
Traitement de données d’imagerie sur 2
architectures disques différentes au centre de

calcul

Marc Betoule, Nicolas Regnault, Pierre Astier



Introduction

We were able to develop our image processing pipeline on a SMP
machine at CCIN2P3 (Thank you Fabbio)

Processing
Supernovae detection in HSC image subtraction

Pipeline development
About 20% of the complete data processed on a shared memory
computer with large SSD

Large-scale deployment
Same machine but SPS (about 1TB of raw data)

Real case to measure performances of 2 6= architectures



Our pipeline



Representative of 3 different kind of processing
“Detrending”
(Bias subtraction, flatfielding, . . . )

I Trivial operation on image pixels
I Low number of floating op per byte

Image processing
(Segmentation, photometry . . . )

I Non-trivial operation on image pixels
I moderate number of floating op per byte

Catalogs treatment
(Photometric and astrometric alignment)

I Non-trivial operation on catalog data
I highest number of floating op per byte



The two architectures

Test machine (ccwsge1348)

I 2 Xeon E5-2680
I 14 core / socket (+hyperthreading)
I last level cache 35MB

Local discs
I Raid Perc over PCI-E 12Gb/s (3 SAS HD)
I NVM-Express SSD (3To)

Detached discs
I GPFS (sps)
I passband ?



Implementation details

The pipeline is optimized to avoid unecessary IO
I Whenever a task or a set of task goes several time through the

same data
I IO are buffered on a ramdisk
I Only the final result is written to real disks

Measurement principle
I The code itself is not instrumented
I We collect resource usage provided by the kernel
I No penalty/The granularity is rather coarse
I Difficult to get a trace of the actual IO



How is time spend

’Detrending’ ’Image processing’ ’Catalog processing’ other

make_hsc_deadsstacktwilights

rawmedianstack

flatfieldapply_grid

make_catalog

mkcat2

catenate_catalogs.py
photometric_response.py fitastrom2

matchexposure

make_preview

computeconvertimcopy

Most of the time is spend in IO-hungry tasks



Mean walltime per task

deads
stackflat

stackbias
flatfield

applygrid

segmentation
photometry

cat_catalogs
fitphot

fitastrom
astromatch

100

101

102

103

M
ea

n 
wa

llt
im

e 
(s

)

sps
ssd



Is CPU usage efficient ?

deads
stackflat

stackbias
flatfield

applygrid

segmentation
photometry

cat_catalogs
fitphot

fitastrom
astromatch

20

40

60

80

100

CP
U 

us
ag

e 
(%

)

sps
ssd



What about stacking subtraction ?

I I only have measurement of subtraction efficiency on the local
raid of ccwsge1348

I CPU usage average at 87.4%
I Similar to other tasks on the SSD



Conclusion
We measured the throughput of two different architectures in a
real case
Raw data to calibrated catalogs:

I Farm: ∼ 1MB/s/per core
I ccwsge1348: up to 50% faster

Despite this low number CPUs are easily data-starved
I The SSD / local disks efficiently feed all CPUs (but in the

most trivial cases)
I The SPS does not fully feed all CPUs for all tested cases (but

for expensive non optimized tasks)

Improvements
I Instrument the pipeline to trace IO (better understanding)
I Redo the measurements using all 28 cores of the computer to

see how these excellent results scale to full charge.


