Status of the BAO paper (to be submitted in the following months since one year, but in progress !)

Impact of photometric redshifts on the BAO scale determination in the LSST survey

Adeline Choyer, Cécile Renault, Jean-Stéphane Ricol, Alexandra Abate, Reza Ansari, Farhang Habibi, Christophe Magneville[,] Marion Moneuse, Marc Moniez, and Stéphane Plaszczynski

+ Julien Souchard (M2)

LPSC, LAL, SPP

Simulation from cosmological parameters to k_BAO scale throw a catalog of galaxies with photometric redshift

Compared to previous version: not up to cosmological parameters reconstruction (with CAMEL) because simulations are done with more approximations than CLASS computations

—> modification to use CLASS from the beginning currently implemented (Julien's work, M2, LPSC), for the next works

Simulation of a "realistic" catalog of galaxies

Very efficient cleaning of the outliers, but the cost is a loss of 20% of the galaxies -> what is the most critical for BAO scale?

$_p)/(1+z_s)$ & selection function

Distance along the x Euclidian axis [comoving Mpc]

Comparison with LSST requirements

with spectroscopic redshift with photometric BDT 80% redshift

3 slices in redshift (0.5, 0.9, 1.5) Each is sampled by 5 grids

Reference: simulations without BAO oscillations

Simulation of 10 "universe" without BAO oscillations to properly take into account damping and more subtil impact of the photoZ

0

Dispersion of the reference spectra

- 5x10 spectra for reference / redshift
- Cosmic variance not negligible at BAO scale @z=0.5
- Shot-noise starts to dominate juste after the BAO scale @z=1.5

 $< N_{\rm gal} >$

BDT 90%

 $[cell^{-1}]$

11.7

4.50

0.66

 $N_{\rm gal}$ with

BDT 90%

 $[10^6]$

21.1

28.5

11.9

 $< N_{gal} >$

BDT 80%

 $[cell^{-1}]$

10.3

4.22

0.54

 $N_{\rm gal}$ with

BDT 80%

 $[10^6]$

18.5

26.7

9.7

BAO scale and errors

z = 0.5z = 0.9• theoretical value significantly lower the PS of the shot-noise grids very noisy at low scales, low z --> includes cosmic variance डेhift --> rises above k~0.1 (8 Mpc-cell size impact) 100 ==> use of theoretical shot noise dshift cut Individual realizations Mean per redshift $1/<Ngal> [Mpc^{-3}]$ 0.10number Mpc^-1 0.10 -wavenymber [Mpc^-1] sigma_P(k) = C/k * (($P_{BAO}(k) - P_{SN}$) + P_{SN}) / ($P_{noBAO}(k) - P_{SN}$) $C/k = \frac{2\pi \times c}{k\sqrt{V\delta_k}}$ $P_{OSC}(k) = (P_{BAO}(k) - P_{SN}) / (P_{hOBAO}(k) - P_{SN})$ $c = d^2 \times P_{\text{raw cells}} / P_{\text{cut cells}} \rightarrow c \sim 1$

Shot-noise: from grids filled by Poisson distribution or theoretical expectation?

Ratio "observation" / mean reference

Current results

- reasonable in spectroZ
- nice @ z=0.9
- still not very good (!) @
 z=0.5 & z=1.5 in photoZ

If the reference (without BAO) is computed without taking properly into account bias or catastrophic galaxies, it impacts the results

--> way to check photoZ properties

This paper

- add plot + text to explain the galaxy density wrt the Science book (if we are totally confident)
- try improved fit to better recover BAO scale with photoZ (but spectra noisy ...)
- (variance cosmic using simulations: grid shape)
- write the conclusion !

Future

- Improvement of the cosmological simulation (first step) to allow use of CAMEL as last step
- Use of spherical power spectrum to use shell instead of grids —> lower cosmic variance, more galaxies, much better conceptually
- more realistic: masks, stars impact
- use of the "full" spectrum (not only BAO scale)