Traitement de données d'imagerie sur 2
architectures disques différentes au centre de
calcul

Marc Betoule, Nicolas Regnault, Pierre Astier

Introduction

We were able to develop our image processing pipeline on a SMP
machine at CCIN2P3 (Thank you Fabbio)

Processing

Supernovae detection in HSC image subtraction

Pipeline development

About 20% of the complete data processed on a shared memory
computer with large SSD

Large-scale deployment
Same machine but SPS (about 1TB of raw data)

Real case to measure performances of 2 # architectures

Our pipeline

detrend_db

Representative of 3 different kind of processing
“Detrending”
(Bias subtraction, flatfielding, ...)

» Trivial operation on image pixels
» Low number of floating op per byte

Image processing
(Segmentation, photometry .. .)

» Non-trivial operation on image pixels
» moderate number of floating op per byte

Catalogs treatment
(Photometric and astrometric alignment)

» Non-trivial operation on catalog data
> highest number of floating op per byte

The two architectures

Test machine (ccwsgel348)

» 2 Xeon E5-2680
> 14 core / socket (+hyperthreading)
» last level cache 35MB

Local discs

» Raid Perc over PCI-E 12Gb/s (3 SAS HD)
» NVM-Express SSD (3To)

Detached discs

» GPFS (sps)
» passband ?

Implementation details

The pipeline is optimized to avoid unecessary 10

» Whenever a task or a set of task goes several time through the
same data

» 1O are buffered on a ramdisk

> Only the final result is written to real disks

Measurement principle

The code itself is not instrumented

We collect resource usage provided by the kernel
No penalty/The granularity is rather coarse
Difficult to get a trace of the actual 10

vV VvYyys.y

How is time spend

'Detrending’ 'Image processing’ 'Catalog processing’ other

apply_grid flatfield

rawmedianstack
make_catalog
— T Lot
catenate_catalogs.py A

mkcat2
photometric_response.py fitastrom2

make_preview

matchexposure

Most of the time is spend in 10-hungry tasks

Mean walltime per task

® sps []
3
10 m ssd .
|]
°
—_ []
[

0 2
~ 10% 4
: - .
£ []
©
s
f=
3
= 1 °

10t 4 M

® []
o
[] []
w0{ 8
dead c\d\a{ac b‘axs\at“e\d 9\\19“ @y‘\\ mﬂ\e“\’ a\°%i9“° tagdom oo
?

Is CPU usage efficient 7

n ® sps
100 | n B ssd
] i
[} m w " T
n ° ® e
80 hd o
§) L
g []
3 60
=}
pul
o
Q
40
°
201
ll

(4 \at 25 e\ Q ' '
3ed C\d acyx)\ (\a‘(\e \4‘3‘\ “‘Y‘\\ @V“e\” a\ogmho ‘asuO‘“ mat‘-“
©

What about stacking subtraction 7

> | only have measurement of subtraction efficiency on the local
raid of ccwsgel348

» CPU usage average at 87.4%

» Similar to other tasks on the SSD

Conclusion
We measured the throughput of two different architectures in a
real case
Raw data to calibrated catalogs:

» Farm: ~ 1MB/s/per core
» ccwsgel348: up to 50% faster

Despite this low number CPUs are easily data-starved

» The SSD / local disks efficiently feed all CPUs (but in the
most trivial cases)

» The SPS does not fully feed all CPUs for all tested cases (but
for expensive non optimized tasks)

Improvements

» Instrument the pipeline to trace 10 (better understanding)
> Redo the measurements using all 28 cores of the computer to
see how these excellent results scale to full charge.

