

Qserv integration into science pipelines

Astronomy ESFRI & Research Infrastructure Cluster ASTERICS - 653477

ZAPP

Nicolas Chotard – Fabrice Jammes

LSST France – Paris – Mars 2017

- Test Qserv on real data processed through the LSST stack
 - Different queries (magnitudes, position, etc.)
 - Different configuration of the DB (number of stripes and chunks)
 - Different catalogs (sources, coadds)
 - > Test its capabilities and performances
- Qserv integration into science analysis pipelines
 - Automatic inclusion of stack-processed data into a Qserv instance
 - Direct queries in this database from a science pipeline
 - Construction/test of python tools to query the data
- Test case: Clusters pipeline
 - Galaxy cluster mass estimate
 - LSST stack data used in all steps of the analysis
 - CFHT data already processed
 - 5 filters, several areas of the sky

Data access

Configuration file **Qserv** instance "ra": 340.83, Catalogs "dec": -9.59, "filter": ["u", "g", "r", "i", "z"], "butler": "/yourpath/output/coadd_dir", "radius": "0.4 degree", "patch": ['1,1', '1,3', '1,2', '1,4', '1,5'], Distributor Combiner "ccd": [2, 5, 18] "keys":{'deepCoadd_meas': ["coord*", "id", 'detect_isPrimary'], 'forced_src': ["coord*", "id"] MySQL MySQL MySQL MySQL Node Node Node Node } Partitioned Partitioned Partitioned Partitioned Data Data Data Data Astropy tables in local HDF5 files Python interface < Distant queries Local queries Clusters analysis

Nicolas Chotard

From butler to Qserv

- Access Qserv
 - Qserv & stack installed in Docker containers on NCSA cloud
 - 1 master, 4 workers
 - Easy and fast install (time mostly spent on downloading the containers)
 - Upgrade for latest versions of Qserv and DM stack possible at any time
 - Suitable for test only
 - Easy install, easy update, but on a development platform
 - But suitable for the tests started here
 - Long term use of Qserv in the context of analysis: CC-IN2P3
- From stack output format to Qserv input format
 - No automatic way to go from one to the other
 - Started a python script to automatize this step
 - But a few important things are still to be clarified
 - LSST data schema
 - Expected input format of Qserv

DB schema (so far)

As I understand it for now

- common.cfg database configuration
 - name, number of stripes, input format description, director table name
- description.yaml description of the DB schema
 - File format
 - Table list (the schema)
- one_table.cfg configuration for a given table
 - Primary key
 - Coordinate keys
 - List of all keys
 - Configuration for partition
- one_table.csv the data in SQL format
- one_table.sql main SQL commands to create the table

- Data
 - CFHT data of cluster MACSJ2243.3-095
 - 1 filter & 2 tables
 - g filter
 - deepCoadd_meas & deepCoadd_forced_src tables
- Loading them in Qserv
 - Creation of a new test case in *qserv_testdata* github repo (used for continuous integration)
 - Produce the appropriate files for this small dataset
 - Loaded them in Mysql and Qserv DBs
 - Construct and test basic queries for these DBs
 - identical results! → first test passed!

Next steps

- Short term
 - Progress in understanding how Qserv works
 - Progress in describing the LSST data schema
 - What are the table of interest? Their relationship?
 - Load all data for one cluster
 - All available filter and tables
 - Text more complex queries
 - Compare results from Qserv queries and *Clusters* table filtering
- Longer term
 - Qserv @ CC-IN2P3
 - Automatic ingestion of new cluster data in the CC-IN2P3 Qserv instance
 - Python tools to query these data
 - Implementation in the *Clusters* (or other) science pipeline(s)

- Process a set of data, and produce the catalogs
- Create a Qserv instance that we can use for test
- Load catalogs in Qserv
- Create a set of queries to test the system
- Implement that into the Clusters pipeline
- Extend that to other analysis

Notes and codes can be found there

https://github.com/nicolaschotard/qservi