Experimental inputs for supernova dynamics

Francesca Gulminelli - LPC Caen

Eric Bonnet – Subatech Nantes

Beyhan Bastin & François de Oliveira – Ganil

Adriana Raduta – IFIN

Type II Supernovae

- Supernova explosion occurs via core-collapse in very massive stars (M>8M_{sun})
- Shock front is stalled unless revived by extra neutrino emission
 - Critically depends on electron capture during collapse e+p->n+v
- Ejecta might be seeds for rprocess if matter is sufficiently n-rich
 - Critically depends on the global proton fraction and on the composition of matter at the neutrinosphere

Type II Supernovae

Our LIA project:

- study e-capture rates (I) and matter composition (II) within a model including realistic nuclear inputs
- Identify key nuclear observables
- Stimulate experiments and provide theoretical simulations and interpretations

(1) Electron capture during core collapse

600

550

500

- The supernova evolution and v luminosity crucially depends on the e-capture rate.
- The main nuclei involved are very neutron rich isotopes around the N=50 and N=82 magic numbers
- Their mass and e-capture probability govern the global deleptonization rate
- 80 450 70 400 ہے۔ ما 5 350 300 300 250 200 15(60 50 40 30 20 100 10 50 0 -10-5 0 5 10 15 20 25 30 40 60 80 100 120 t-t_h (ms) 50 Proton Number 05 05 log₁₀I∆Y_eI -5 80 50 70 90 20 30 40 60 Neutron Number

100

90

Base x2.0 — x0.50 x4.0 — x0.25

x10. - x0.10-

C.Sullivan 2016

(1) Electron capture during core collapse

A.Raduta 2017

(1) Electron capture during core collapse

- I-220 JYFL proposal (B.Bastin, A.Kankainen) "Mass measurements in the vicinity of 78Ni to constraint core collapse supernovae models and to study the N=50 and Z=28 shell" to be run in 2017
 - High precision mass measurement for 5 new isotopes around Z=28 N=50
- E-capture rates on these same exotic nuclei can be deduced from the inverse β decay process

- The possibility of generating a strong r-process in SN explosions depends on the initial proton fraction and matter composition
- In turn, this depends on the in-medium modification of nuclear masses
- Exp.study requires many light nuclei at low ρ and finite T => vaporization data
- Present data (Texas A&M)
 - One single data set
 - Symmetric N~Z system only
 - No verification of equilibrium
 - \circ T and ρ from theoretical model

 χ^2/NDF

Analysis of INDRA data Ni+Ni 90 A.MeV

 Temperature from particle spectra

Analysis of INDRA data Ni+Ni 90 A.MeV

- Temperature from particle spectra
- Density from bound
 particle fraction

Analysis of INDRA data Ni+Ni 90 A.MeV

 Temperature from particle spectra No deviation of equilibrium up to second moments

Analysis of INDRA data Ni+Ni 90 A.MeV

- Temperature from particle spectra
- Density from bound
 particle fraction

 No deviation of equilibrium up to second moments

- Analysis in progress
- Proposition of a FAZIA@GANIL LoI (E.Bonnet) to extend to asymmetric nuclei

Conclusions

- The understanding of core collapse supernova dynamics and explosive nucleosynthesis requires a realistic nuclear modelling including key inputs from experimental data on n-rich nuclei
- Our contribution:
 - A microscopic EoS model including the full distribution of nuclear species
 - LOI FAZIA@GANIL =>2016
 - Mass measurement at IGISOL (n-rich Fe and Co isotopes) =>2017
 - Analysis of INDRA vaporization data =>now
 - GT strenght proposal to extract e-capture rates =>in progress