

High-precision mass measurements with MLLTRAP at ALTO

Workshop LIA COSMA

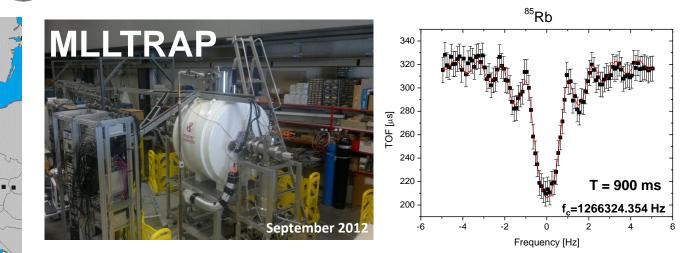
Enrique Minaya Ramirez Institut de Physique Nucléaire d'Orsay

Outline

- I. MLLTRAP project
- II. Penning trap mass spectrometers
- III. Status of MLLTRAP@ALTO

Outline

I. MLLTRAP project


- II. Penning trap mass spectrometers
- III. Status of MLLTRAP@ALTO

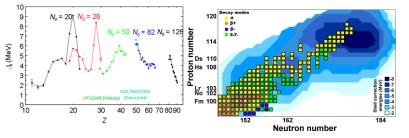
MLLTRAP project in Germany

Peter G. Thirolf , Christine Weber

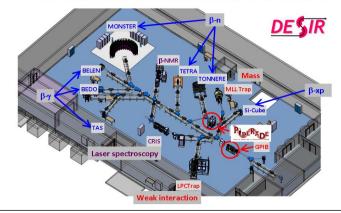
2009 \rightarrow Off-line commissioning of the double Penning trap system MLLTRAP

V.S. Kolhinen, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 600 (2009) 391

MLLTRAP \rightarrow Penning trap mass spectrometer \rightarrow High-precision mass measurements


MLLTRAP project in France

The DESIR facility at GANIL-SPIRAL2 :


Mass measurements

- Nuclei with Z≥ 104
- N=Z nuclides up to ¹⁰⁰Sn
- Quantum phase transitions around A = 100 (N=60)

- β decay spectroscopy
- Laser Spectroscopy
- High-precision mass measurements

DESIR (Désintégration, Excitation et Stockage d'Ions Radioactifs

Day 1 SPIRAL2 Phase 2 (RIB in DESIR & GANIL Experimental Area)

Version 10/12/2010

Title: Precision mass measurements of $\,$ nuclei with Z \sim 104 from S 3 with MLLTRAP at DESIR

Spokespersons (if several, please use capital letters to indicate the name of the contact person): P.G. Thirolf

Address of the contact person: Faculty of Physics, LMU Munich, Am Coulombwall 1, 85748 Garching/Germany

Phone: 0049-89-28914064	Fax: 0049-89-28914072	E-mail: Peter. Thirol f@lmu.de
-------------------------	-----------------------	--------------------------------

Other Participants or Organisations: H. Savajols (GANIL), C. Weber (LMU), B. Blank (CENBG), M. Gerbaux (CENBG), J. Giovinazzo (CENBG), S. Grevy (CENBG), D. Lunney (CSNSM), E. Minaya Ramirez (GSI)

Magurele, 31st of January 2017

Enrique Minaya Ramirez

MLLTRAP project in France

The ALTO facility at Orsay

First operational RIB facility based on photo-fission \rightarrow populating the GDR of ²³⁸U

- □ 30-kV platform
- \Box mass separator (A/ Δ A = 1500)
- □ 10 µA, 50 MeV e- beam
- □ 10¹¹ 4 x10¹¹ fissions/s

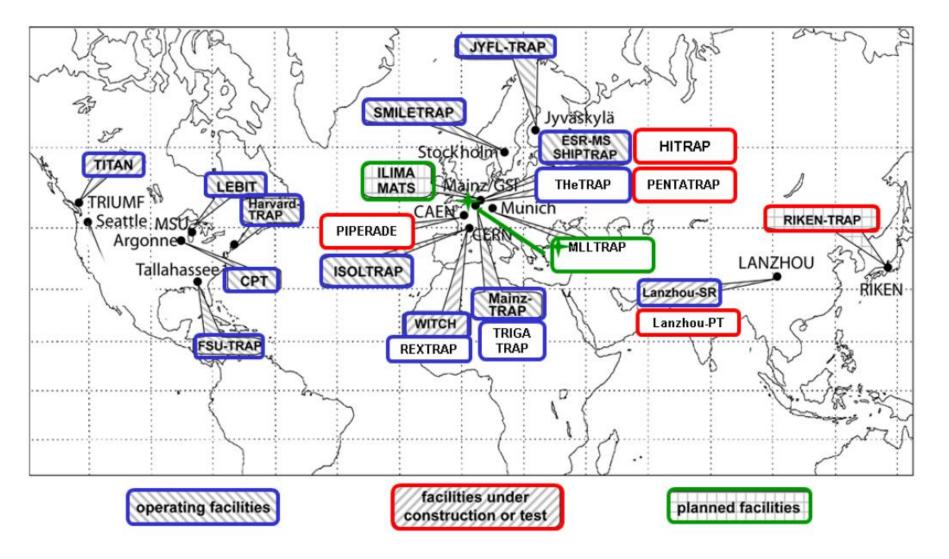
PN CENSM

March 2016 : "Charting Terra Incognita of Exotic Nuclei"

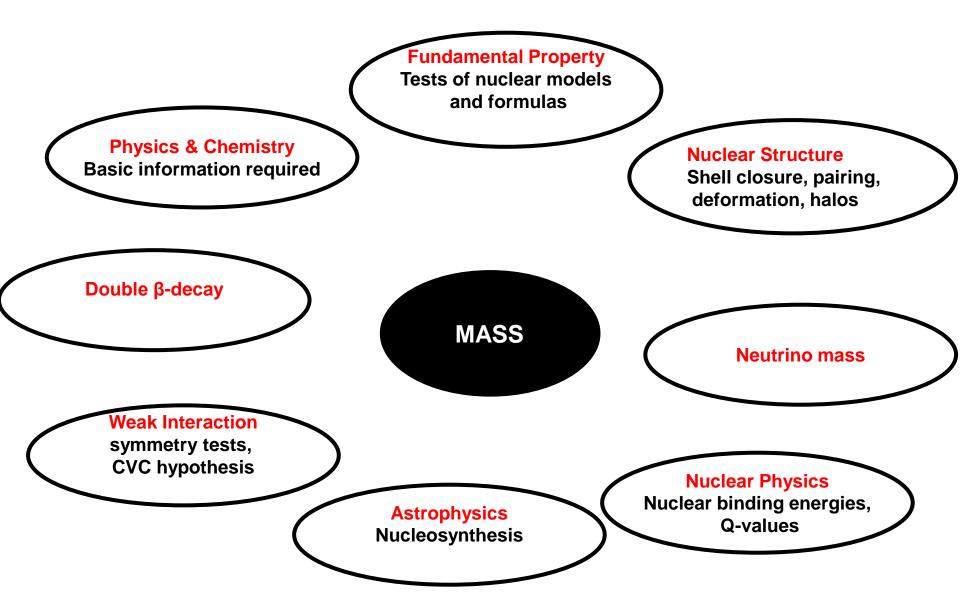
The MoU between MLL and IPNO was signed in May 2016.

Enrique Minaya Ramirez

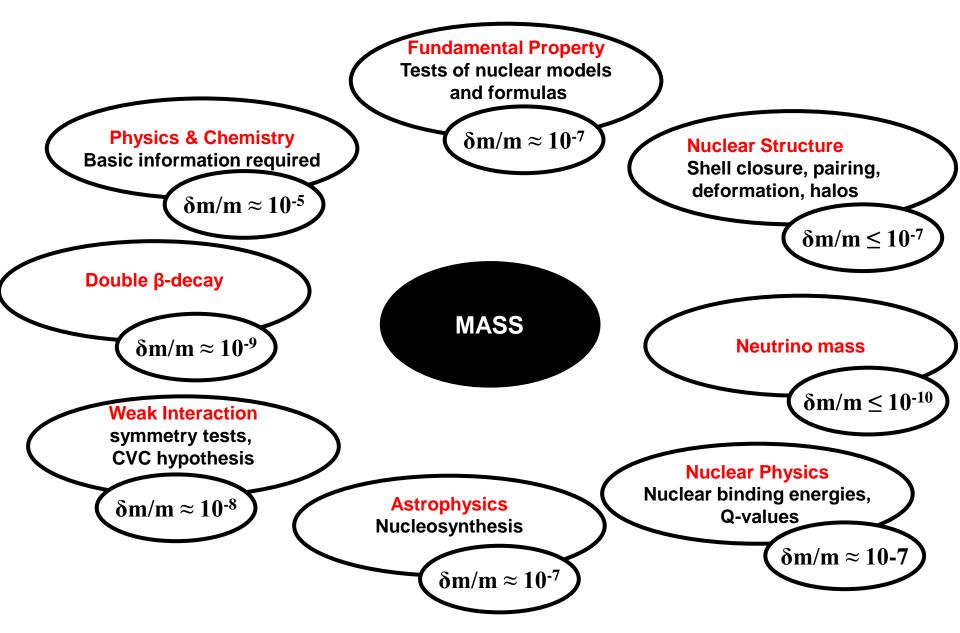
Outline


I. MLLTRAP project

II. Penning trap mass spectrometers

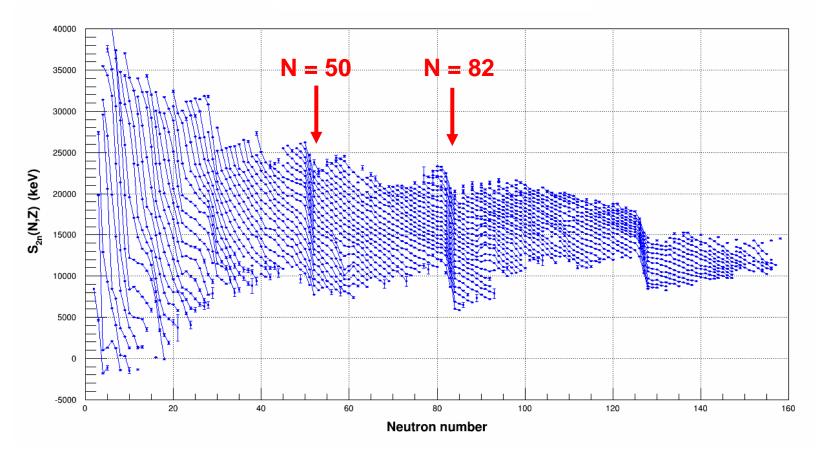

III. Status of MLLTRAP@ALTO

Penning traps spectrometers around the world


→ High quality low-energy beams : low emittance, low energy spread, purified samples

Motivation for mass measurements

Motivation for mass measurements

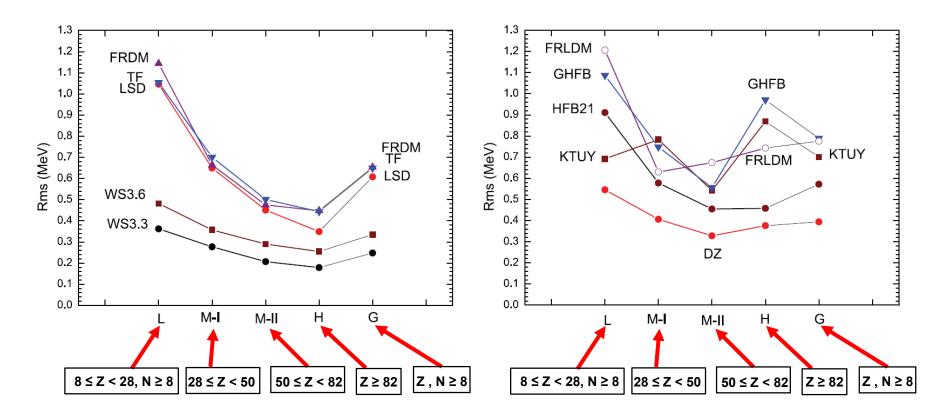


Masses and nuclear structure

 $\mathbf{M}(\mathbf{N},\mathbf{Z}) = \mathbf{Z} \mathbf{M}_{p} + \mathbf{N} \mathbf{M}_{n} - \mathbf{B}(\mathbf{N},\mathbf{Z})$

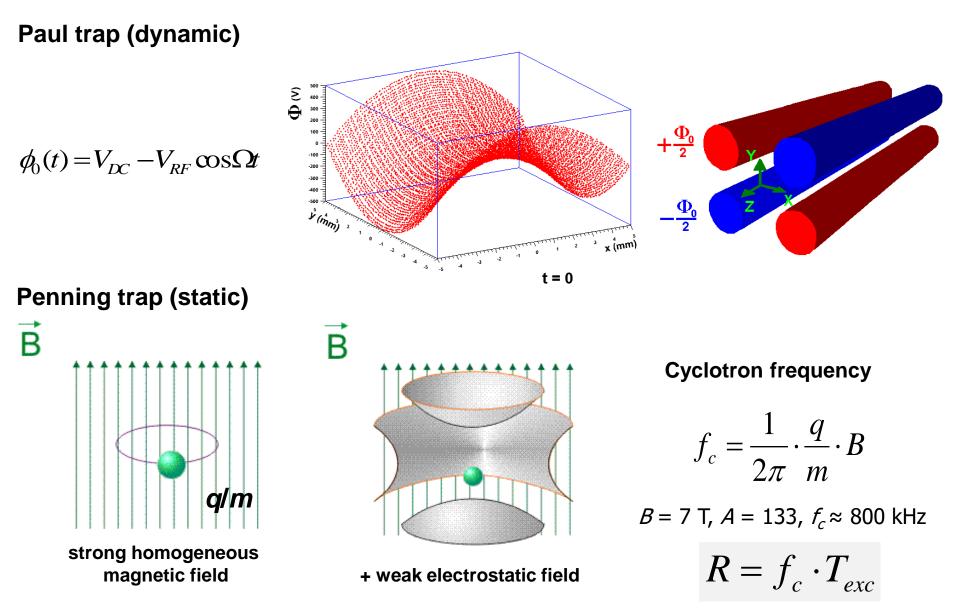
 \rightarrow absolute nuclear binding energy \rightarrow shell structure evolution

 $S_{2n}(N,Z) = B(N,Z) - B(N-2,Z)$


Masses and nuclear structure

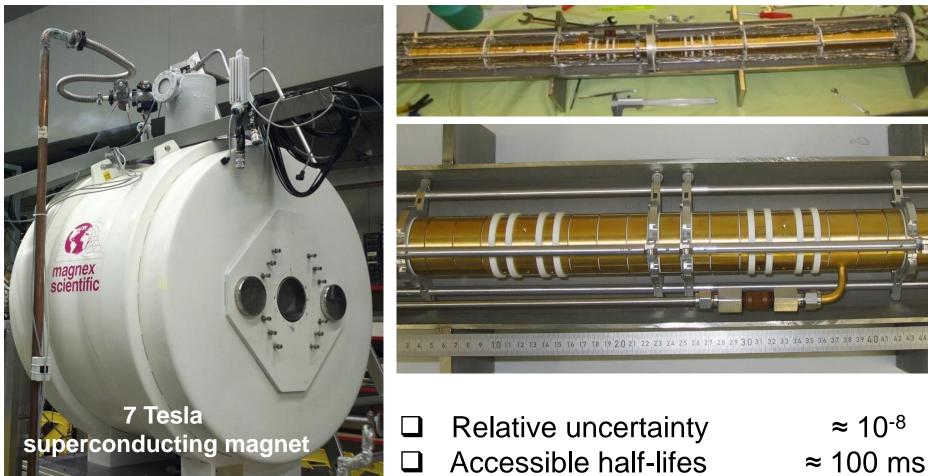
 $\mathbf{M}(\mathbf{N},\mathbf{Z}) = Z M_{p} + N M_{n} - \mathbf{B}(\mathbf{N},\mathbf{Z})$

 \rightarrow absolute nuclear binding energy


 \rightarrow shell structure evolution

→Benchmark nuclear models

A. Sobiczewski and Y. A. Litvinov, Phys. ReV. C 89, 024311 (2014)

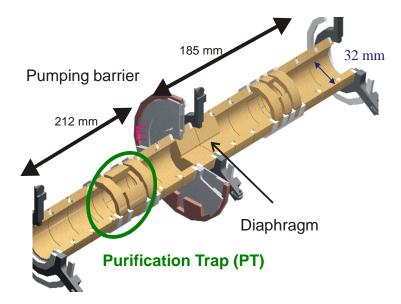

Principle of trapping

Workshop LIA COSMA

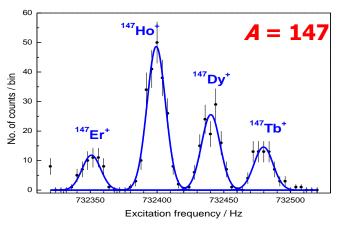
Principle of trapping

Static : Penning trap

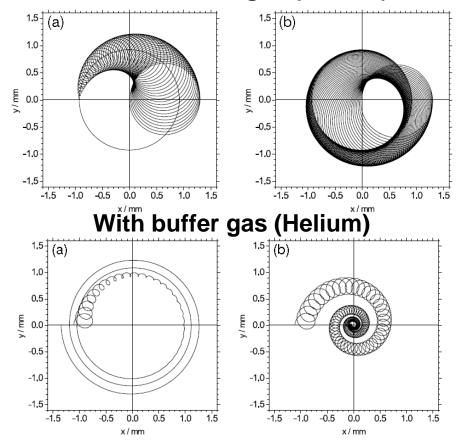
Typical Resolving power


Workshop LIA COSMA

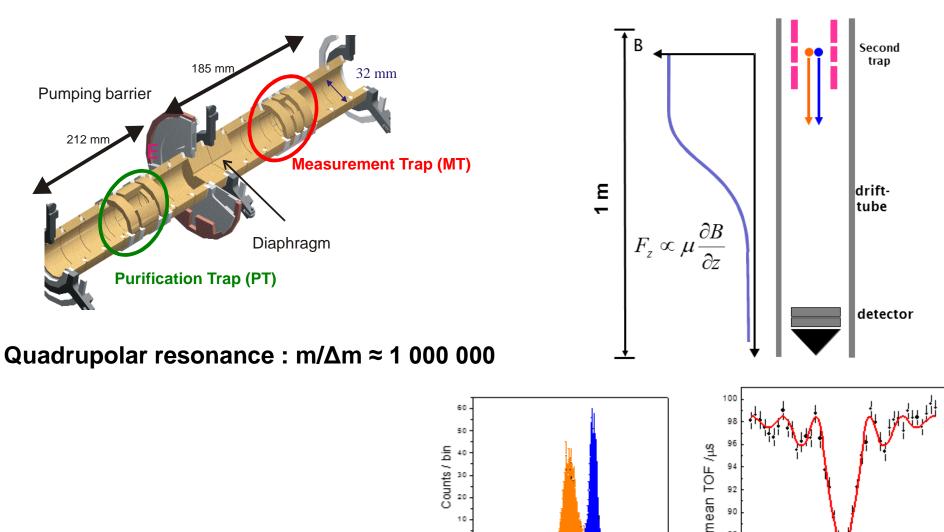
≈ 10⁶


High-precision mass measurements with Penning traps

$\begin{array}{c} \textbf{74 Rb} \\ \textbf{37Rb} \textbf{37} \end{array}$	VOLUME 93, NUMBER 7 PHYSICAL REVIEW LETTERS 13 AUGUST 2004 Direct Mass Measurements on the Superallowed Emitter ⁷⁴ Rb and Its Daughter ⁷⁴ Kr: Isospin-Symmetry-Breaking Correction for Standard-Model Tests A. Kellerbauer, ^{1,*} G. Audi, ² D. Beck, ³ K. Blaum, ^{1,3} G. Bollen, ⁴ B. A. Brown, ⁴ P. Delahaye, ¹ C. Guénaut, ² F. Herfurth, ³ HJ. Kluge, ³ D. Lunney, ² S. Schwarz, ⁴ L. Schweikhard, ⁵ and C. Yazidjian ³ ¹ Department of Physics, CERN, 1211 Genève 23, Switzerland ² CSNSM-JN2P3-CNRS, 91405 Orsay-Campus, France ³ GSI, Planckstraße 1, 64291 Darmstadt, Germany ⁴ NSCL, Michigan State University, East Lansing, Michigan 48824-1321, USA ⁶ Institut für Physik, Ernst-Moritz-Arndt-Universität, 17487 Greifswald, Germany (Received 8 March 2004; published 12 August 2004)	ISOLTRAP $T_{1/2} \approx 64,7 \text{ ms}$ Superallowed β emitter
³⁸ P o	PRL 96, 152501 (2006) PHYSICAL REVIEW LETTERS week ending 21 APRIL 2006	LEBIT
20 UÄ 18	Experiments with Thermalized Rare Isotope Beams from Projectile Fragmentation: A Precision Mass Measurement of the Superallowed β Emitter ³⁸ Ca	$\frac{\delta m}{\delta m} = 8.10^{-9}$
443.77 ms 0 ⁺ M ⁻ 22058.50 (0.19) β ⁺ =100%	G. Bollen,* D. Davies, M. Facina, J. Huikari, E. Kwan, P. A. Lofy, [†] D. J. Morrissey, A. Prinke, R. Ringle, J. Savory, P. Schury, S. Schwarz, C. Sumithrarachchi, T. Sun, and L. Weissman [‡] National Superconducting Cyclotron Laboratory. Michigan State University, East Lansing, Michigan, USA (Received 6 January 2006; published 19 April 2006)	m Superallowed β emitter
	PRL 101, 202501 (2008) PHYSICAL REVIEW LETTERS week ending 14 NOVEMBER 2008 First Penning-Trap Mass Measurement of the Exotic Halo Nucleus ¹¹ Li	TITAN
8.75 ms 3/2 ⁻ M 40728.3 (0.6) β ⁻ =100% β ⁻ n=86.3 (9)%	 M. Smith,^{1,2} M. Brodeur,^{1,2} T. Brunner,^{1,3} S. Ettenauer,^{1,2} A Lapierre,¹ R. Ringle,¹ V. L. Ryjkov,¹ F. Ames,¹ P. Bricault,¹ G. W. F. Drake,⁴ P. Delheij,¹ D. Lunney,^{1,5} F. Sarazin,⁶ and J. Dilling^{1,2} ¹TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, Canada ²Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver BC, Canada ³Technische Universität München, E12, James Franck Strasse, Garching, Germany ⁴Department of Physics, University of Windsor, Windsor, Ontario, Canada ⁵CSNSM/CNRS/N2P3, Universite de Paris-Stud, F-21405, Orsay, France ⁶Department of Physics, Colorado School of Mines, Golden, Colorado, USA (Received 21 July 2008; published 14 November 2008) 	T _{1/2} ≈ 8,75 ms Halo nucleus
256 103 LF 153	Direct Mapping of Nuclear Shell Effects in the Heaviest Elements	SHIPTRAP <i>Z</i> = 102,103
27 s M 91750 (80) α=85 (10)% β ⁺ =15 (10)%	E. Minaya Ramirez, ^{1,2} D. Ackermann, ² K. Blaum, ^{3,4} M. Block, ^{2*} C. Droese, ⁵ Ch. E. Düllmann, ^{6,2,1} M. Dworschak, ² M. Eibach, ^{4,6} S. Eliseev, ³ E. Haettner, ^{2,7} F. Herfurth, ² F. P. Heßberger, ^{2,1} S. Hofmann, ² J. Ketelaer, ³ G. Marx, ⁵ M. Mazzocco, ⁸ D. Nesterenko, ⁹ Yu. N. Novikov, ⁹ W. R. Plaß, ^{2,7} D. Rodríguez, ¹⁰ C. Scheidenberger, ^{2,7} L. Schweikhard, ⁵ P. G. Thirolf, ¹¹ C. Weber ¹¹ SCIENCE VOL 337 7 SEPTEMBER 2012 1207	$\sigma = 60 \text{ nb}$ prmed shell gap $N = 152$


Buffer gas cooling technique

m/Δm ≈ 100 000 ⇒ Isobaric separation



Ion motion in first trap

Without buffer gas (Helium)

TOF-ICR : Time-of-flight resonance technique

M. König et al., Int. J. Mass Spec. Ion Process. 142 (1995) 95

88

86

-4

-2

0 Excitation Frequency / Hz - 809548.8

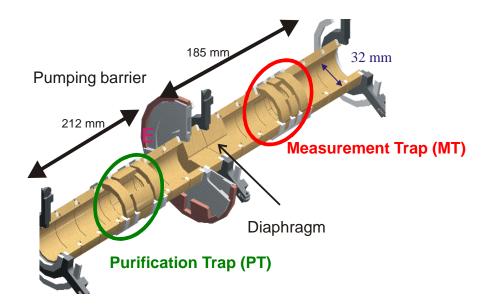
20

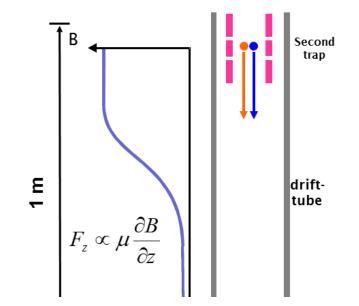
80

TOF / us

100

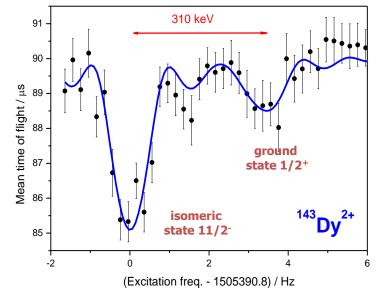
60

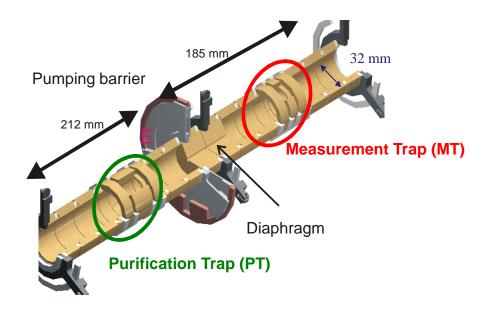

40


120 140

160

133**Cs**+


TOF-ICR : Time-of-flight resonance technique


Quadrupolar resonance : m/ Δ m \approx 1 000 000

 \Rightarrow Separation of isomers

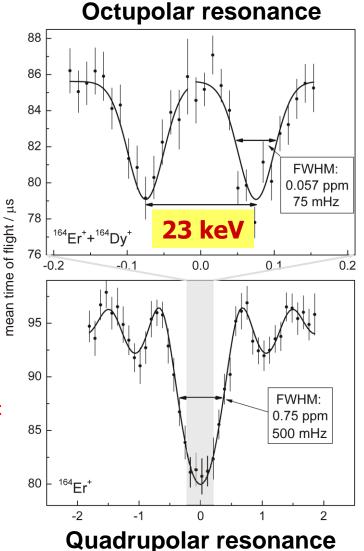
C. Rauth et al., Eur. Phys. J. Special Topics 150 (2007) 329

TOF-ICR : Time-of-flight resonance technique

Quadrupolar resonance : m/ Δ m \approx 1 000 000

⇒ Separation of isomers

Octupolar resonance $m/\Delta m \approx 20\ 000\ 000$


 \Rightarrow mass-ratio determination of the ¹⁶⁴Er-¹⁶⁴Dy mass doublet

PRL 107, 152501 (2011)

PHYSICAL REVIEW LETTERS

Octupolar-Excitation Penning-Trap Mass Spectrometry for *Q*-Value Measurement of Double-Electron Capture in ¹⁶⁴Er

S. Eliseev,¹ C. Roux,¹ K. Blaum,¹ M. Block,² C. Droese,³ F. Herfurth,² M. Kretzschmar,⁴ M. I. Krivoruchenko,⁵ E. Minaya Ramirez,^{2,6} Yu. N. Novikov,⁷ L. Schweikhard,³ V. M. Shabaev,⁸ F. Šimkovic,^{9,10} I. I. Tupitsyn,⁸ K. Zuber,¹¹ and N. A. Zubova⁸

Enrique Minaya Ramirez

week ending

7 OCTOBER 2011

PI-ICR : Phase imaging ion cyclotron resonance

- Image ion motion
- Determine phase of ion motion
- Excite ions
- Determine phase after evolution time

 $\phi + 2\pi n = 2\pi t$ $\Delta v = \frac{\Delta \phi}{2\pi t} = \frac{\Delta R}{\pi t R}$

direct projection projection			cyclotron motions projection number of detected ions max
		atomic mass difference	Δm (eV)
S. Eliseev <i>et al.,</i> PRL110 (2013)		¹³⁰ Xe / ¹²⁹ Xe	2 ppb
S. Eliseev <i>et al.,</i> APB 114 (2014)		¹³³ Cs	
E. Minaya Ramirez <i>et al.,</i> JPS CP6 (2015)		¹³² Xe / ¹³¹ Xe	0.2 ppb
D.A. Nesterenko <i>et al.</i> PRC90 (201	.5) → neutrino mass	¹⁸⁷ Re/ ¹⁸⁷ Os	2833 (30 _{stat}) (15 _{sys})
S. Eliseev <i>et al.,</i> PRL115 (2015)	→ neutrino mass	¹⁶³ Ho/ ¹⁶³ Dy	2492 (30 _{stat}) (15 _{sys})
P. Filianin <i>et al.,</i> PLB 758 (2016)	→ s-process nuclide	¹²³ Te/ ¹²³ Sb	51.912(67) keV

Enrique Minaya Ramirez

Workshop LIA COSMA

Trap-assisted Spectroscopy

A system for β - and γ - spectroscopy installed behind a trap can be used for both assisting mass measurements and performing decay spectroscopy on pure samples.

ISOLTRAP

PHYSICAL REVIEW C 88, 054304 (2013)

Mass spectrometry and decay spectroscopy of isomers across the Z = 82 shell closure

J. Stanja,^{1,*} Ch. Borgmann,^{2,†} J. Agramunt,³ A. Algora,^{3,4} D. Beck,⁵ K. Blaum,² Ch. Böhm,² M. Breitenfeldt,⁶ T. E. Cocolios,^{7,8} L. M. Fraile,⁹ F. Herfurth,⁵ A. Herlert,¹⁰ M. Kowalska,⁷ S. Kreim,² D. Lunney,¹¹ V. Manea,¹¹ E. Minaya Ramirez,^{5,12} S. Naimi,^{11,13} D. Neidherr,⁵ M. Rosenbusch,¹⁴ L. Schweikhard,¹⁴ G. Simpson,¹⁵ F. Wienholtz,¹⁴ R. N. Wolf,¹⁴ and K. Zuber¹

PHYSICAL REVIEW C 90, 044307 (2014)

Evolution of nuclear ground-state properties of neutron-deficient isotopes around Z = 82from precision mass measurements

Ch. Böhm,^{1,*} Ch. Borgmann,^{1,†} G. Audi,² D. Beck,³ K. Blaum,¹ M. Breitenfeldt,⁴ R. B. Cakirli,^{1,‡} T. E. Cocolios,^{5,6} S. Eliseev,¹ S. George,^{7,§} F. Herfurth,³ A. Herlert,^{6,∥} M. Kowalska,⁶ S. Kreim,^{1,6} D. Lunney,² V. Manea,² E. Minaya Ramirez,^{8,3,§} S. Naimi,^{2,¶} D. Neidherr,^{1,**} M. Rosenbusch,⁹ L. Schweikhard,⁹ J. Stanja,^{10,††} M. Wang,² R. N. Wolf,^{9,§} and K. Zuber¹⁰

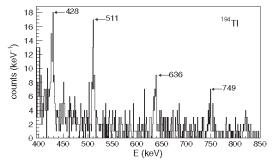


FIG. 3. A β -triggered γ -ray energy spectrum for ¹⁹⁴Tl between an HPGe detector and the scintillator at the implantation point after 1.5 h of implantation. The peak at 820 keV does not fit any known transition from the decay of ¹⁹⁴Tl.

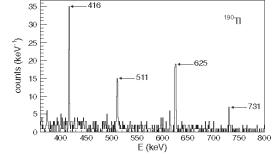
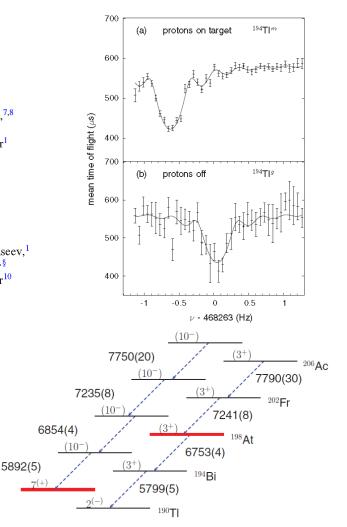
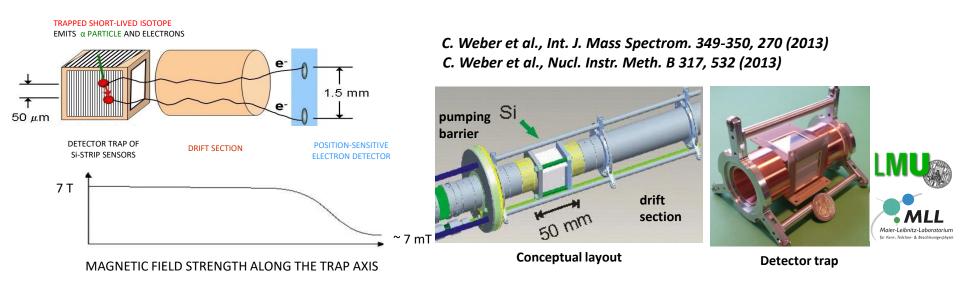
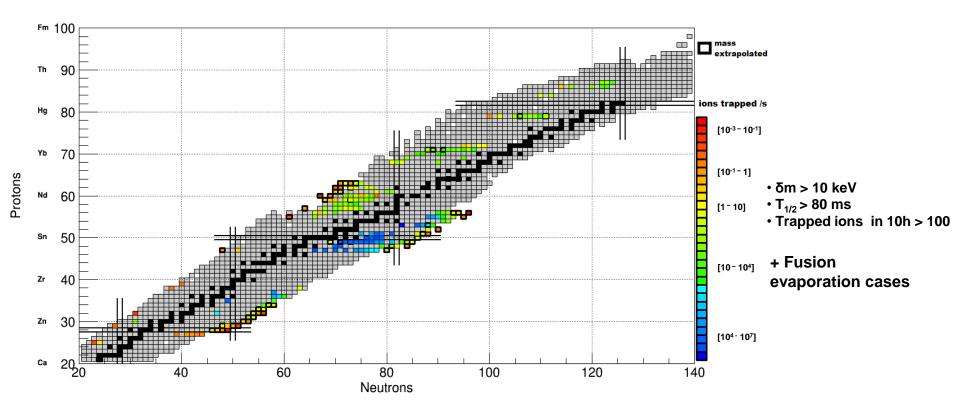




FIG. 4. A β -triggered γ -ray energy spectrum for ¹⁹⁰Tl for one HPGe detector at the implantation point after 2×15 min of implantation.

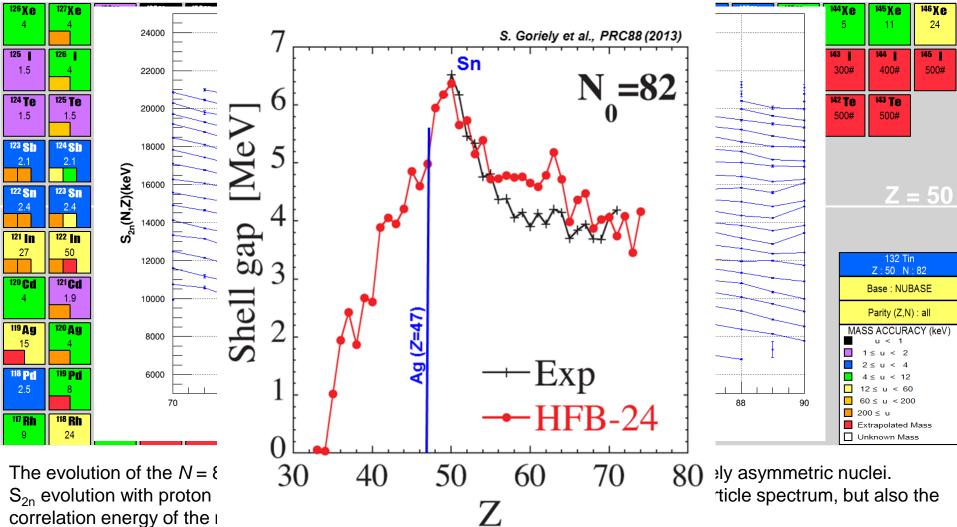
In-trap decay spectroscopy for MLLTRAP

- \circ 'detector trap': α -detectors act as trap electrodes
- \circ customized α detectors were developed and characterized for the cryogenic and UHV-conditions (single-sided Si-strip detector, active area 30x30 mm², 30 strips, α-energy resolution ~ 20 keV)


Advantages:

- Decay experiments with carrier-free particles stored in a Penning trap enable studies on ideal ion samples.
- \circ The improved energy resolution can be exploited for high-resolution α and electron-decay spectroscopy.

Physics Goals :

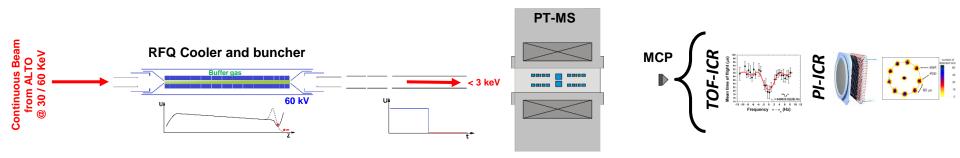

- From lifetime measurements of the first excited 2⁺ states in heavy nuclei, nuclear quadrupole moments Q₀ can be derived
- Similar experiments on 0⁺ states allow for a determination of E0 decay strengths r² (E0)
- Shape coexistence of 0⁺ configurations as present in mid-shell regions around magic proton numbers

High-precision mass measurements at ALTO

- High-precision mass measurements in the region of the magic numbers 50 and 82 are of high interest for nuclear astrophysics (r and rp process)
- Masses of neutron-rich Ag and In isotopes would allow to investigate a possible weakening of the shell gap for Z < 50 and its impact on the A = 130 r-process abundances

High-precision mass measurements at ALTO

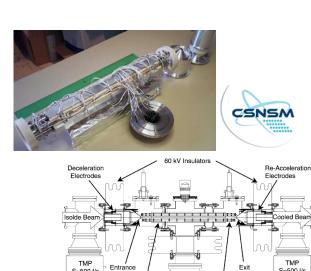
Ground-state correlations allowed \rightarrow lower the two-neutron gap with respect to the spherical shell gap and upon approaching the magic Z = 50 the reduction of collectivity gives it an apparent enhancement. With further reduction of the spherical gap for Z < 50, ground-state collectivity is predicted to determine a quenching of the two-neutron shell gap towards Z = 40.


Enrique Minaya Ramirez

Outline

- I. MLLTRAP project
- II. Penning trap mass spectrometers
- III. Status of MLLTRAP@ALTO

MLLTRAP@ALTO


Paul trap

RFQ Design →COLETTE

 $2r_0 = 14$ mm, 15 segments

Entrance

Cone Closed

LPT

S=500 l/s

1300 mm

COLETTE : RFQ cooler and buncher

 $2r_0 = 14 \text{ mm}$ L = 40 mm (9 segments - center) L = 20 mm (6 segments - first and last)

Transverse emittance : ~ 20 π.mm.mrad @ 1 keV Longitudinal emittance : ~ 10 eV.µs

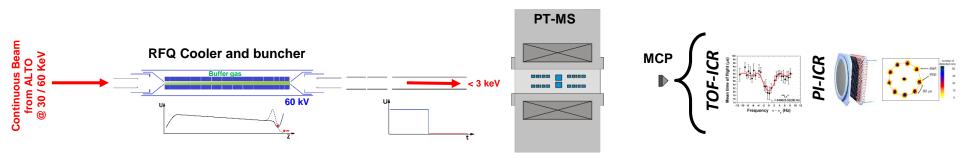
Enrique Minaya Ramirez

S=500 l/s

Cone

Open

LPT

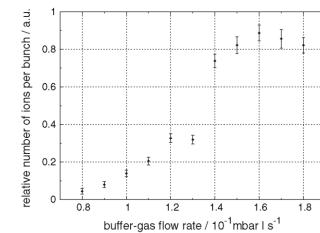

0 100 200 mm

TMP

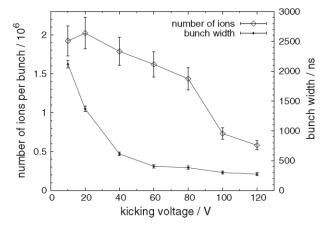
S=1000 l/s

MLLTRAP@ALTO

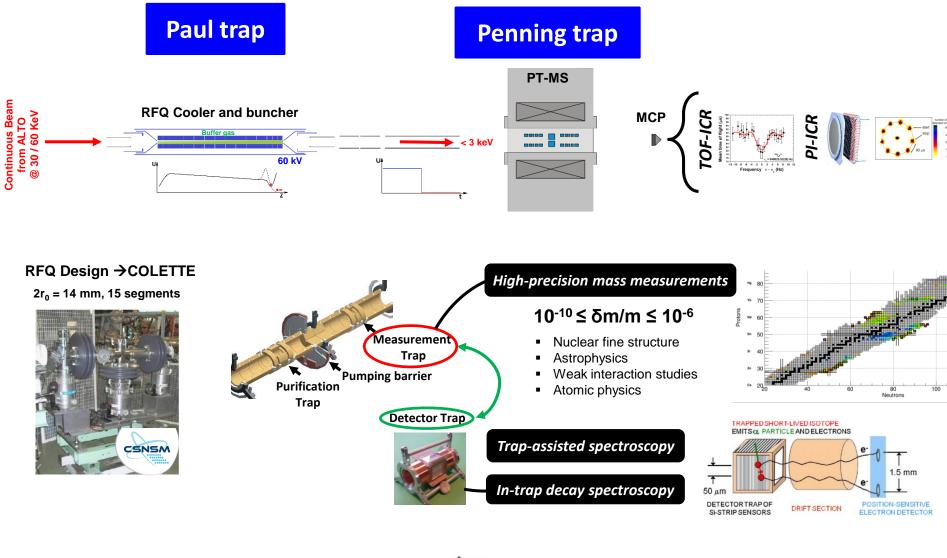
Paul trap


RFQ Design →COLETTE

2r₀ = 14 mm, 15 segments



 39 K⁺ @ 30 keV, V_{RF} = 85V_{pp} F_{RF}= 1 MHz Bunching efficiency = 54%


COLETTE@TRIGA

T. Beyer et al., Appl. Phys. B 114 (2014) 129

MLLTRAP@ALTO

Enrique Minaya Ramirez, Serge Franchoo, Marion MacCormick

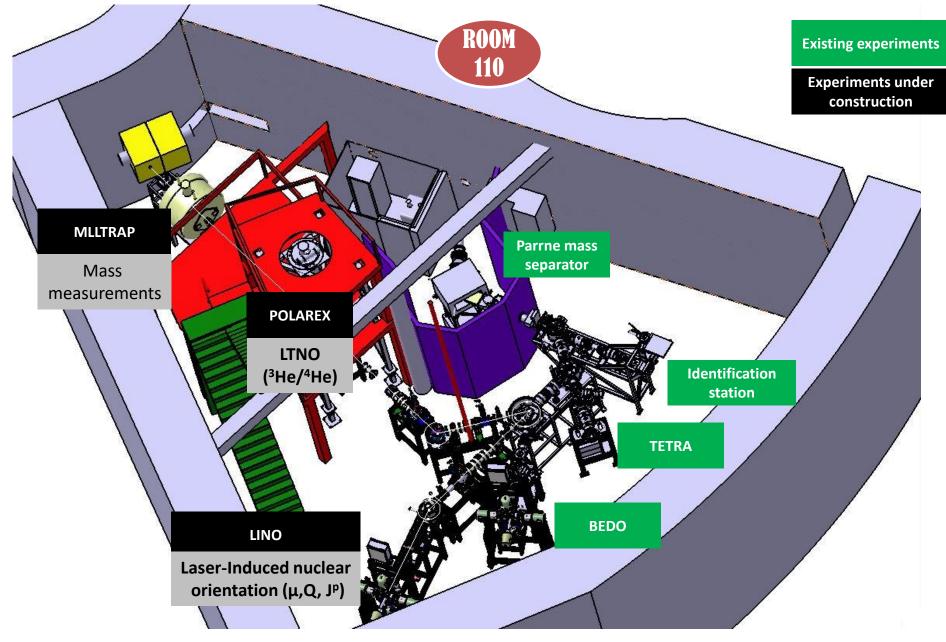
Araceli Lopez-Martens, Joa Ljungvall, David Lunney, Pierre Chauveau

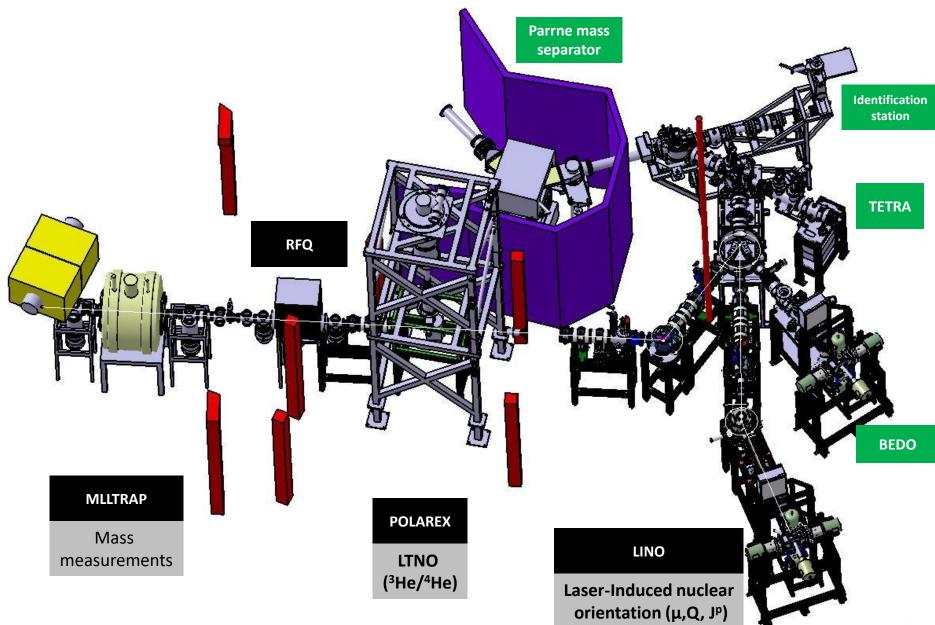
Move of MLLTRAP from MLL to Alto

February – April 2016

July 2016

The truck left MLL the 14th of July 2016

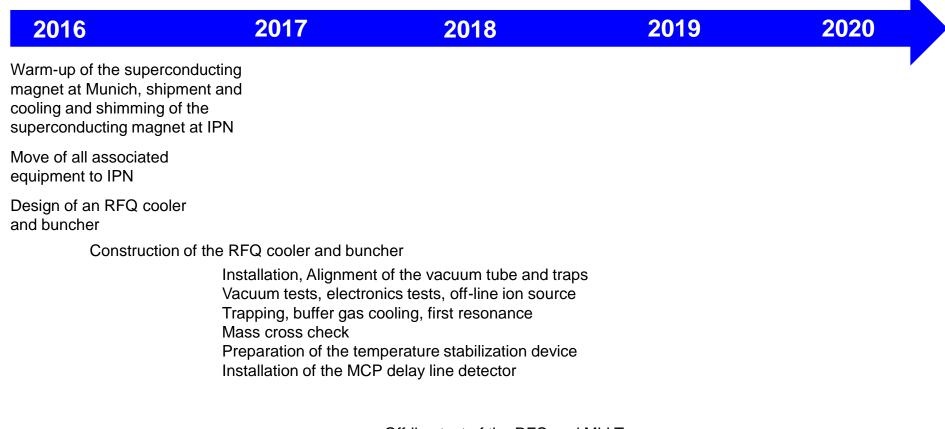

July 2016



MLLTRAP is now at ALTO

MLLTRAP beam line at ALTO

Radioactive beams at ALTO



Alignment in Room 110

The radioactive beam for MLLTRAP will be sent with a 59° bender. The alignment is almost finalized (the area is still being prepared). The magnet will be energized by an engineer of Agilent in the next months.

Present status of MLLTRAP@ALTO

Off-line test of the RFQ and MLLTrap

On-line test of the RFQ and MLLTrap

High-precision mass-measurement campaign

Thank you for your attention!

