

Double Chooz: θ₁₃ measurement and Spectral shape analysis

IPHC, Strasbourg - January 27th 2017

Timothée Brugière IPHC

Conclusion and perspectives

Neutrino physics

Overview

- \rightarrow Oscillations
- \rightarrow Recent results
- $\rightarrow \theta_{_{13}}$ in the global picture

- The Double Chooz experiment
 - \rightarrow General presentation
 - $\rightarrow \theta_{_{13}}$ measurement and results
 - \rightarrow Reactor shape study

Neutrinos oscillations

 $\underline{\textbf{Neutrino oscillations}} \rightarrow \text{The neutrino flavor periodically transforms to an other one}$

 \rightarrow Analogy with quarks (simplified 2ν case: α , $\beta = e$, μ τ):

$$i\frac{d}{dt}\begin{pmatrix}\nu_{\alpha}\\\nu_{\beta}\end{pmatrix} = \frac{1}{\gamma}\begin{pmatrix}\mu_{\alpha} & \tau_{\alpha\beta}^{*}\\\tau_{\alpha\beta} & \mu_{\beta}\end{pmatrix}\begin{pmatrix}\nu_{\alpha}\\\nu_{\beta}\end{pmatrix} \xrightarrow{(\mu_{\alpha} \ \nu_{\alpha})}_{(\mu_{\alpha} \ \nu_{\beta})} \xrightarrow{(\mu_{\alpha} \ \nu_{\alpha})}_{(\mu_{\alpha} \ \nu_{\alpha})} \xrightarrow{$$

 \rightarrow Mass eigenstates ν_1 and ν_2 becomes a mixture of ν_{α} and ν_{β} :

$$\begin{pmatrix} |\nu_1 \rangle \\ |\nu_2 \rangle \end{pmatrix} = \begin{pmatrix} \cos\theta & -e^{-i\phi}\sin\theta \\ e^{-i\phi}\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} |\nu_{\alpha} \rangle \\ |\nu_{\beta} \rangle \end{pmatrix}$$
 Mixing angle

 \rightarrow Relations between the mixing angle and neutrino masses :

$$\tan 2\theta = \frac{2|\tau_{\alpha\beta}|}{\mu_{\beta} - \mu_{\alpha}} \qquad \begin{pmatrix} \mu_{\alpha} \\ \mu_{\beta} \end{pmatrix} = \begin{pmatrix} \cos^2 \theta & \sin^2 \theta \\ \sin^2 \theta & \cos^2 \theta \end{pmatrix} \begin{pmatrix} m_1 \\ m_2 \end{pmatrix}$$

$$P(\nu_{\alpha} \to \nu_{\beta}) = \sin^2 \left(2\theta\right) \sin^2 \left(\left(m_2^2 - m_1^2\right) \frac{L}{4E_{\nu}} \right)$$

Measuring the oscillation

Simplified 2v case:
$$P(\nu_{\alpha} \rightarrow \nu_{\beta}) = \sin^2(2\theta) \sin^2\left((m_2^2 - m_1^2) \frac{L}{4E_{\nu}}\right)$$

Oscillation probability for 2 MeV v_e

Oscillation probability v_{e} at 1 km

- Oscillation parameters:
 - \rightarrow Mixing angles θ fix the oscillation amplitudes
 - \rightarrow Squared mass differences Δm^2 fix oscillation frequencies
- The L/E ratio (+v flavor) defines the observed sector: Atmospheric, Solar, Reactor

Measuring the oscillation

Exploring the neutrino mixing

Timothée Brugière

IPHC, Strasbourg - January 27th 2017

Exploring the neutrino mixing

Inverted

~ 7.10⁻⁵ eV

~ 2 10⁻³ eV²

?

 m_2^2

Normal

~ 2.10⁻³ eV²

~ 7.10⁻⁵ eV²

ma

m

Next important steps:

 \rightarrow Mass hierarchy (m₁<m₂<m₃?), θ_{23} octant

 $\rightarrow \delta_{_{CP}}$

$\underline{\boldsymbol{\delta}}_{CP}$ measurement:

- \rightarrow Matter antimatter asymmetry (leptogenesis)
- \rightarrow CP violation effect proportional to the Jarlskog invariant

$$J = s_{12}c_{12}s_{23}c_{23}s_{13}c_{13}^2 \times \sin\delta_{CP}$$

 \rightarrow Observed in quark mixing: but too small (J_a ~ 3 10⁻⁵)

 \rightarrow Could be large enough in neutrino mixing $J_{\nu} \sim 0.12 \times \cos \theta_{13} \sin 2\theta_{13} \times \sin \delta_{CP}$ $\sim 0.036 \times \sin \delta_{CP}$

 \rightarrow Need of a model independent measurement, from the difference between an **oscillation** and its **CP-inverted oscillation**.

 $\rightarrow \text{Eg: } \nu_{\mu} \rightarrow \nu_{e} \text{ and } \overline{\nu_{\mu}} \rightarrow \overline{\nu_{e}} \text{ in a long-baseline accelerator appearance experiment} \\ \frac{P(\nu_{\mu} \rightarrow \nu_{e}) - P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e})}{P(\nu_{\mu} \rightarrow \nu_{e}) + P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e})} \sim \underbrace{\begin{array}{c} 0.087 \\ \hline \sin 2\theta_{13} \end{array}}_{\text{sin } \delta_{CP}} & \theta_{13} \rightarrow \text{key parameter for the feasibility} \\ \text{of the future experiments} \end{array}$

Global picture

CP phase

- $\delta_{_{CP}} \sim 1.4\pi$ at best fit
- CP-conserving cases (0, π) disfavored at ~2σ or more
- Significant fraction of the (0, π) range disfavored at >3 σ

θ₂₃

- Maximal mixing disfavored at ~ 2σ
- Best fit octant flips with mass ordering

Mass ordering

- $\Delta \chi^2_{IO-NO} = 3.1$
- Inverted ordering slightly disfavored

θ_{13} impact

A. Marrone et al. @ Neutrino 2016

- $\boldsymbol{\theta}_{13}$ vs. $\boldsymbol{\delta}_{CP}$
- $\delta_{_{CP}}$ ~ depends on $\theta_{_{13}}$ in long baseline experiments (LBL)
- Maximal CP? ($\delta_{CP} = 3\pi/2$)
- θ_{13} measurement (value and error) \rightarrow critical implications !

θ_{13} and the mass hierarchy

- **DUBLE BOZ**
- θ_{13} value is large enough to be observed at medium distance from reactors:
 - \rightarrow Observation of both $\theta_{_{13}}$ and $\theta_{_{12}}$ (solar) driven oscillations with the same experiment

Non-oscillation probability for 3 MeV $\bar{\nu}_{e}$

$$P_{ee} = 1 - \cos^{4}(\theta_{13}) \sin^{2}(2\theta_{12}) \sin^{2}(\Delta_{21}) - \sin^{2}(2\theta_{13}) \sin^{2}(\Delta_{31}) - \sin^{2}(\theta_{12}) \sin^{2}(2\theta_{13}) \sin^{2}(\Delta_{21}) \cos(2|\Delta_{31}|) \bigoplus \frac{\sin^{2}(\theta_{12})}{2} \sin^{2}(2\theta_{13}) \sin(2\Delta_{21}) \sin(2|\Delta_{31}|). \Delta_{ij} \equiv \frac{\delta m_{ij}^{2} L}{4E_{\nu}}, \ (\delta m_{ij}^{2} \equiv m_{i}^{2} - m_{j}^{2})$$

Measurement of the mass hierarchy independent from matter effects and $\delta_{_{CP}}$

 \rightarrow not true with acc. or atm. experiments

Why θ_{13} with reactor experiments?

- <u>1980's:</u> Atmospheric neutrino anomaly (Kamiokande, IMB, Soudan)
 - v_{μ}/v_{e} ratio lower than expected: oscillation $v_{\mu} \rightarrow v_{e}$?

- \rightarrow **Reactor** \overline{v} ~ few MeV \rightarrow L ~ few km
- <u>1990's</u>: Chooz and Palo Verde tried to observe $\overline{\nu}_{e} \rightarrow \overline{\nu}_{e}$ - No significant deficit $\rightarrow \sin^{2}2\theta_{13} < 0.1$ (end of 90's)

<u>1998</u>: SuperKamiokande → evidence of neutrino oscillation (atm.) <u>2002</u>: SNO (solar) + KamLAND (reactor) measure solar oscillations

 \rightarrow Possibility to measure δ_{CP} in long baseline experiments if θ_{13} is not too small:

$$P(\nu_{\mu} \rightarrow \nu_{e}) \sim \sin^{2} \theta_{23} \left(\frac{\sin 2\theta_{13}}{1 - \rho_{m}L}\right)^{2} - 0.04 \sin \delta_{CP} \frac{\sin 2\theta_{13}}{1 - \rho_{m}L}$$

 \rightarrow Sign of ρ_m depends on $(\nu_\mu \text{ or } \overline{\nu_\mu})$ and on the mass hierarchy

 \rightarrow Difficult to correct this fake CP asymmetry and measure $\delta_{_{CP}}$ + $\theta_{_{13}}$ with acc. only

• **<u>2003</u>**: measure θ_{13} with a reactor experiment using a 2-detectors configuration

2002

2015

11

The Double Chooz experiment

Aim of the Double Chooz experiment:

 $\rightarrow \text{Measurement of } \theta_{13} \text{ through the observation of } \overline{\nu}_e \rightarrow \overline{\nu}_e \text{ transition according to the survival probability :}$ $P_{\overline{\nu}_e \rightarrow \overline{\nu}_e} = 1 - \sin^2(2\theta_{13}) \sin^2\left(\frac{\Delta m_{31}^2 L}{4 \text{ E}}\right) + O(10^{-3}) \quad \text{for } L/E \lesssim 1$

- **Reactors:** Pure $\overline{\nu}_{e}$, low energy, high intensity (10²¹ $\overline{\nu}_{e}$ /s), "Cheap"
- Short baseline (~ 1km): no matter effect

 \rightarrow Suppression of systematic uncertainties (<< 1%) with identical detectors

The Double Chooz Collaboration

Brazil CBPF UNICAMP UFABC	France APC CEA/DSM/IRFU SPP SphN SEDI SIS SENAC CNRS/IN2P3 SUBATECH IPHC	Germany EKU Tübingen MPIK Heidelberg RWTH Aachen TU München U. Hamburg	Japan Tohoku U. Tokyo Inst. Tech. Tokyo Metro. U. Niigata U. Kobe U. Tohoku Gakuin U. Hiroshima Inst. Tech.	Russia INR RAS IPC RAS RRC Kurchatov	Spain CIEMAT-Madrid	USA U. Alabama ANL U. Chicago Columbia U. UCDavis Drexel U. IIT KSU LLNL MIT U. Notre Dame

Spokesperson: H. de Kerret (IN2P3)

Project Manager: Ch. Veyssière (CEA-Saclay)

Web Site: www.doublechooz.org/

Power plant @ Chooz (France)

Timothée Brugière

IPHC, Strasbourg - January 27th 2017

Inverse β decay (IBD)

The Double Chooz detectors

- IBD threshold: 1.8 MeV
- Inert external Shielding: @Far \rightarrow 150 mm of steel / @Near \rightarrow 1 m of water

Outer µ-Veto (OV) plastics-scintillator: strips (→tracking)

V-Target (NT) ~10m³ Liquid-Scintillator + Gd (0.1%)

> **γ-Catcher (GC)** ~20m³ Liquid-Scintillation

Light Buffer ~100m³ oil (no scintillation)

Inner µ-Veto (IV) ~90m³ Liquid-Scintillator

Inert γ-Shield 15cm steel [FD] / Im water [ND]

 $\mathbb{N}[$

Detector calibration

Light injection system:

- LED + Fibers
- Multi-wavelength (3 fiber per PMT)
- PMT / scintillator calibration IV+ID

• <u>Source + LASER injection system:</u>

- Radioactive sources
 - $\rightarrow \gamma$ (60Co, 137Cs, 68Ge), neutron (252Cf)
- Target (chimney) + γ -catcher (guide tube)
- LASER diffuser ball

• Natural sources:

- Spallation n capture on Gd, H, C
- α 's from ²¹⁰Po decays

IVLI calibration system

• Inner veto:

- \rightarrow 78 PMTs (24 top, 12 middle, 42 bottom)
- IVLI system:
 - → 84 LED (+ 12 UV)
 - At least 1 LED / PMT
 - Low intensity runs \rightarrow gain calibration
 - High intensity runs $\rightarrow T_0$ calibration
 - LED UV \rightarrow scintillator response

→ Gain calibration every week !

Timothée Brugière

Energy resolution

<u>Linearized N_{pe}</u>:

- Gain non-linearities at low charge

<u>Uniformity correction:</u>

- Position dependency of $\rm N_{pe}$ estimation
- Map using neutron captures on H (2.2MeV)

Absolute energy scale alignment:

- Using 2.2 MeV peak of n from ²⁵²Cf

<u>Time stability (data only)</u>

- Calibrate variation of mean gain
- Weekly and monthly dedicated set of runs

<u>Non-linearity (MC only)</u>

- Read-out / scintillator model related

Background sources

DC *singles* selection

Veto on single triggers:

- Muon veto
 - \rightarrow No triggers 1.25 ms after a muon
- ov
 - \rightarrow No coincidence with the Outer Veto
- Li+He veto
 - \rightarrow Likelihood trained on ^{12}B : 50% rejection
- IV
 - \rightarrow No coincidence with IV activity (fast n, stopped μ, γ scattering)
- FV+CPS
 - \rightarrow Stopped μ rejection
- PMT light emission
 - \rightarrow Rejection based on PMTs charge/time distribution

IBD candidates selection:

Prompt energy

(1,20) MeV

- + **Isolation window** (prompt) (-800, +900) µs
- + Multivariate cut \rightarrow Acc. vs. corr. events ID, see next slides

Far detector Near detector 12 12 Delayed Visible Energy (MeV) Delayed Visible Energy (MeV) DC-IV-IBD(Gd+H) -DC-IV-IBD(Gd+H) - 346 days 10³ Neutrino 2016 Preliminary Neutrino 2016 Preliminary 10³ 10 10 1000 10² 10² Ξ 6 10 10 2 아 1 20 18 18 20 16 10 12 14 12 14 16 Prompt Visible Energy (MeV) Prompt Visible Energy (MeV)

Target:

- ~ 8t
- Smallest θ_{13} target

10³

10²

10

1

Far detector Near detector 12 Delayed Visible Energy (MeV) Delayed Visible Energy (MeV) DC-IV-IBD(Gd+H) - 346 days 10³ Neutrino 2016 Preliminary Neutrino 2016 Preliminar 10 10 1.1983 10² 6 10 2 아 14 16 18 20 12 14 10 10 12 Prompt Visible Energy (MeV) Prompt Visible Energy (MeV)

Target:

- ~ 8t
- Smallest θ_{13} target

IBD (Gd+C+H)

Target:

- ~ 30t
- Largest θ_{13} target (for single detector)

16

18

20

Gd-fraction independent •

• <u>Accidental rejection</u> \rightarrow Multivariate analysis (ANN) to reject random coincidences

Timothée Brugière

IPHC, Strasbourg - January 27th 2017

BG control

• <u>**E**</u>_{delayed} (MeV) before / after all cuts:</sub>

ND -FD comparison:

After all vetoes (per detector) After full calibration (per detector)

ND ~ FD

BG control

• Δt (prompt \rightarrow delayed) (s) before / after all cuts:

• <u>ND -FD comparison:</u>

After all vetoes (per detector)

ND ~ FD

Remaining BG

Remaining BG contributions (irreducible BG):

	prompt	delayed	~1000 IBD candidates/day	~140 IBD candidates/day		µspallation correlated production (~50% vetoed) σ(BG)/S → ~dominant	
	pionipi	delayed	end (day)	erb (ddy)			
⁹ Li	e⁻ + α's	n	~11	~2.5	▶	ptagging (IV+check OV)	
Fast-n	p-recoil	n	~24	~2.5		σ(BG)/S → ~small	
Accidental	radioactivity	radioactivity, n, ¹² B,	~3	~4		OFF-time coincidences	
						σ(BG)/S → ~0%	
				X = 10 + 10 + 10 + 10 + 10 + 10 + 10 + 10			

- Other contributions (stopped- μ ¹²B, BiPo, multi-captures) \rightarrow all negligible !
- BG model confirmed by reactor-OFF data

Timothée Brugière

σ(BG_{tot})/S ~0.2% @ FD

IBD vs. time

- ~ 140 events / day in Gd+C+H analysis
- ~ 50 events / day in Gd+C analysis
- ~ 0.2% stat. error on the final result

~ 210 000 IBD candidates @ND

~ 90 000 IBD candidates @FD

θ_{13} Rate+Shape fit results

 \rightarrow 3 x SD-fits (MC) + MD-fits (inter-detector correlations)

 $sin^{2}(2\theta_{13})^{R+S} = 0.119 \pm 0.016 (\chi^{2}/ndf = 236.2 / 114)$

TBLE

θ_{13} Rate+Shape fit results

DATA/DATA fit:

- \rightarrow Cross-check / validation \rightarrow FDII/ND fit:
 - $\sin^2(2\theta_{13})^{R+S} = 0.123 \pm 0.023$
 - X² / ndf = 10.6 / 38

- Large x² / ndf when using MC:

 → Mainly due to distortions in the spectral structure (large deviation wrt ILL-based model)
- Too good x² / ndf for data-to-data fit:
 → Systematics estimation too conservative?

Comparison to MC

- \rightarrow 2 main issues when data from reactor experiments are compared to the model:
 - <u>Rate is lower than expected by ~ 6%:</u> (reactor anomaly)

v sterile?

Energy shapes are not consistent: (5MeV excess)

Timothée Brugière

How to build \overline{v} spectra?

Reactor cycles @ Chooz power plant:

- 4 main isotopes in reactor fuel:
 - \rightarrow ²³⁵U, ²³⁸U, ²³⁹Pu, ²⁴¹Pu
- Need to know the ν spectrum of each one

How to build \overline{v} spectra?

• The summation method:

Timothée Brugière

IPHC, Strasbourg - January 27th 2017

Build the DATA/MC ratio

Visible energy (MeV)

Build the DATA/MC ratio

Shape errors (After fit)

• Rector and background shape errors:

Gdpp: bg shape error

<u>Energy correction + associated error propagation:</u>

Energy correction vs. Visible energy

Reactor spectral distortions

Shape-only analysis

DATA and MC spectra normalized to 1

Ratio is not flat → Distortion relative DATA/MC Not a statistical pattern

Same features observed in ND and FD (possible combination)

But:

Shape only paradigm allows only limited interpretation with possible risk of misleading! Final conclusion depends highly of the normalization strategy!

Scaling with reactor power

• Data are split in 2 samples:

Next shape-only DATA/MC ratio are computed for each case

Goal: Check if the distortions come from a reactor effect or from an external source

• If distortions are related to the reactor signal:

 \rightarrow ratio is expected to be the same in the 1R and 2R cases

• If distortions are due to an external contribution:

 \rightarrow larger effect expected in the 1R case (~2x less signal compared to 2R case for

a constant unknown background contribution)

Scaling with reactor power

 \rightarrow Features scaling fractionally constant with the reactor number (reactor power)

 \rightarrow Statistics for 1 reactor ON is low: should be improved soon with latest DC data

Scaling with ²³⁵U fission fraction

- Split DATA in two sets as a function of the fission fraction in reactors
 - \rightarrow No effect seen
 - \rightarrow But sensitivity too low, need more stats to split the in more samples

Reactor spectral distortions

- Shape-only:
 - \rightarrow Data and MC spectra **normalized to 1**
- By definition, in absolute over the energy range:
 - \rightarrow Integral(DATA) = Integral(MC)
 - → Integral(Excess) = Integral(Deficit) !
 - \rightarrow Values of the ratio depend of the statistics in the bin
- But:
 - \rightarrow What happens if I use a normalization?
 - \rightarrow What is the real problem? Deficit? Excess? Both?
 - \rightarrow "Excess" and " <code>Deficit</code> "notions are <code>driven by normalization</code>
 - → In shape-only analysis, only distortions remain !
- Conclusion:

 \rightarrow In Shape only, some characterizations of the distortions can be done: scaling with reactor power, fission fraction dependence, ...

 \rightarrow But normalization + shape is a must for physics interpretation, and the uncertainties associated to the normalization has to be taken into account.

Comparison with DYB and Reno

DC: 210 000 events / DB: 1.2 million events / Reno: 280 000 events

- Consistency between Double Chooz and Daya Bay results !
 - \rightarrow **Not trivial**: θ_{13} correction, background, energy, ...
- Due to the normalization used, RENO points are close to 1 up to 4 MeV
- But better agreement with RENO when area are normalized to 1 (for E < 4.5 MeV)
- Some discrepancy remains with RENO around 5 MeV:
 - \rightarrow DC and DB reactors are similar (Areva), not Reno reactors
 - \rightarrow Reactor fuels? Other?

DC vs. DYB

• DC and DYB ratio in remarkable agreement given the possible sources of discrepancies!

Conclusion

$\underline{\theta}_{13}$ measurement:

• Double Chooz has now its first result using the 2-detector configuration

 $\rightarrow sin^{2}(2\theta_{13})^{R+S} = 0.119 \pm 0.016$

- Work is on going to understand the χ^2/ndf
- Publication planned soon

Reactor shape study:

• Double Chooz results (as other experiment results, even if it's not express in the same way) point toward a correlation between the distortion of the ratio and the reactor power:

→ This correlation with the reactor power disfavors the possibility of an unaccounted background component and points towards an unaccounted component of the reactor flux.

- Consistency between DC and DYB spectra has been demonstrated.
- But shape-only analysis is inconclusive (and risk to be misleading) on the existence of an excess or a deficit when we compare DATA and MC:
 - \rightarrow Normalization information must be articulated to allow a full interpretation of the data.

 \rightarrow Work is on-going to provide further information on the spectral distortion (upcoming publication).

Perspectives

Double Chooz will continue to take data for 1 year and the decommissioning should start by the end of 2017

$\underline{\theta}_{13}$ measurement:

- 1.5 years of additional data are expected
 - \rightarrow Almost at the syst. limit
- New pulse shape reconstruction
 - \rightarrow DC has Flash ADC: fit of the waveforms
 - \rightarrow Photon counting
 - \rightarrow Robust baseline estimation
 - \rightarrow More information (time info per pe)
 - \rightarrow Remove most of the non-linearities
 - \rightarrow Work on-going and first results expected mid-2017

Reactor shape study:

- High precision quantification on-going
- Ratio using Hubert + Mueller modeling (instead of Hubert + Haag, for comparison with DYB)
- Test of the new model proposed by A. Hayes
- Comparison with very short baseline experiments (Neos, ..).
- Unfolding, ...

