The Euclid Mission

M. Sauvage (Science Ground Segment) on behalf of the Euclid Consortium with slides from Y. Mellier

The expansion of the Universe is accelerating:

Confirmed today at a 99.999% confidence level

The acceleration of the expansion is recent:

In the past, expansion was decelerating: matter dominated era

Euclid Top Level Science Requirements

Sector	Euclid Targets
Dark Energy	• Measure the cosmic expansion history to better than 10% in redshift bins $0.7 < z < 2$.
	• Look for deviations from $w = -1$, indicating a dynamical dark energy.
	• Euclid <i>alone</i> to give $FoM_{DE} \ge 400$ (1-sigma errors on $w_{p} \& w_a$ of 0.02 and 0.1 respectively)
Test Gravity	• Measure the growth index, γ , with a precision better than 0.02
	• Measure the growth rate to better than 0.05 in redshift bins between 0.5< $z < 2$.
	• Separately constrain the two relativistic potentials Ψ, Φ .
	Test the cosmological principle
Dark Matter	 Detect dark matter halos on a mass scale between 10⁸ and >10¹⁵ M_{Sun}
	 Measure the dark matter mass profiles on cluster and galactic scales
	 Measure the sum of neutrino masses, the number of neutrino species and the neutrino hierarchy with an accuracy of a few hundredths of an eV
Initial Conditions	• Measure the matter power spectrum on a large range of scales in order to extract values for the parameters σ_8 and <i>n</i> to a 1-sigma accuracy of 0.01.
	• For extended models, improve constraints on <i>n</i> and α wrt to Planck alone by a factor 2.
	• Measure a non-Gaussianity parameter : f_{NL} for local-type models with an error < +/-2.
L	• DE equation of state: $P/\rho = w$, and $w(a) = w_p + w_a(a_p - a)$

- Eucid
- Growth rate of structure formation: $f \sim \Omega^{\gamma}$; FoM=1/($\Delta w_a x \Delta w_p$) > 400 \rightarrow ~1% precision on w's.

See Euclid theory living reviewhttp://link.springer.com/article/10.12942/lrr-2013-6

WL probe: Cosmic shear over 0<z<2 :

1.5 billion galaxies shapes, shear and phot-z (u,g, r,i,z,Y,J,H) with 0.05 (1+z) accuracy over 15,000 deg²

GC; BAO, RSD probes: 3-D positions of galaxies over 0.7<z<1.8 :

35 million spectroscopic redshifts with 0.001 (1+z) accuracy over 15,000 deg²

Euclid and the DM-dominated / DEdominated transition period

Euclid Survey Machine:15,000 deg² + 40 deg²

ESA Euclid mission

- 2 200 kg
- Dimensions:
- 4,5 m x 3 m
- Launch: end 2020 by a Soyuz rocket from the Kourou space port
- Euclid placed in L2
- Survey: 6 years,

PLM, flight hardware, scientific instruments

From Thales Alenia Italy, Airbus DS, ESA Project office and Euclid Consortium

Courtesy: S. Pottinger, M. Cropper and the VIS team

*.*UC|10

Payload and Mechanism Control Unit (PMCU)

VIS

VIS CDR on going

Table 1: VIS and weak lensing channel characteristics

Spectral Band	550 – 900 nm		
System Point Spread Function size	≤0.18 arcsec full width half maximum at 800 nm		
System PSF ellipticity	≤15% using a quadrupole definition		
Field of View	>0.5 deg ²		
CCD pixel sampling	0.1 arcsec		
Detector cosmetics including cosmic rays	≤3% of bad pixels per exposure		
Linearity post calibration	≤0.01%		
Distortion post calibration	≤0.005% on a scale of 4 arcmin		
Sensitivity	$m_{AB}{\geq}24.5$ at 10σ in 3 exposures for galaxy size 0.3 arcsec		
Straylight	≤20% of the Zodiacal light background at Ecliptic Poles		
Survey area	15000 deg ² over a nominal mission with 85% efficiency		
Mission duration	6 years including commissioning		
Shear systematic bias allocation	additive $\sigma_{\!sys}\!\le\!2\ x\ 10^{-4}$; multiplicative $\le\!2\ x\ 10^{-3}$		

Copper et al 2010.31 IL

NISP

Courtesy: T. Maciaszek and the NISP team

NISP CDR successful in Nov 2016

- FoV: 0.55 deg²
- Mass : 159 kg
- Telemetry: < 290 Gbt/day
- Size: 1m x 0.5 m x 0.5 m
- 16 2kx2K H2GR detectors
- 0.3 arcsec pixel on sky
- Limiting mag, wide survey AB : 24 (5 σ)
- 3 Filters:
- •Y (950-1192nm)
- •, J (1192, 1544nm)
- •, H (1544, 2000nm)
- 4 grisms:
- •1B (920 1300) , 1 orientation 0°
- •3R (1250 1850), 3 orientations 0° , 90° , 180°

Maciaszek et al 2016:SPIE

 \sim

Performance Status on Dec 2016

rf örnhanicel Medsun	meance Measure	Requirement	CBE Current				
Image Quality							
Technical Performance Measure 800nm)		180 mas	160 mas				
Image Quality	ellipticity	15.0%	9.4%				
	R2 (@ 800 nm)	0.0576	0.0551				
nel VIS Channel	ellipticity stability o(ɛi)	2.00E-04 2.00E-04	1.90E-04 2.00E-04				
VIS Channel	R2 stability σ(R2)/ <r2></r2>	1.00E-03	1.00E-04				
	Plate scale	0.10 "	0.100 "				
	rEE50 (@1486nm)	400 mas	225 mas				
NISP Channel	rEE80 (@1486nm)	700 mas	584 mas				
	Plate scale	0.30 "	0.299 "				
Sensitivity							
WASSANGRI AS DOWNING	Bata 24.5 Greekyces)	10	16.99				
(INISSPASSING ROOP. 41.	6 comptome 20 congrame 2	3.5	4.81				
(for PSNR (for	Y-band	5	5.89				
MAP ₱ 3AR (for	V-laandd	5 ⁵	ର୍ଟ.ଟ୍ରିଡି				
noturee 234)sources)	t P abahd	5 ⁵	5.34				
NISP-S Performance							
Burity	-	80%	72%				
sCompleteness		45%	52%				
Survey							
Wide Survey Cover	age	15,000 deg2	15,000				
Survey length [year	rs]	5.5	5.4				
Cucid	From R. Laureijs	s and ESA	PO				

- Image quality of the system fully in line with needs.
- Ellipticity, R² stability and Non-convolutive errors performance dictated mainly by ground processing
- *Purity* not compliant with current data processing methods but expected to be recovered with Euclid specific algorithms (not yet installed at this stage).

- Straylight levels in worst case position of the survey

The EC is now running an exercise to verify the mission performance, starting from a consistent cosmological simulation, using instrument simulation based on CDR, and emulating the actual data processing chain.

Euclid+ground: photo-z of 1.5 billion galaxies

Ground based imaging over 15,0000 deg² in 4 bands + spectroscopy

Euclid Wide and Deep Surveys

From J.-C. Cuillandre and the Survey WG

*.*UC10

Euclid Wide and Deep and Lensing Surveys

Euclid Wide:

- 15000 deg² outside the galactic and ecliptic planes
- 12 billion sources (3-σ)
- 1.5 billion galaxies with
 - Very accurate morphometric information (WL)
 - Visible photometry: (u), g, r, i, z, (R+I+Z) AB=24.5, 10.0 σ +
 - NIR photometry : Y, J, H AB = 24.0, 5.0σ
 - Photometric redshifts with 0.05(1+z) accuracy
- 35 million spectroscopic redshifts of emission line galaxies with
 - 0.001 accuracy
 - Halpha galaxies within 0.7 < z < 1.85
 - Flux line: 2 . 10^{-16} erg.cm⁻².s⁻¹; 3.5σ

• Euclid Deep:

- 1x10 deg² at North Ecliptic pole + 1x20 deg² at South Ecliptic pole
 - + 1x10 deg² South close to Equatorial area
- 10 million sources $(3-\sigma)$
- 1.5 million galaxies with
 - Very accurate morphometric information (WL)
 - Visible photometry: (u), g, r, i, z, (R+I+Z) AB=26.5, 10.0 σ +
 - NIR photometry : Y, J, H AB = 26.0, 5.0σ
 - Photometric redshifts with 0.05(1+z) accuracy
- 150 000 spectroscopic redshifts of emission line galaxies with
 - 0.001 accuracy
 - Halpha galaxies within 0.7 < z < 1.85
 - Flux line: 5 . 10^{-17} erg.cm⁻².s⁻¹; 3.5 σ

Euclid is also

- 45 nights at Keck telescope for spectroscopy on Euclid Wide fields
- 25 nights at VLT VMOS/KMOS for spectroscopy on Euclid Wide fields
- 2 nights pilot program at GTC for preparation of a spectroscopic large program
- 5300 hrs of Spitzer satellite, period 13, priority 1 on 2 Euclid Deep fields (20 deg2)
- 271 nights at CFHT u, r data on Euclid Wide North (CFIS)
- 110 nights at JST/T250 g data on Euclid Wide North

Ground Based Observations for Euclid

	North		South	
	Imaging	Spectroscopy	Imaging	Spectroscopy
	Wide North Imaging	Wide North Spectroscopy	Wide South Imaging	Wide South
Wide survey	LSST+CFHT+ Subaru+T250?		DES+LSST	Specifoscopy
vilde Sulvey	ҮЈН			
	ugriz		YJH	
	dec<30°	Keck 15+30	ugriz dec<0°	ESO+GTC?
	<mark>ugriz</mark> dec>30°			
Deep survey	Deep North Imaging Subaru	Deep North Spectroscopy	Deep South Imaging LSST	Deep South Spectroscopy
	YJH Spitzer ugriz	Subaru+ GTC?	үјн	
			Spitzer	ESO+ GTC?
			ugriz	

GTC: ground-based spectroscopic survey beyond the pilot program

Operation Ground Segment

Luclid

challenges

External data for Euclid

In the Euclid Consortium 2 structures deal with external data for science:

- •The Complementary Observations Group:
 - In charge of all the managerial interface aspects with external collaborations.
 - Members of each external collaborations (enlisted in the EC) belong to the COG.
 - Deal with all programmatic aspects with respect to data availability for data releases.
 - Prepares proposals for external data acquisition when requested by the Science Working groups.
- •The EXT Organization Unit:
 - Ensures that data quality requirements coming from the science objectives are met by the external data set:
 - Either by performing the actual data processing from the raw data up to the fully calibrated exposures (DES model)
 - Or by putting in place the necessary data processing expert interface to transfer the requirements to the external team (CFIS model).
 - Develops methods to perform external data validation before ingestion in Euclid System.
 - Organizes re-processing activities when needed.

The specific case of LSST (1)

LSST and Euclid have similar science objectives and a similar schedule. There is added value for both collaborations to reach a data sharing/exchange agreement.

•Euclid side of the interest:

- ugriz de-trended individual exposures down to the Euclid depth.
- Filter transmission curves (down to the accuracy needed for photo-z, including spatial dependence).
- A "simple" source photometric catalog is not what Euclid would be interested in.
- •LSST side of the interest (likely biased view):
 - High resolution VIS images for de-blending (calibration/training), from the wide and/or deep survey.
 - NIR photometric coverage for photometric redshifts.

Notes:

Euclid is significantly shallower than LSST:

- The LSST data that Euclid would need is a small fraction of the LSST data (and processing).
- Reciprocally the Euclid data that LSST would need is a small volume w.r.t. LSST data and processing.

The specific case of LSST (2)

Reaching an agreement, how?

- •LSST-Euclid white paper:
 - Mandate given by the 2 collaboration leadership to scientists and data processing representatives to explore scientific merits of a collaboration/data exchange at many levels.
 - The WP should leave aside "legal" aspects as well as implementation aspects.
 - Aimed at a completion for the end of 2016, it's not there yet but progressing.
- •Next steps:
 - EC and LSST management should pick up the WP and propose to implement a fraction (or all of it).
 - The two collaborations should then work on the practical aspects.

Can/should something happen before?

- France has a particular place within these collaborations.
- Euclid already has an array of models in place for the ingestion of external data and we can already explore which of these models would best fit a collaboration/data exchange/data sharing between the two collaborations.

Mission Timeline and Data Releases

Summary

Euclid cosmology core program:

٠

- Use 4 cosmological probes, with at least 2 independent, and 3 power spectra
- Perfect complementarity with Planck: probes and data, cosmic periods
- Explore the dark universe: DE, DM (neutrinos), MG, inflation, biasing, baryons
- Explore the transition DM-to-DE-dominated universe period
- Get the percent precision on w and the growth factor γ
- Synergy with New Gen wide field surveys: LSST, WFIRST, e-ROSITA, SKA
- 140,000 strong lenses \rightarrow DM haloes of galaxies, galaxies, groups, clusters
- Euclid =12 billion sources, 35 million redshifts, 1.5 billion shapes/photo-z of galaxies;
 - A mine of images and spectra for the community for years;
 - A reservoir of targets for JWST, E-ELT, TMT, ALMA, VLT
 - A set of astronomical catalogues useful until 2040+
- Big challenges: data processing (100-300 Petabytes), cosmological simulations
- Launch 2020, start 2021: 2500 deg² public in 2023, 7500 deg² in 2025, final 2027