Zn and doubly magic(?) ®Ni on a 220 mg/cm?2%8Pb
target

» B(E2) values
> Pn

High energy

°®Ni on electromagnetic (Pb) and nuclear probes (CH, C) @ 47MeV/A
» Nature of PDR in ®8Ni ??
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70Zn data analysis Osafe=3.3°
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%8Nj data analysis

Osafe =3.50

1) Extraction of the B(E2:0,*->2,*) in ®8Ni relative to the known B(E2:0,*->2,*) in 79Zn
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2) Extraction of B(E2:0,*->2,*) in%8Ni from absolute cross section measurement
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To be submitted



PDR in ®8Ni
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Future Plan

» M,/M, ratio ; model independent B(E2) value

» microscopic calculations will provide the proton and neutron
transition densities that will be injected into a reaction code (ECIS or
FRESCO for inelastic channel and for coulomb excitation channel) to
obtain calculated cross sections.



Next step?

Study of giant and pygmy resonances in exotic nuclei at LISE (LOI)
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What are the challenges?
1) Beam optics

2) ACQ

=>» run with 2 acquisitions: one for the ACTAR part, and one for the PDR
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part. Only the zero degree part (CATS, CHIO, Plastics) would be in coincidence with ACTAR
event on the one hand, and with PDR event on the other hand. This is a problem that has
to be solved for example by having another independent acquisition for the beam

detectors and “stamp” the events with the two parts of the experiment.



3) Detectors

ACTAR
» beam of >2Ni at 4MeV/u sent in ACTAR filled with iC4H10 at 100mbar
» The extracted resolution for the elastic peak is around o = 100keV, meaning one order of
magnitude better than what has been obtained previously in the ®8Ni(a,a’) ®8Ni* experiment
in 2010 with MAYA (track lengths comparable in the two experiments).
» increasing the granularity of the pads plane an efficiency of around 10% efficiency is
expected, according to preliminary simulations
» The cubic chamber is now in construction and would be ready for the ACTAR commissioning
experiment middle 2017. The detector should be ready for commissioning experiment
middle 2018.
» sides of the ACTAR cubic box will be flexible, allowing to put different kind of Si detectors
inside
PARIS
» 8 clusters of PARIS in 2019. At 15cm, it would correspond to a total efficiency of 3%, which is
around the same efficiency we got in the e611 experiment with Chateau de Cristal
» PARIS could be completed with LaBr3 detectors
NEUTRON DETECTORS
» ELENS detector would be available in 2019
» 5% efficiency
» More neutrons detectors to increase the efficiency.
» increase target thickness



ToDo List

» Wait some news of Omar Kamalou and Vincent Morel to see if it is
possible to have the ACTAR/quadrupoles/CATS... configuration

» Test on the zero degree detection. Is it possible to identify Z and A in
nuclei around Ni isotopes?

» Simulation to study the propagation of the beam in the different detectors

» Simulation (p,n) reaction with PARIS and neutron detector



THANK YOU!



Future Plan

» M,/M, ratio ; model independent B(E2) value

» microscopic calculations will provide the proton and neutron
transition densities that will be injected into a reaction code (ECIS or
FRESCO for inelastic channel and for coulomb excitation channel) to
obtain calculated cross sections.



Comparison between experiment and DWEIKO calculation trough
GEANT4 simulations
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%Ni data analysis
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e61ll MOTIVATION

»Pygmy Dipole Resonance (PDR), is often associated with the (collective) oscillation of the neutron skin against the core.

» Observed in stable heavy nuclei (e.g., 2°6Pb)

> Its nature is predominantly isoscalar (neutrons and protons oscillate in phase).

> Investigated experimentally only in few radioactive nuclei like 20220, 26Ne, 68Ni, 129-1325n 1331345 The PDR strength seems to be higher
in unstable nuclei that in the stable ones.

68Ni.
RMF . i - RPA
What is the nature of the PDR in 68Ni ? _ 14
1o} 510 Mev 68N 12
- 7% 10 4
> the only measurements of PDR in %8Ni were made using electromagnetic probes f l g8
» using different probes, the excitation mechanism can change and, consequently, = il
> the excitation cross sections of the low lying E1 strength could change " 2
’ \y EMos? il O;J 50('245e‘?;(; 35 40

H Q D Vretnar et al. NPA 692(2001)49—6 G. Colo private communications
Experimental evidence: _ o
Theoretical predictions

@GSI 8Ni@600 MeV/A by Coulomb excitation (O.Wieland et al., Phys.Rev.Lett.102 (2009) )
» showed evidence of a small peak at 11 MeV

» measured (y*, y’) within RISING campaign

» several “issues”

E611 @GANIL using LISE3

¢ 70Zn28* peam at 70 MeV/u and 1.5 pAe on Beryllium target (500 um) =» 71000 8Ni / sec (measured)
*Beam purity ~ 87%
« Coulomb excitation on 315 mg/cm2 Pb target (6, = 5°)
* Inelastic scattering on 160 mg/cm2 C target
Detection : Chateau de Cristal
v’ 74 detectors at ~ 20 cm from target
v' Coverage of more than 80% of 4pi
v high efficiency
v very good n-gamma discrimination



HF calculations

s %N
i HF Beiner-Lombard

r,=3.827 fm
r,.=4.029 fm

ARy, ,=0.2 fm



CdC internal radioactivity evolution
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