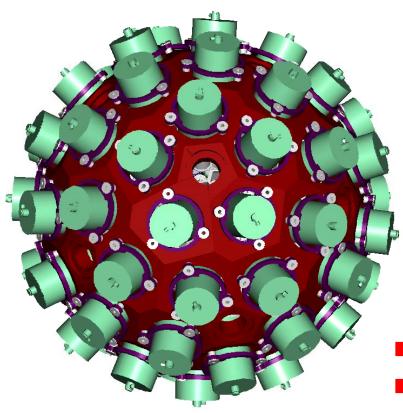


Experience and first results of

@GANIL


LIA COSMA

30-31 January 2017 Magurele, Bucarest

AGATA

(Advanced GAmma Tracking Array)

180 hexagonal crystals

60 triple-clusters

Amount of germanium 362 kg

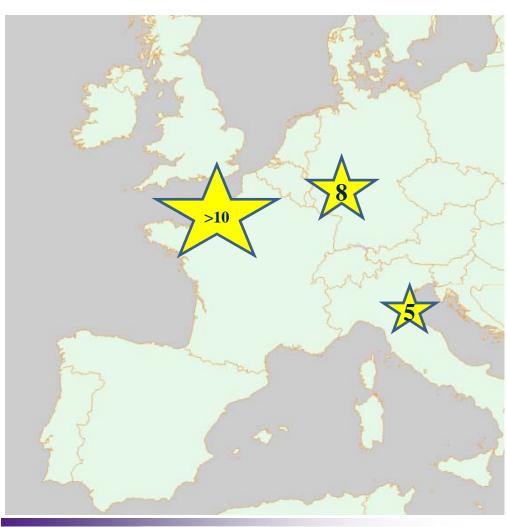
Solid angle coverage 82 %

36-fold segmentation 6480 segments

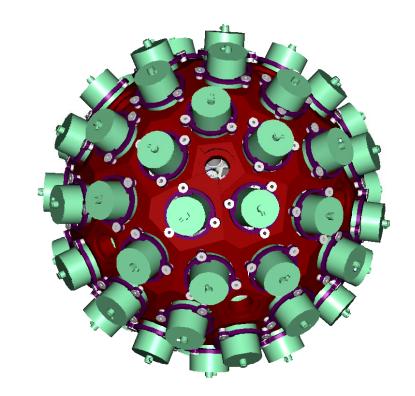
Singles rate

>50 kHz

Efficiency: $43\% (M_{\gamma}=1) 28\% (M_{\gamma}=30)$


Peak/Total: 58% $(M_v=1)$ 49% $(M_v=30)$

- ■6660 high-resolution digital electronics channels
- ■High throughput DAQ
- ■Pulse Shape Analysis
 - → position sensitive operation mode
- ■γ-ray tracking algorithms


AGATA Collaboration

Three facilities identified:

- □LNL/SPES (Legnaro) 2010-2012
- □GSI/FAIR (Darmstadt) 2012-2014
- □GANIL/SPIRAL2 (Caen) 2014-2019

E.Clément

Romania was a member of the AGATA collaboration until 2016 but resigned for the 2017-2020 MoU extension.

In 2012, for the call of Letters of Intents, 6 Rumanian co-authors (INRE and IFIN) but no spokesperson .

Approved Experiments

E672: Lifetime and g-factor measurements of short-lived states in the vicinity of ²⁰⁸Pb (G. Georgiev, A.E Stuchbery and D. L. Balabanski, et al.); Plunger; done in 2015

E705: Understanding Nuclear Collectivity Approaching the π – ν Valence Maximum: Transition Quadrupole Moments in 166,168 Dy

(P. Regan and J. Nyberg, et al.); Fast-timing with FATIMA LaBr3; (2017)

E709: Investigation of a high spin structure in 44 Ti via discrete and continuum γ -spectroscopy with AGATA, PARIS and DIAMANT

(P. Bednarczyk and A. Maj et al.); High energy γ-ray with PARIS LaBr3; (2017)

E710: The lifetime of the 7.786 MeV state in ²³Mg as a probe for classical novae models (C. Michelagnoli F. de Oliveira et al.); DSAM; done in 2016

The GANIL Campaign

Charged particles detectors for Coulex and nucleon transfer Neutron and charged particles detected in NEDA/DIAMANT

Separated and tagged by their decay in the VAMOS GFM Recoils identification by the VAMOS magnetic spectrometer

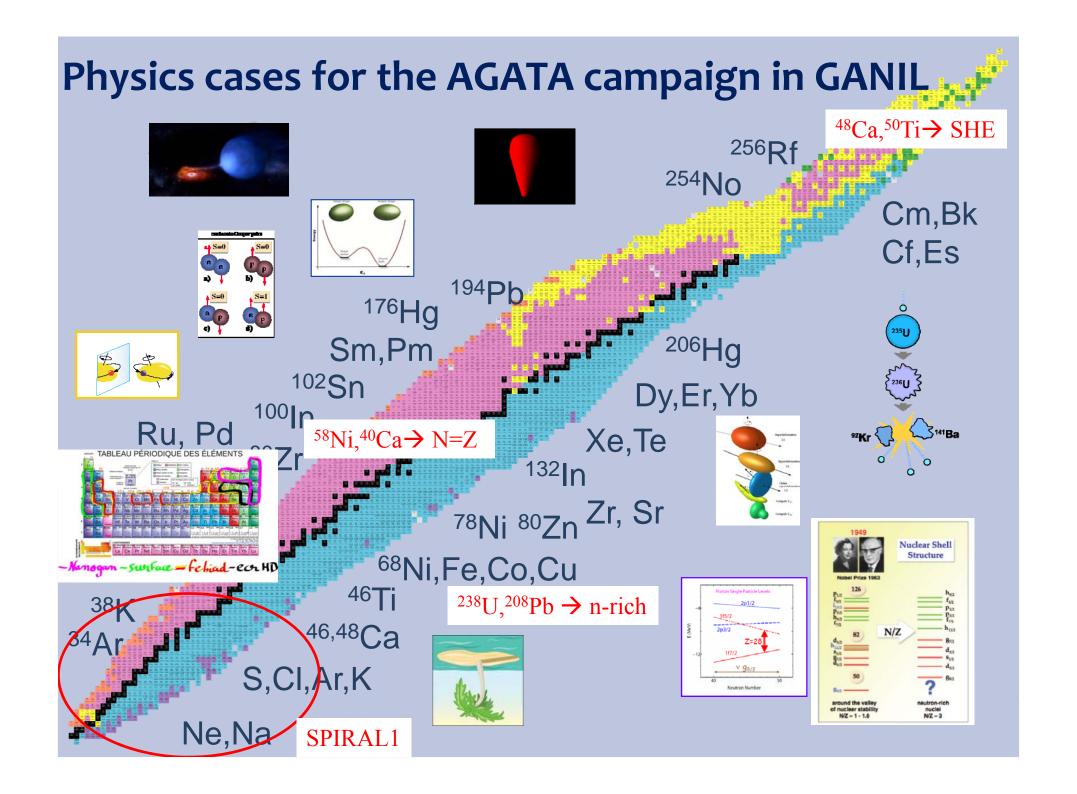
Post-accelerated RIB from SPIRAL1

Fusion-evaporation

Multinucleon Transfer and fusion-fission

The physics case of AGATA@GANIL is the in-beam γ-ray spectroscopy of exotic nuclei populated by heavy-ions collisions at the Coulomb Barrier

The GANIL Campaign organization


The AGATA campaign at GANIL has been extend to end of 2019

Each GANIL PAC has a "PrePac" workshop with a specific call: AGATA Collaboration Meeting

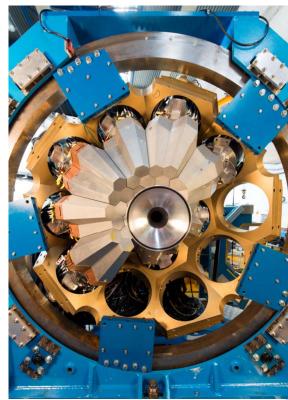
✓ 2nd PAC in 2015 : VAMOS || NEDA (10 experiments approved)

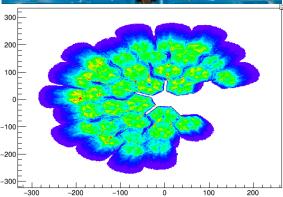
4th PAC late 2017: to be defined between MUGAST and/or VAMOS GFM Experiments to be run in 2019 ...

Presently 312 UT have already be performed and 363 UT remain in the backlog

AGATA Today at GANIL

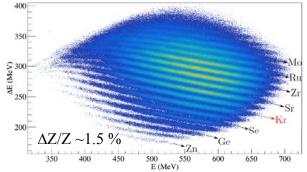
✓11 Triple Cluster and 1 Double cluster (35 detectors)


✓ Coupled to VAMOS++, DSSD, plunger, EXOGAM, FATIMA and PARIS


Continues progress in electronic and data acquisition capabilities

The R&D beyond 1π has started

Next beam in May-July 2017


Next Analysis workshop organized in GANIL by the end of 2017

Courtesy J. Dudouet, C. Michelagnoli

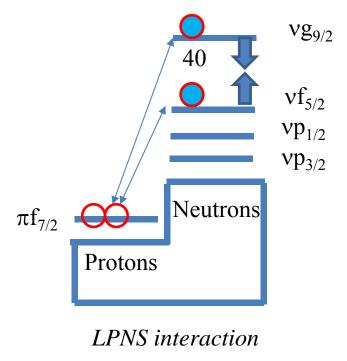
Tod₄₂Mo₆₂

100
200
100
200
400
600
800
1000
1200
Energy [keV]

Our strengths are:

- Recoils identifications (fission / MNT)
- Relatively high spins
- High Resolution
- Lifetimes measurements [fs to μs]

Courtesy J. Dudouet, C. Michelagnoli $\Delta Z/Z \sim 1.5 \%$ Zn 500 550 E (MeV) U+Be (fusion-fission) VAMOS++ & AGATA (2015) J. Dudouet et al (IPNL) Counts/keV VAMOS & EXOGAM (2011)



Interplay of the monopole terms of the interaction with multipole terms, like pairing and quadrupole, which determines the different phenomena we observe

Motivation:

understanding the development and the trend of deformation in the third island of inversion.

E.Clément

interplay of the monopole terms of the interaction with multipole terms, like pairing and quadrupole, which determines the different phenomena we observe

Motivation:

understanding the development and the trend of deformation in the third island of inversion.

z	690e	70Ge	710e	72G e	73Ge	74Ge	750e	76Ge	770e	78Ge	79Ge	80Ge	81Ge	82Ge	83Ge	84Ge	85G e
	68Ga	69Ga	700a	71Ga	72Ga	73Ga	74Ga	750a	760a	770a	78Ga	79Ga	80Ga	81 Ga	82Ga	83Ga	84Ga
30	67Zn	68Zn	692n	70Zn	712n	72Zn	73Zn	74Zn	75Zn	76Zn	77Zn	78Zn	79Zn	80Zn	81Zn	82Zn	83Zn
	66Cu	67Cu	68Cu	69Cu	70Cu	71Cu	72Cu	73Cu	74Cu	75Cu	76Cu	77Cu	78Cu	79Cu	80Cu	81Cu	82Cu
28	65Ni	66Ni	67Ni	68Ni	69Ni	70Ni	71Ni	72 N i	73Ni	74Ni	75Ni	76Ni	77 N i	78 N i	79Ni		
	64Co	65Co	66Co	67Co	68Co	69Co	70Co	71Co	72Co	73Co	74Co	75Co	76Co				
26	63Pe	б4Ре	65Pe	66Fe	67Fe	68 Fe	69Fe	70Fe	71Fe	72 Fe	73Fe	74Fe					
	62 M n	63Mn	б4Мп	65 M n	66Mn	67 M n	68Мп	69Mn	70Mn	71Mn							
24	бlСr	62Cr	63Cr	64Cr	65Cr	66Cr	67Cr	68Cr					,		•		
	37		39		41		43		45		47		49		51		N

Measurement of lifetimes in ^{62;64}Fe, ^{61;63}Co and ⁵⁹Mn 2015 Data. Lifetimes of the 4⁺ states in ^{62;64}Fe and the 11/2- in $^{61;63}$ Co and 59 Mn $^{64}\mathrm{Fe}$ M. Klintefjord, J. Ljungvall et al Accepted PRC

E.Clément

interplay of the monopole terms of the interaction with multipole terms, like pairing and quadrupole, which determines the different phenomena we observe

Motivation:

understanding the development and the trend of deformation in the third island of inversion.

Lifetimes in ⁵⁶Ti and ⁵⁵V 2016 Data Shape evolution: subshell closures and development of deformation Ch. Fransen et al.

E.Clément

interplay of the monopole terms of the interaction with multipole terms, like pairing and quadrupole, which determines the different phenomena we observe

Motivation:

understanding the development and the trend of deformation in the third island of inversion.

z	69Ge	70Ge	71Ge	72G e	73Ge	74Ge	75Ge	76Ge	77Ge	78Ge	79Ge	80Ge	81Ge	82Ge	83Ge	84Ge	85G c
	68Ga	69Ga	70Ga	7102	72Ga	73Ga	740a	75Ga	760a	77Ga	78Ga	79Ga	80Ga	81Ga	82Ga	83Ga	84Ga
30	672n	68Zn	69Zn	70Zn	712n	72Zn	73Zn	74Zn	75Zn	76Zn	77Zn	78Zn	79Zn	80Zn	81Zn	82Zn	83Zn
	66Cu	67Cu	68Cu	69Cu	70Cu	71Cu	72Cu	73Cu	74Cu	75Cu	76Cu	77Cu	78Cu	79Cu	80Cu	81Cu	82Cu
28	65Ni	66Ni	67Ni	68Ni	69Ni	70Ni	71Ni	72 N i	73Ni	74Ni	75 N i	76Ni	77 N i	78 N i	79Ni		
	64Co	65Co	66Co	67Co	68Co	69Co	70Co	71Co	72Co	73Co	74Co	75Co	76Co				
26	63Fe	64Fe	65Pe	66Fe	67Fe	68Fe	69Fe	70Fe	71Fe	72 Fe	73Fe	74Pe					
	62 M n	63Мп	б4Мп	65 M n	66Mn	67Mn	68Ми	69Mn	70 M n	71Mn							
24	61Cr	62Cr	63Cr	64Cr	65Cr	66Cr	67Cr	68Cr									
	37		39		41		43		45		47		49		51		N

10 mm

10

⁷³Ga γ-ray spectrum around $5/2^{-} \rightarrow 1/2^{-}$ transition

Lifetime of the 5/2 state in Ga decaying to a "degenerate" g.s

2016 Data

E.Clément

Spectroscopy in the ⁶⁸⁻⁷⁸Ni region

fission

Motivations:

Understanding the single-particle evolution above N = 50 towards ^{78}Ni

76Zn

75Cu

77Zn

76Cu

74Ni 75Ni

78Zn

77Cu.

76Ni

78Cu

77N

80Zn

78Ni

81Zn

80Cu

79Ni

82Zn

81Cu

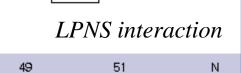
83Zn

82Cu

✓ The $7/2^+$ state stemming from $vg_{7/2}$ is predicted to become yrast along the N=51 line towards ⁷⁹Ni → distinguish between

$$[2^{+} \otimes d_{5/2}] 7/2_1$$

75Zn


74Cu

742n

73Cu

$$[0^{+}^{\otimes} g_{7/2}] 7/2_{1}$$

✓ The quenching of the N=50 gap towards ⁷⁸Ni can be investigated looking at the excitation energy of high-spin states involving particle-hole excitations across the N=50 gap

68Zn

67Cu

67Zn

66Cu

30

69Zn

68Cu

70Zn

69Cu

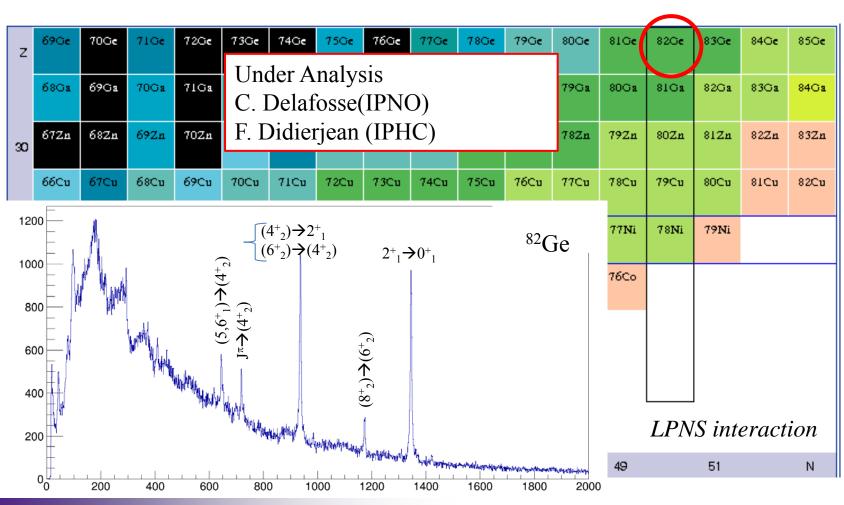
712n

70Cu

72Zn

71Cu

73Zn

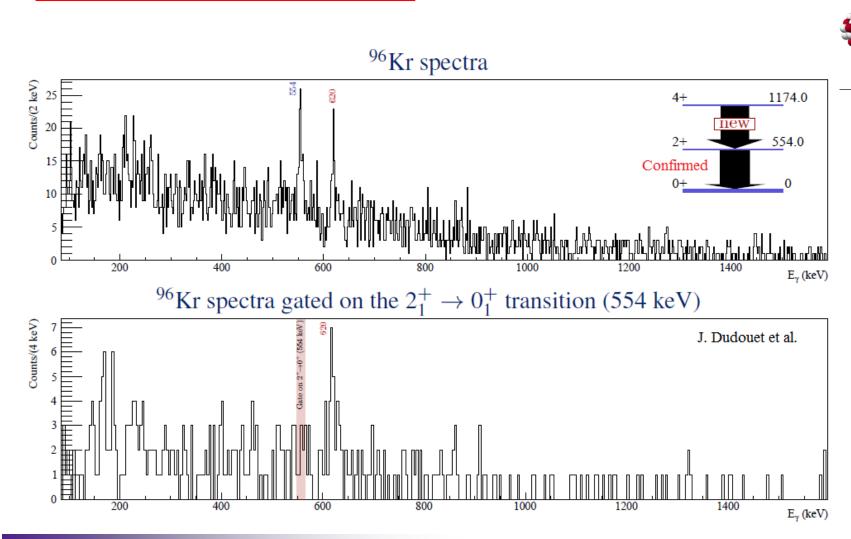

72Cu

Spectroscopy in the ⁶⁸⁻⁷⁸Ni region

laboratoire commun CEA/DSM COLORS/IN2P3

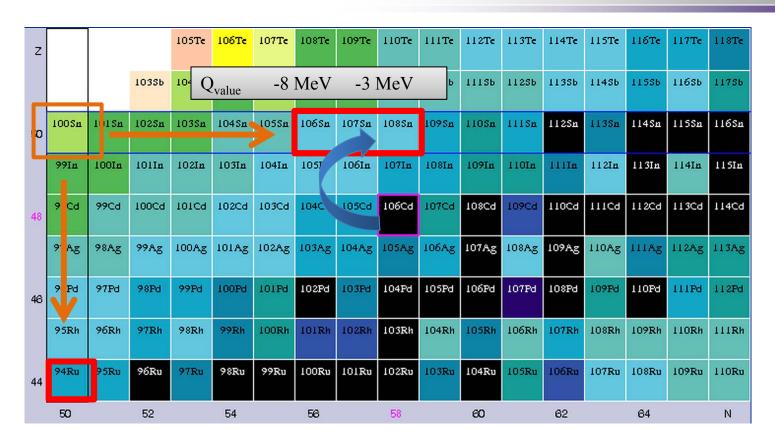
Motivations:

Understanding the single-particle evolution above N = 50 towards ⁷⁸Ni



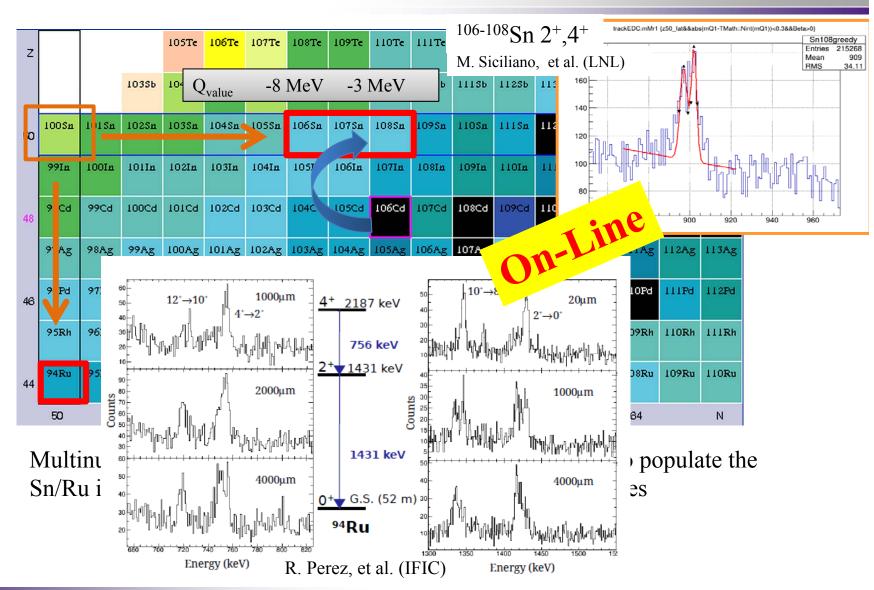
E.Clément

Shape transition at N=60



J. Dudouet (IPNL) submitted to PRL

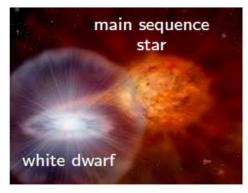
Liftetime measurement in the ¹⁰⁰Sn region

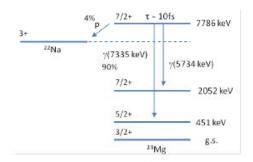


Multinucleon-transfer reactions in the neutron-deficient side to populate the Sn/Ru isotopes and measure the lifetimes of the 2⁺ and 4⁺ states

R. Perez, et al. (IFIC)

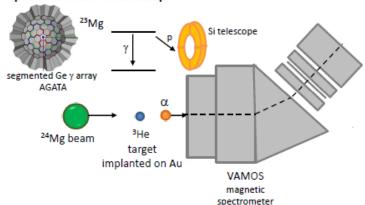
Liftetime measurement in the ¹⁰⁰Sn region





Explosive H-burning: new benchmark for classical novae

 22 Na = main *ONe-novae* tracer: 22 Na(p, γ) 23 Mg, a key reaction Ambiguity on $\Gamma = \hbar/\tau (7.78\,\text{MeV}^{23}\text{Mg}) \Rightarrow 30\%$ uncertainty on cross-section A. Sallaska et al. PRL105(2010)152501

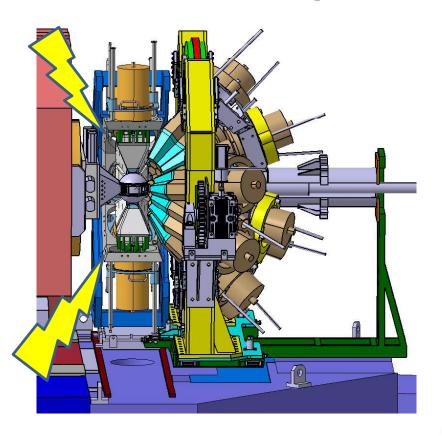


High-sensitivity au measurement:

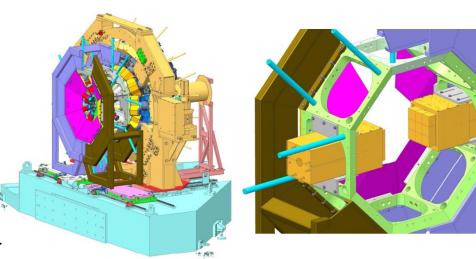
benchmark for astrophysical models.

Experimental setup:

 3 He(24 Mg, α) 23 Mg(7.78 MeV) excit. function measurement performed at ALTO, Orsay, Dec. 2015

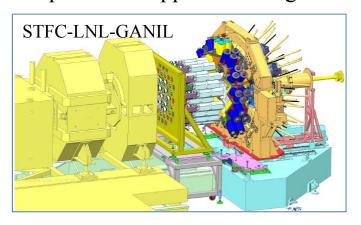

- "continuous DSAM" lifetime measurement with AGATA
- ullet Si telescope o proton branching ratio
- magnetic spectrometer VAMOS → kinematics reconstruction

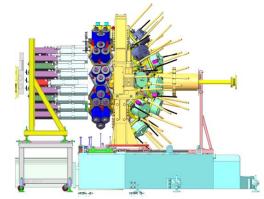
E710, July 2016, C. Michelagnoli, F. de Oliveira

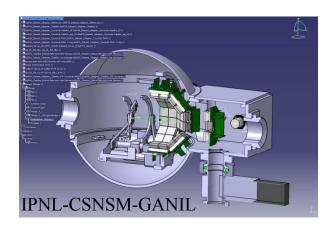

2017 run LaBr3 campaign – VAMOS backlog

FATIMA-PARIS detectors coupled to AGATA and VAMOS (4 experiments)

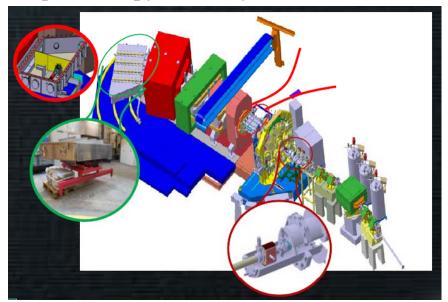
- ☐ Mechanical integration ...done
- ☐ Electronic/Data flow coupling ... on-going
- ☐ Detailed simulations to evaluate the impact on
- AGATA performances' ... done
- ☐ Magnetic shielding ... validated


Starting the integration in the cave in October Be ready by March 2017


Courtesy I. Burrows

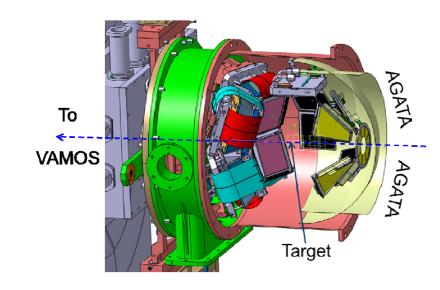

2018 run NEDA campaign

8 experiments approved using AGATA+NEDA (+DIAMANT) (+LaBr3) (+plunger)


The final mechanical design of NEDA + NWALL foresees the use of 54 self produced NEDA detectors at forward angles and 14 NWALL detectors at around 90 degrees

Start of the campaign: Early 2018

2019-(2020) run *MUGAST-GFM*



VAMOS in GFM for prompt spectroscopy of Heavy Elements

The project will be completed in 2017 and ready for commissioning.

Nucleons transfer spectroscopy using SPIRAL1 ISOL beams

- 4th PAC late 2017: to be defined between MUGAST and/or VAMOS GFM
 10 LoI using the Gaz-filled mode of VAMOS
 - o 16 LoI using Post-accelerated beams from SPIRAL1

Conclusion

- ☐ The AGATA collaboration is operating up to 32 capsules in the array at GANIL and will run in 2017 with 35
- ☐ The second AGATA run at GANIL is now completed
- ☐ The physics program of AGATA at GANIL is rich, ambitious and broad
- ☐ First results from the 2015 run have been accepted or submitted
- ☐ The AGATA campaign will keep us busy until 2019 (at least)
- □2017 : AGATA-VAMOS LaBr3 campaign
- □2018 : AGATA-NEDA-DIAMANT campaign

