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What is the physical cause of cosmic acceleration?

2

Dark Energy or modification of General Relativity? 

If Dark Energy, is it Λ (the vacuum) or something else? 
What is the DE equation of state parameter w and (how) does it evolve? 



Type Ia Supernovae are the main indication for the acceleration of the expansion

Dark Energy!
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FIG. 7.ÈBest-Ðt conÐdence regions in the plane for our primary)
M

-)"analysis, Ðt C. The 68%, 90%, 95%, and 99% statistical conÐdence regions
in the plane are shown, after integrating the four-dimensional Ðt)

M
È)"over and a. (See footnote 11 for a link to the table of this two-M

Bdimensional probability distribution.) See Fig. 5e for limits on the small
shifts in these contours due to identiÐed systematic uncertainties. Note that
the spatial curvature of the universeÈopen, Ñat, or closedÈis not determi-
native of the future of the universeÏs expansion, indicated by the near-
horizontal solid line. In cosmologies above this near-horizontal line the
universe will expand forever, while below this line the expansion of the
universe will eventually come to a halt and recollapse. This line is not quite
horizontal, because at very high mass density there is a region where the
mass density can bring the expansion to a halt before the scale of the
universe is big enough that the mass density is dilute with respect to the
cosmological constant energy density. The upper-left shaded region,
labeled ““ no big bang,ÏÏ represents ““ bouncing universe ÏÏ cosmologies with
no big bang in the past (see Carroll et al. 1992). The lower right shaded
region corresponds to a universe that is younger than the oldest heavy
elements (Schramm 1990) for any value of km s~1 Mpc~1.H0 º 50

on that day : the distribution, abundances, excitations, and
velocities of the elements that the photons encounter as they
leave the expanding photosphere all imprint on the spectra.
So far, the high-redshift supernovae that have been studied
have light-curve shapes just like those of low-redshift super-
novae (see Goldhaber et al. 1999), and their spectra show
the same features on the same day of the light curve as their
low-redshift counterparts having comparable light-curve
width. This is true all the way out to the z \ 0.83 limit of the
current sample (Perlmutter et al. 1998b). We take this as a
strong indication that the physical parameters of the super-
nova explosions are not evolving signiÐcantly over this time
span.

Theoretically, evolutionary e†ects might be caused by
changes in progenitor populations or environments. For

example, lower metallicity and more massive SN Ia-
progenitor binary systems should be found in younger
stellar populations. For the redshifts that we are consider-
ing, z \ 0.85, the change in average progenitor masses may
be small (Ruiz-Lapuente, Canal, & Burkert 1997 ; Ruiz-
Lapuente 1998). However, such progenitor mass di†erences
or di†erences in typical progenitor metallicity are expected
to lead to di†erences in the Ðnal C/O ratio in the exploding
white dwarf and hence a†ect the energetics of the explosion.
The primary concern here would be if this changed the
zero-point of the width-luminosity relation. We can look for
such changes by comparing light curve rise times between
low- and high-redshift supernova samples, since this is a
sensitive indicator of explosion energetics. Preliminary indi-
cations suggest that no signiÐcant rise-time change is seen,
with an upper limit of day for our sample (see forth-[1
coming high-redshift studies of Goldhaber et al. 1999 and
Nugent et al. 1998 and low-redshift bounds from Vacca &
Leibundgut 1996, Leibundgut et al. 1996b, and Marvin &
Perlmutter 1989). This tight a constraint on rise-time
change would theoretically limit the zero-point change to
less than D0.1 mag (see Nugent et al. 1995 ; Ho" Ñich,
Wheeler, & Thielemann 1998).

A change in typical C/O ratio can also a†ect the ignition
density of the explosion and the propagation characteristics
of the burning front. Such changes would be expected to
appear as di†erences in light-curve timescales before and
after maximum & Khokhlov 1996). Preliminary(Ho" Ñich
indications of consistency between such low- and high-
redshift light-curve timescales suggest that this is probably
not a major e†ect for our supernova samples (Goldhaber et
al. 1999).

Changes in typical progenitor metallicity should also
directly cause some di†erences in SN Ia spectral features

et al. 1998). Spectral di†erences big enough to(Ho" Ñich
a†ect the B- and V -band light curves (see, e.g., the extreme
mixing models presented in Fig. 9 of et al. 1998)Ho" Ñich
should be clearly visible for the best signal-to-noise ratio
spectra we have obtained for our distant supernovae, yet
they are not seen (Filippenko et al. 1998 ; Hook et al. 1998).
The consistency of slopes in the light-curve width-
luminosity relation for the low- and high-redshift super-
novae can also constrain the possibility of a strong
metallicity e†ect of the type that et al. (1998)Ho" Ñich
describes.

An additional concern might be that even small changes
in spectral features with metallicity could in turn a†ect the
calculations of K-corrections and reddening corrections.
This e†ect, too, is very small, less than 0.01 mag, for photo-
metric observations of SNe Ia conducted in the rest-frame B
or V bands (see Figs. 8 and 10 of et al. 1998), as isHo" Ñich
the case for almost all of our supernovae. (Only two of our
supernovae have primary observations that are sensitive to
the rest-frame U band, where the magnitude can change by
D0.05 mag, and these are the two supernovae with the
lowest weights in our Ðts, as shown by the error bars of Fig.
2. In general the I-band observations, which are mostly
sensitive to the rest-frame B band, provide the primary light
curve at redshifts above 0.7.)

The above analyses constrain only the e†ect of
progenitor-environment evolution on SN Ia intrinsic lumi-
nosity ; however, the extinction of the supernova light could
also be a†ected, if the amount or character of the dust
evolves, e.g., with host galaxy age. In ° 4.1, we limited the
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What could be Dark Energy?

Pure cosmological constant?, vacuum energy?, quintessence?, 
Modification of gravity?, ...
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Fig. 16. Confidence contours at 68% and 95% (including systematic
uncertainty) for the ⌦m and w cosmological parameters for the flat
w-⇤CDM model. The black dashed line corresponds to the cosmologi-
cal constant hypothesis.

SN Ia measurements of ⇤CDM parameters (see Sect. 6.6). This
concordance is the main result of the present paper. We note
that this conclusion still holds if we use the WMAP CMB tem-
perature measurement in place of the Planck measurement (see
Table 14).

For the w-CDM model, in combination with Planck, we
measure w = �1.018 ± 0.057. This represents a substan-
tial improvement in uncertainty (30%) over the combination
Planck+WP+C11 (w = �1.093 ± 0.078 ). The ⇠1� (stat+sys)
change in w is caused primarily by the recalibration of the SNLS
sample as discussed in detail in Sect. 6. The improvement in
errors is due to the inclusion of the full SDSS-II spectroscopic
sample and to the reduction in systematic errors due to the joint
recalibration of the SDSS-II and SNLS surveys. As an illustra-
tion of the relative influence of those two changes, using the
C11 calibration uncertainties would increase the uncertainty of
w to 6.5%.

Interestingly, the CMB+SNLS+SDSS combination delivers
a competitive measurement of w with an accuracy of 6.9%, de-
spite the absence of the low-z SNe Ia. This measurement is ex-
pected to be robust since the dominant systematic uncertainty
(photometric calibration error) was the subject of careful review
in the joint analysis of the SDSS-II and SNLS surveys. This
subsample is also likely to be less sensitive to errors in the en-
vironmental dependence of the SN Ia luminosity as the distri-
bution of SNLS and SDSS host properties are closer than are
the distribution of SNLS and low-z surveys. As an illustration,
fitting the w-CDM model to the CMB+SNLS+SDSS data, and
imposing �M = 0, provides w = �0.996 ± 0.069, a small shift
(�w < 0.003) with respect to the value reported for the same
sample and �M = �0.070 ± 0.023 in Table 14.

Combined with CMB and BAO, SNe Ia yields a 5.4% mea-
surement of w which represents significantly tighter constraint
than what can be obtained from CMB and BAO alone (11.0%).
The combination of CMB, BAO and SNe Ia constrains models
with a varying equation of state w = �0.957 ± 0.124 and wa =
�0.336 ± 0.552 (see Table 15), yielding a figure of merit as de-
fined by the dark energy task force (DETF; Albrecht et al. 2006)
of 31.3. This is a factor 2 improvement in the FoM with respect
to the C11+DR7+WMAP7 combination considered in Sullivan
et al. (2011). This gain is attributable, for roughly equal parts, to
our improvement in SN measurements and to the improvement
in CMB and BAO external constraints.
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Fig. 17. Confidence contours at 68% and 95% (including systematic
uncertainty) for the w and wa cosmological parameters for the flat
w-⇤CDM model.

Finally, the combination of CMB, BAO and SN Ia data con-
strains the value of the Hubble parameter H0 at better than
2% even in generic dark energy models. Our result, H0 =
68.50 ± 1.27 km s�1 Mpc�1, is slightly lower (1.9�) than the di-
rect measurement of H0 = 73.8 ± 2.4 km s�1 Mpc�1 given in
Riess et al. (2011). A recalibration of the absolute distance of
NGC 4258, one of the three distance anchors involved in this
direct measurement, is given in Humphreys et al. (2013). They
report a slightly smaller value determined from this anchor H0 =
72.0 ± 3.0 km s�1 Mpc�1. In addition, Efstathiou (2014) sug-
gests that possible biases were introduced in the Cepheid period-
luminosity relation by subluminous low metallicity Cepheids
and shows some sensitivity of the results to outlier rejections.
He finds, using a revised outlier rejection algorithm, H0 =
70.6 ± 3.3 km s�1 Mpc�1, using only the recalibrated NGC 4258
distance anchor and H0 = 72.5 ± 2.5 km s�1 Mpc�1 combining
the three anchors. In conclusion, the recalibrated direct mea-
surement of H0 improves agreement (1.4�) with our indirect
determination.

8. Summary and perspectives
We have reported improved cosmological constraints from the
Hubble diagram of type Ia supernovae, based on a joint analysis
of the SNLS and SDSS-II SN Ia samples. These results are based
on combining the SN Ia compilation assembled in Conley et al.
(2011) by SNLS with the full SDSS-II three-year SN Ia sample
(Sako et al. 2014). We have explicitly chosen not to include all
newly available SN Ia data, and instead focus on the control of
systematic uncertainties.

The results obtained here benefit from joint SNLS/SDSS
analyses addressing dominant systematic issues. The e↵ects of
the systematic studies on the cosmological parameters were un-
known until the systematic studies were completed; in this sense,
our analysis is a “blind” analysis. The largest systematic error
has been reduced by the notable improvement in the accuracy of
the SNLS and SDSS photometric calibration that resulted from
a joint analysis of the calibration data of both surveys (Betoule
et al. 2013). The other major improvement was the result of
detailed investigations of systematic uncertainties and biases
associated with the model of the type-Ia supernovae spectral evo-
lution (Kessler et al. 2013; Mosher et al. 2014). In particular,
Mosher et al. (2014) performs a thorough analysis of the SALT2
light-curve model (Guy et al. 2007) used in the present anal-
ysis. Thanks to these analyses we are able to derive distances
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Best constraint on DE currently brought by SNIa. 
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Dark Energy has no direct effect on the CMB anisotropies at recombination. 
Its effect are mainly geometrical but are degenerated with other parameters



consistent with both flat models and models with!" ¼ 0. If we
allow for a large SZ signal, then the WMAP data alone favor a
model with !K ¼ "0:04; however, this model is not consistent
with other astronomical data.

The combination of WMAP data and other astronomical data
places strong constraints on the geometry of the universe (see
Table 12):

1. The angular scale of the baryon acoustic oscillation (BAO)
peak in the SDSS LRG sample (Eisenstein et al. 2005) measures
the distance to z ¼ 0:35. The combination of the BAO and CMB
observations strongly constrain the geometry of the universe.
The position of the peak in the galaxy spectrum in the SDSS and
2dFGRS surveys provide local measurements of the angular di-
ameter distance.

2. Figure 21 shows that the Hubble constant varies along this
line, so that the HST Key Project constraint on the Hubble con-
stant leads to a strong bound on the curvature.

3. SNe observations measure the luminosity distance to z # 1.
The combination of SNe data and CMB data also favors a nearly
flat universe.

The strong limits quoted in Table 12 rely on our assumption
that the dark energy has the equation of state, w ¼ "1. In x 7.1,
we discussed relaxing this assumption and assuming that w is a
constant. Figure 15 shows that by using the combination of CMB,
large-scale structure, and supernova data, we can simultaneously
constrain both !k and w. This figure confirms that our minimal
model, !k ¼ 0, and w ¼ "1 is consistent with the current data.

8. ARE CMB FLUCTUATIONS GAUSSIAN?

The detection of primordial non-Gaussian fluctuations in the
CMBwould have a profound impact on our understanding of the
physics of the early universe. While the simplest inflationary
models predict only mild non-Gaussianities that should be un-
detectable in theWMAP data, there are a wide range of plausible
mechanisms for generating significant and detectable non-Gaussian
fluctuations (see Bartolo et al. 2004a for a recent review). There
are a number of plausible extensions of the standard inflationary
model (Lyth et al. 2003; Dvali et al. 2004; Bartolo et al. 2004b)
or alternative early universe models (Arkani-Hamed et al. 2004;
Alishahiha et al. 2004) that predict skewed primordial fluctuations
at a level detectable byWMAP.

There are other cosmological mechanisms for generating non-
Gaussianity. The smallness of the CMB quadrupole seen by both
WMAP and COBE has stimulated interest in the possibility that
the universe may be finite (Luminet et al. 2003; Aurich et al.
2005). If the universe were finite and had a size comparable to
horizon size today, then the CMB fluctuations would be non-
Gaussian (Cornish et al. 1996; Levin et al. 1997; Bond et al. 2000;
Inoue et al. 2000).While analysis of the first-year data did not find
any evidence for a finite universe (Phillips &Kogut 2006; Cornish

et al. 2004), these searches were nonexhaustive so the data rule
out most but not all small universes.
Using an analysis of Minkowski functionals, Komatsu et al.

(2003) did not find evidence for statistically isotropic but non-
Gaussian fluctuations in the first-year sky maps. The Colley &
Gott (2003) reanalysis of the maps confirmed the conclusion that
there was no evidence of non-Gaussianity. Eriksen et al. (2004b)
measured the Minkowski functionals and the length of the skel-
eton for the first-year maps on 11 different smoothing scales.
While they found no evidence for deviations from non-Gaussianity
using theMinkowski area,Minkowski length, and the length of the
skeleton, they did find an intriguingly high!2 for the genus statistic.
For a broad class of theories, we can parameterize the effects

of nonlinear physics by a simple coupling term that couples a
Gaussian random field,  , to the Bardeen curvature potential,#:

#(x) ¼  (x)þ fNL 
2(x): ð16Þ

Simple inflationary models based on a single slowly rolling sca-
lar field with the canonical kinetic Lagrangian predict j fNLj<1
(Maldacena 2003; Bartolo et al. 2004a); however, curvaton infla-
tion (Lyth et al. 2003), ghost inflation (Arkani-Hamed et al. 2004),
and Dirac-Born-Infeld (DBI) inflation models (Alishahiha et al.
2004) can generate much larger non-Gaussianity, j fNLj# 100.
Using the WMAP first-year data, Komatsu et al. (2003) con-
strained "54< fNL< 134 at the 95% confidence level. Several
different groups (Gaztañaga &Wagg 2003; Mukherjee &Wang
2003; Cabella et al. 2004; Phillips & Kogut 2006; Creminelli
et al. 2006) have applied alternative techniques to measure fNL
from the maps and have similar limits on fNL. Babich et al. (2004)
note that these limits are sensitive to the physics that generated the
non-Gaussianity as different mechanisms predict different forms
for the bispectrum.
Since the release of theWMAP data, several groups have claimed

detections of significant non-Gaussianities (Tegmark et al. 2003;

Fig. 21.—Range of nonflat cosmological models consistent with theWMAP
data only. The models in the figure are all power-law CDMmodels with dark en-
ergy and dark matter, but without the constraint that !m þ !" ¼ 1 (model M10
in Table 3). The different colors correspond to values of the Hubble constant as
indicated in the figure.Whilemodelswith!" ¼ 0 are not disfavored by theWMAP
data only ($!2

eA ¼ 0; model M4 in Table 3), the combination ofWMAP data plus
measurements of the Hubble constant strongly constrain the geometry and com-
position of the universe within the framework of these models. The dashed line
shows an approximation to the degeneracy track: !K ¼ "0:3040þ 0:4067!".
Note that for these open universe models, we assume a flat prior on!".

TABLE 12

Joint Data Set Constraints on Geometry and Vacuum Energy

Data Set !K !"

WMAP + h = 0.72 ' 0.08 ....... "0.014 ' 0.017 0.716 ' 0.055

WMAP + SDSS......................... "0:0053þ0:0068
"0:0060 0.707 ' 0.041

WMAP + 2dFGRS .................... "0:0093þ0:0098
"0:0092 0:745þ0:025

"0:024

WMAP + SDSS LRG ............... "0.012 ' 0.010 0.728 ' 0.021

WMAP + SNLS ........................ "0.011 ' 0.012 0.738 ' 0.030

WMAP + SNGold ..................... "0.023 ' 0.014 0.700 ' 0.031
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at a level detectable byWMAP.

There are other cosmological mechanisms for generating non-
Gaussianity. The smallness of the CMB quadrupole seen by both
WMAP and COBE has stimulated interest in the possibility that
the universe may be finite (Luminet et al. 2003; Aurich et al.
2005). If the universe were finite and had a size comparable to
horizon size today, then the CMB fluctuations would be non-
Gaussian (Cornish et al. 1996; Levin et al. 1997; Bond et al. 2000;
Inoue et al. 2000).While analysis of the first-year data did not find
any evidence for a finite universe (Phillips &Kogut 2006; Cornish

et al. 2004), these searches were nonexhaustive so the data rule
out most but not all small universes.
Using an analysis of Minkowski functionals, Komatsu et al.

(2003) did not find evidence for statistically isotropic but non-
Gaussian fluctuations in the first-year sky maps. The Colley &
Gott (2003) reanalysis of the maps confirmed the conclusion that
there was no evidence of non-Gaussianity. Eriksen et al. (2004b)
measured the Minkowski functionals and the length of the skel-
eton for the first-year maps on 11 different smoothing scales.
While they found no evidence for deviations from non-Gaussianity
using theMinkowski area,Minkowski length, and the length of the
skeleton, they did find an intriguingly high!2 for the genus statistic.
For a broad class of theories, we can parameterize the effects

of nonlinear physics by a simple coupling term that couples a
Gaussian random field,  , to the Bardeen curvature potential,#:

#(x) ¼  (x)þ fNL 
2(x): ð16Þ

Simple inflationary models based on a single slowly rolling sca-
lar field with the canonical kinetic Lagrangian predict j fNLj<1
(Maldacena 2003; Bartolo et al. 2004a); however, curvaton infla-
tion (Lyth et al. 2003), ghost inflation (Arkani-Hamed et al. 2004),
and Dirac-Born-Infeld (DBI) inflation models (Alishahiha et al.
2004) can generate much larger non-Gaussianity, j fNLj# 100.
Using the WMAP first-year data, Komatsu et al. (2003) con-
strained "54< fNL< 134 at the 95% confidence level. Several
different groups (Gaztañaga &Wagg 2003; Mukherjee &Wang
2003; Cabella et al. 2004; Phillips & Kogut 2006; Creminelli
et al. 2006) have applied alternative techniques to measure fNL
from the maps and have similar limits on fNL. Babich et al. (2004)
note that these limits are sensitive to the physics that generated the
non-Gaussianity as different mechanisms predict different forms
for the bispectrum.
Since the release of theWMAP data, several groups have claimed

detections of significant non-Gaussianities (Tegmark et al. 2003;

Fig. 21.—Range of nonflat cosmological models consistent with theWMAP
data only. The models in the figure are all power-law CDMmodels with dark en-
ergy and dark matter, but without the constraint that !m þ !" ¼ 1 (model M10
in Table 3). The different colors correspond to values of the Hubble constant as
indicated in the figure.Whilemodelswith!" ¼ 0 are not disfavored by theWMAP
data only ($!2

eA ¼ 0; model M4 in Table 3), the combination ofWMAP data plus
measurements of the Hubble constant strongly constrain the geometry and com-
position of the universe within the framework of these models. The dashed line
shows an approximation to the degeneracy track: !K ¼ "0:3040þ 0:4067!".
Note that for these open universe models, we assume a flat prior on!".

TABLE 12

Joint Data Set Constraints on Geometry and Vacuum Energy

Data Set !K !"

WMAP + h = 0.72 ' 0.08 ....... "0.014 ' 0.017 0.716 ' 0.055

WMAP + SDSS......................... "0:0053þ0:0068
"0:0060 0.707 ' 0.041

WMAP + 2dFGRS .................... "0:0093þ0:0098
"0:0092 0:745þ0:025

"0:024

WMAP + SDSS LRG ............... "0.012 ' 0.010 0.728 ' 0.021

WMAP + SNLS ........................ "0.011 ' 0.012 0.738 ' 0.030

WMAP + SNGold ..................... "0.023 ' 0.014 0.700 ' 0.031
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consistent with both flat models and models with!" ¼ 0. If we
allow for a large SZ signal, then the WMAP data alone favor a
model with !K ¼ "0:04; however, this model is not consistent
with other astronomical data.

The combination of WMAP data and other astronomical data
places strong constraints on the geometry of the universe (see
Table 12):

1. The angular scale of the baryon acoustic oscillation (BAO)
peak in the SDSS LRG sample (Eisenstein et al. 2005) measures
the distance to z ¼ 0:35. The combination of the BAO and CMB
observations strongly constrain the geometry of the universe.
The position of the peak in the galaxy spectrum in the SDSS and
2dFGRS surveys provide local measurements of the angular di-
ameter distance.

2. Figure 21 shows that the Hubble constant varies along this
line, so that the HST Key Project constraint on the Hubble con-
stant leads to a strong bound on the curvature.

3. SNe observations measure the luminosity distance to z # 1.
The combination of SNe data and CMB data also favors a nearly
flat universe.

The strong limits quoted in Table 12 rely on our assumption
that the dark energy has the equation of state, w ¼ "1. In x 7.1,
we discussed relaxing this assumption and assuming that w is a
constant. Figure 15 shows that by using the combination of CMB,
large-scale structure, and supernova data, we can simultaneously
constrain both !k and w. This figure confirms that our minimal
model, !k ¼ 0, and w ¼ "1 is consistent with the current data.

8. ARE CMB FLUCTUATIONS GAUSSIAN?

The detection of primordial non-Gaussian fluctuations in the
CMBwould have a profound impact on our understanding of the
physics of the early universe. While the simplest inflationary
models predict only mild non-Gaussianities that should be un-
detectable in theWMAP data, there are a wide range of plausible
mechanisms for generating significant and detectable non-Gaussian
fluctuations (see Bartolo et al. 2004a for a recent review). There
are a number of plausible extensions of the standard inflationary
model (Lyth et al. 2003; Dvali et al. 2004; Bartolo et al. 2004b)
or alternative early universe models (Arkani-Hamed et al. 2004;
Alishahiha et al. 2004) that predict skewed primordial fluctuations
at a level detectable byWMAP.

There are other cosmological mechanisms for generating non-
Gaussianity. The smallness of the CMB quadrupole seen by both
WMAP and COBE has stimulated interest in the possibility that
the universe may be finite (Luminet et al. 2003; Aurich et al.
2005). If the universe were finite and had a size comparable to
horizon size today, then the CMB fluctuations would be non-
Gaussian (Cornish et al. 1996; Levin et al. 1997; Bond et al. 2000;
Inoue et al. 2000).While analysis of the first-year data did not find
any evidence for a finite universe (Phillips &Kogut 2006; Cornish

et al. 2004), these searches were nonexhaustive so the data rule
out most but not all small universes.
Using an analysis of Minkowski functionals, Komatsu et al.

(2003) did not find evidence for statistically isotropic but non-
Gaussian fluctuations in the first-year sky maps. The Colley &
Gott (2003) reanalysis of the maps confirmed the conclusion that
there was no evidence of non-Gaussianity. Eriksen et al. (2004b)
measured the Minkowski functionals and the length of the skel-
eton for the first-year maps on 11 different smoothing scales.
While they found no evidence for deviations from non-Gaussianity
using theMinkowski area,Minkowski length, and the length of the
skeleton, they did find an intriguingly high!2 for the genus statistic.
For a broad class of theories, we can parameterize the effects

of nonlinear physics by a simple coupling term that couples a
Gaussian random field,  , to the Bardeen curvature potential,#:

#(x) ¼  (x)þ fNL 
2(x): ð16Þ

Simple inflationary models based on a single slowly rolling sca-
lar field with the canonical kinetic Lagrangian predict j fNLj<1
(Maldacena 2003; Bartolo et al. 2004a); however, curvaton infla-
tion (Lyth et al. 2003), ghost inflation (Arkani-Hamed et al. 2004),
and Dirac-Born-Infeld (DBI) inflation models (Alishahiha et al.
2004) can generate much larger non-Gaussianity, j fNLj# 100.
Using the WMAP first-year data, Komatsu et al. (2003) con-
strained "54< fNL< 134 at the 95% confidence level. Several
different groups (Gaztañaga &Wagg 2003; Mukherjee &Wang
2003; Cabella et al. 2004; Phillips & Kogut 2006; Creminelli
et al. 2006) have applied alternative techniques to measure fNL
from the maps and have similar limits on fNL. Babich et al. (2004)
note that these limits are sensitive to the physics that generated the
non-Gaussianity as different mechanisms predict different forms
for the bispectrum.
Since the release of theWMAP data, several groups have claimed

detections of significant non-Gaussianities (Tegmark et al. 2003;

Fig. 21.—Range of nonflat cosmological models consistent with theWMAP
data only. The models in the figure are all power-law CDMmodels with dark en-
ergy and dark matter, but without the constraint that !m þ !" ¼ 1 (model M10
in Table 3). The different colors correspond to values of the Hubble constant as
indicated in the figure.Whilemodelswith!" ¼ 0 are not disfavored by theWMAP
data only ($!2

eA ¼ 0; model M4 in Table 3), the combination ofWMAP data plus
measurements of the Hubble constant strongly constrain the geometry and com-
position of the universe within the framework of these models. The dashed line
shows an approximation to the degeneracy track: !K ¼ "0:3040þ 0:4067!".
Note that for these open universe models, we assume a flat prior on!".

TABLE 12

Joint Data Set Constraints on Geometry and Vacuum Energy

Data Set !K !"

WMAP + h = 0.72 ' 0.08 ....... "0.014 ' 0.017 0.716 ' 0.055

WMAP + SDSS......................... "0:0053þ0:0068
"0:0060 0.707 ' 0.041

WMAP + 2dFGRS .................... "0:0093þ0:0098
"0:0092 0:745þ0:025

"0:024

WMAP + SDSS LRG ............... "0.012 ' 0.010 0.728 ' 0.021

WMAP + SNLS ........................ "0.011 ' 0.012 0.738 ' 0.030

WMAP + SNGold ..................... "0.023 ' 0.014 0.700 ' 0.031
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consistent with both flat models and models with!" ¼ 0. If we
allow for a large SZ signal, then the WMAP data alone favor a
model with !K ¼ "0:04; however, this model is not consistent
with other astronomical data.

The combination of WMAP data and other astronomical data
places strong constraints on the geometry of the universe (see
Table 12):

1. The angular scale of the baryon acoustic oscillation (BAO)
peak in the SDSS LRG sample (Eisenstein et al. 2005) measures
the distance to z ¼ 0:35. The combination of the BAO and CMB
observations strongly constrain the geometry of the universe.
The position of the peak in the galaxy spectrum in the SDSS and
2dFGRS surveys provide local measurements of the angular di-
ameter distance.

2. Figure 21 shows that the Hubble constant varies along this
line, so that the HST Key Project constraint on the Hubble con-
stant leads to a strong bound on the curvature.

3. SNe observations measure the luminosity distance to z # 1.
The combination of SNe data and CMB data also favors a nearly
flat universe.

The strong limits quoted in Table 12 rely on our assumption
that the dark energy has the equation of state, w ¼ "1. In x 7.1,
we discussed relaxing this assumption and assuming that w is a
constant. Figure 15 shows that by using the combination of CMB,
large-scale structure, and supernova data, we can simultaneously
constrain both !k and w. This figure confirms that our minimal
model, !k ¼ 0, and w ¼ "1 is consistent with the current data.

8. ARE CMB FLUCTUATIONS GAUSSIAN?

The detection of primordial non-Gaussian fluctuations in the
CMBwould have a profound impact on our understanding of the
physics of the early universe. While the simplest inflationary
models predict only mild non-Gaussianities that should be un-
detectable in theWMAP data, there are a wide range of plausible
mechanisms for generating significant and detectable non-Gaussian
fluctuations (see Bartolo et al. 2004a for a recent review). There
are a number of plausible extensions of the standard inflationary
model (Lyth et al. 2003; Dvali et al. 2004; Bartolo et al. 2004b)
or alternative early universe models (Arkani-Hamed et al. 2004;
Alishahiha et al. 2004) that predict skewed primordial fluctuations
at a level detectable byWMAP.

There are other cosmological mechanisms for generating non-
Gaussianity. The smallness of the CMB quadrupole seen by both
WMAP and COBE has stimulated interest in the possibility that
the universe may be finite (Luminet et al. 2003; Aurich et al.
2005). If the universe were finite and had a size comparable to
horizon size today, then the CMB fluctuations would be non-
Gaussian (Cornish et al. 1996; Levin et al. 1997; Bond et al. 2000;
Inoue et al. 2000).While analysis of the first-year data did not find
any evidence for a finite universe (Phillips &Kogut 2006; Cornish

et al. 2004), these searches were nonexhaustive so the data rule
out most but not all small universes.
Using an analysis of Minkowski functionals, Komatsu et al.

(2003) did not find evidence for statistically isotropic but non-
Gaussian fluctuations in the first-year sky maps. The Colley &
Gott (2003) reanalysis of the maps confirmed the conclusion that
there was no evidence of non-Gaussianity. Eriksen et al. (2004b)
measured the Minkowski functionals and the length of the skel-
eton for the first-year maps on 11 different smoothing scales.
While they found no evidence for deviations from non-Gaussianity
using theMinkowski area,Minkowski length, and the length of the
skeleton, they did find an intriguingly high!2 for the genus statistic.
For a broad class of theories, we can parameterize the effects

of nonlinear physics by a simple coupling term that couples a
Gaussian random field,  , to the Bardeen curvature potential,#:

#(x) ¼  (x)þ fNL 
2(x): ð16Þ

Simple inflationary models based on a single slowly rolling sca-
lar field with the canonical kinetic Lagrangian predict j fNLj<1
(Maldacena 2003; Bartolo et al. 2004a); however, curvaton infla-
tion (Lyth et al. 2003), ghost inflation (Arkani-Hamed et al. 2004),
and Dirac-Born-Infeld (DBI) inflation models (Alishahiha et al.
2004) can generate much larger non-Gaussianity, j fNLj# 100.
Using the WMAP first-year data, Komatsu et al. (2003) con-
strained "54< fNL< 134 at the 95% confidence level. Several
different groups (Gaztañaga &Wagg 2003; Mukherjee &Wang
2003; Cabella et al. 2004; Phillips & Kogut 2006; Creminelli
et al. 2006) have applied alternative techniques to measure fNL
from the maps and have similar limits on fNL. Babich et al. (2004)
note that these limits are sensitive to the physics that generated the
non-Gaussianity as different mechanisms predict different forms
for the bispectrum.
Since the release of theWMAP data, several groups have claimed

detections of significant non-Gaussianities (Tegmark et al. 2003;

Fig. 21.—Range of nonflat cosmological models consistent with theWMAP
data only. The models in the figure are all power-law CDMmodels with dark en-
ergy and dark matter, but without the constraint that !m þ !" ¼ 1 (model M10
in Table 3). The different colors correspond to values of the Hubble constant as
indicated in the figure.Whilemodelswith!" ¼ 0 are not disfavored by theWMAP
data only ($!2

eA ¼ 0; model M4 in Table 3), the combination ofWMAP data plus
measurements of the Hubble constant strongly constrain the geometry and com-
position of the universe within the framework of these models. The dashed line
shows an approximation to the degeneracy track: !K ¼ "0:3040þ 0:4067!".
Note that for these open universe models, we assume a flat prior on!".

TABLE 12

Joint Data Set Constraints on Geometry and Vacuum Energy

Data Set !K !"

WMAP + h = 0.72 ' 0.08 ....... "0.014 ' 0.017 0.716 ' 0.055

WMAP + SDSS......................... "0:0053þ0:0068
"0:0060 0.707 ' 0.041

WMAP + 2dFGRS .................... "0:0093þ0:0098
"0:0092 0:745þ0:025

"0:024

WMAP + SDSS LRG ............... "0.012 ' 0.010 0.728 ' 0.021

WMAP + SNLS ........................ "0.011 ' 0.012 0.738 ' 0.030

WMAP + SNGold ..................... "0.023 ' 0.014 0.700 ' 0.031
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consistent with both flat models and models with!" ¼ 0. If we
allow for a large SZ signal, then the WMAP data alone favor a
model with !K ¼ "0:04; however, this model is not consistent
with other astronomical data.

The combination of WMAP data and other astronomical data
places strong constraints on the geometry of the universe (see
Table 12):

1. The angular scale of the baryon acoustic oscillation (BAO)
peak in the SDSS LRG sample (Eisenstein et al. 2005) measures
the distance to z ¼ 0:35. The combination of the BAO and CMB
observations strongly constrain the geometry of the universe.
The position of the peak in the galaxy spectrum in the SDSS and
2dFGRS surveys provide local measurements of the angular di-
ameter distance.

2. Figure 21 shows that the Hubble constant varies along this
line, so that the HST Key Project constraint on the Hubble con-
stant leads to a strong bound on the curvature.

3. SNe observations measure the luminosity distance to z # 1.
The combination of SNe data and CMB data also favors a nearly
flat universe.

The strong limits quoted in Table 12 rely on our assumption
that the dark energy has the equation of state, w ¼ "1. In x 7.1,
we discussed relaxing this assumption and assuming that w is a
constant. Figure 15 shows that by using the combination of CMB,
large-scale structure, and supernova data, we can simultaneously
constrain both !k and w. This figure confirms that our minimal
model, !k ¼ 0, and w ¼ "1 is consistent with the current data.

8. ARE CMB FLUCTUATIONS GAUSSIAN?

The detection of primordial non-Gaussian fluctuations in the
CMBwould have a profound impact on our understanding of the
physics of the early universe. While the simplest inflationary
models predict only mild non-Gaussianities that should be un-
detectable in theWMAP data, there are a wide range of plausible
mechanisms for generating significant and detectable non-Gaussian
fluctuations (see Bartolo et al. 2004a for a recent review). There
are a number of plausible extensions of the standard inflationary
model (Lyth et al. 2003; Dvali et al. 2004; Bartolo et al. 2004b)
or alternative early universe models (Arkani-Hamed et al. 2004;
Alishahiha et al. 2004) that predict skewed primordial fluctuations
at a level detectable byWMAP.

There are other cosmological mechanisms for generating non-
Gaussianity. The smallness of the CMB quadrupole seen by both
WMAP and COBE has stimulated interest in the possibility that
the universe may be finite (Luminet et al. 2003; Aurich et al.
2005). If the universe were finite and had a size comparable to
horizon size today, then the CMB fluctuations would be non-
Gaussian (Cornish et al. 1996; Levin et al. 1997; Bond et al. 2000;
Inoue et al. 2000).While analysis of the first-year data did not find
any evidence for a finite universe (Phillips &Kogut 2006; Cornish

et al. 2004), these searches were nonexhaustive so the data rule
out most but not all small universes.
Using an analysis of Minkowski functionals, Komatsu et al.

(2003) did not find evidence for statistically isotropic but non-
Gaussian fluctuations in the first-year sky maps. The Colley &
Gott (2003) reanalysis of the maps confirmed the conclusion that
there was no evidence of non-Gaussianity. Eriksen et al. (2004b)
measured the Minkowski functionals and the length of the skel-
eton for the first-year maps on 11 different smoothing scales.
While they found no evidence for deviations from non-Gaussianity
using theMinkowski area,Minkowski length, and the length of the
skeleton, they did find an intriguingly high!2 for the genus statistic.
For a broad class of theories, we can parameterize the effects

of nonlinear physics by a simple coupling term that couples a
Gaussian random field,  , to the Bardeen curvature potential,#:

#(x) ¼  (x)þ fNL 
2(x): ð16Þ

Simple inflationary models based on a single slowly rolling sca-
lar field with the canonical kinetic Lagrangian predict j fNLj<1
(Maldacena 2003; Bartolo et al. 2004a); however, curvaton infla-
tion (Lyth et al. 2003), ghost inflation (Arkani-Hamed et al. 2004),
and Dirac-Born-Infeld (DBI) inflation models (Alishahiha et al.
2004) can generate much larger non-Gaussianity, j fNLj# 100.
Using the WMAP first-year data, Komatsu et al. (2003) con-
strained "54< fNL< 134 at the 95% confidence level. Several
different groups (Gaztañaga &Wagg 2003; Mukherjee &Wang
2003; Cabella et al. 2004; Phillips & Kogut 2006; Creminelli
et al. 2006) have applied alternative techniques to measure fNL
from the maps and have similar limits on fNL. Babich et al. (2004)
note that these limits are sensitive to the physics that generated the
non-Gaussianity as different mechanisms predict different forms
for the bispectrum.
Since the release of theWMAP data, several groups have claimed

detections of significant non-Gaussianities (Tegmark et al. 2003;

Fig. 21.—Range of nonflat cosmological models consistent with theWMAP
data only. The models in the figure are all power-law CDMmodels with dark en-
ergy and dark matter, but without the constraint that !m þ !" ¼ 1 (model M10
in Table 3). The different colors correspond to values of the Hubble constant as
indicated in the figure.Whilemodelswith!" ¼ 0 are not disfavored by theWMAP
data only ($!2

eA ¼ 0; model M4 in Table 3), the combination ofWMAP data plus
measurements of the Hubble constant strongly constrain the geometry and com-
position of the universe within the framework of these models. The dashed line
shows an approximation to the degeneracy track: !K ¼ "0:3040þ 0:4067!".
Note that for these open universe models, we assume a flat prior on!".

TABLE 12

Joint Data Set Constraints on Geometry and Vacuum Energy

Data Set !K !"

WMAP + h = 0.72 ' 0.08 ....... "0.014 ' 0.017 0.716 ' 0.055

WMAP + SDSS......................... "0:0053þ0:0068
"0:0060 0.707 ' 0.041

WMAP + 2dFGRS .................... "0:0093þ0:0098
"0:0092 0:745þ0:025

"0:024

WMAP + SDSS LRG ............... "0.012 ' 0.010 0.728 ' 0.021

WMAP + SNLS ........................ "0.011 ' 0.012 0.738 ' 0.030

WMAP + SNGold ..................... "0.023 ' 0.014 0.700 ' 0.031
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Planck Collaboration: Cosmological parameters

Fig. 25. Power spectra drawn from the Planck TT+lowP posterior for the correlated matter isocurvature model, colour-coded by the
value of the isocurvature amplitude parameter ↵, compared to the Planck data points. The left-hand figure shows how the negatively-
correlated modes lower the large-scale temperature spectrum, slightly improving the fit at low multipoles. Including polarization, the
negatively-correlated modes are ruled out, as illustrated at the first acoustic peak in EE on the right-hand plot. Data points at ` < 30
are not shown for polarization, as they are included with both the default temperature and polarization likelihood combinations.
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Fig. 26. Constraints in the ⌦m–⌦⇤ plane from the Planck
TT+lowP data (samples; colour-coded by the value of H0) and
Planck TT,TE,EE+lowP (solid contours). The geometric degen-
eracy between ⌦m and ⌦⇤ is partially broken because of the ef-
fect of lensing on the temperature and polarization power spec-
tra. These limits are improved significantly by the inclusion
of the Planck lensing reconstruction (blue contours) and BAO
(solid red contours). The red contours tightly constrain the ge-
ometry of our Universe to be nearly flat.

more speculatively, there has been interest recently in “multi-
verse” models, in which topologically-open “pocket universes”
form by bubble nucleation (e.g., Coleman & De Luccia 1980;
Gott 1982) between di↵erent vacua of a “string landscape” (e.g.,
Freivogel et al. 2006; Bousso et al. 2013). Clearly, the detection
of a significant deviation from ⌦K = 0 would have profound
consequences for inflation theory and fundamental physics.

The Planck power spectra give the constraint

⌦K = �0.052+0.049
�0.055 (95%,Planck TT+lowP). (47)

The “geometric degeneracy” (Bond et al. 1997;
Zaldarriaga et al. 1997) allows for the small-scale linear
CMB spectrum to remain almost unchanged if changes in ⌦K
are compensated by changes in H0 to obtain the same angular
diameter distance to last scattering. The Planck constraint is
therefore mainly determined by the (wide) priors on H0, and the
e↵ect of lensing smoothing on the power spectra. As discussed
in Sect. 5.1, the Planck temperature power spectra show a slight
preference for more lensing than expected in the base ⇤CDM
cosmology, and since positive curvature increases the amplitude
of the lensing signal, this preference also drives ⌦K towards
negative values.

Taken at face value, Eq. (47) represents a detection of posi-
tive curvature at just over 2�, largely via the impact of lensing
on the power spectra. One might wonder whether this is mainly
a parameter volume e↵ect, but that is not the case, since the best
fit closed model has ��2 ⇡ 6 relative to base ⇤CDM, and the
fit is improved over almost all the posterior volume, with the
mean chi-squared improving by h��2i ⇡ 5 (very similar to the
phenomenological case of ⇤CDM+AL). Addition of the Planck
polarization spectra shifts ⌦K towards zero by �⌦K ⇡ 0.015:

⌦K = �0.040+0.038
�0.041 (95%,Planck TT,TE,EE+lowP), (48)

but ⌦K remains negative at just over 2�.
However the lensing reconstruction from Planck measures

the lensing amplitude directly and, as discussed in Sect. 5.1, this
does not prefer more lensing than base ⇤CDM. The combined
constraint shows impressive consistency with a flat universe:

⌦K = �0.005+0.016
�0.017 (95%,Planck TT+lowP+lensing). (49)

The dramatic improvement in the error bar is another illustration
of the power of the lensing reconstruction from Planck.

The constraint can be sharpened further by adding external
data that break the main geometric degeneracy. Combining the
Planck data with BAO, we find

⌦K = 0.000 ± 0.005 (95%, Planck TT+lowP+lensing+BAO).
(50)
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Fig. 25. Power spectra drawn from the Planck TT+lowP posterior for the correlated matter isocurvature model, colour-coded by the
value of the isocurvature amplitude parameter ↵, compared to the Planck data points. The left-hand figure shows how the negatively-
correlated modes lower the large-scale temperature spectrum, slightly improving the fit at low multipoles. Including polarization, the
negatively-correlated modes are ruled out, as illustrated at the first acoustic peak in EE on the right-hand plot. Data points at ` < 30
are not shown for polarization, as they are included with both the default temperature and polarization likelihood combinations.
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Fig. 26. Constraints in the ⌦m–⌦⇤ plane from the Planck
TT+lowP data (samples; colour-coded by the value of H0) and
Planck TT,TE,EE+lowP (solid contours). The geometric degen-
eracy between ⌦m and ⌦⇤ is partially broken because of the ef-
fect of lensing on the temperature and polarization power spec-
tra. These limits are improved significantly by the inclusion
of the Planck lensing reconstruction (blue contours) and BAO
(solid red contours). The red contours tightly constrain the ge-
ometry of our Universe to be nearly flat.

more speculatively, there has been interest recently in “multi-
verse” models, in which topologically-open “pocket universes”
form by bubble nucleation (e.g., Coleman & De Luccia 1980;
Gott 1982) between di↵erent vacua of a “string landscape” (e.g.,
Freivogel et al. 2006; Bousso et al. 2013). Clearly, the detection
of a significant deviation from ⌦K = 0 would have profound
consequences for inflation theory and fundamental physics.

The Planck power spectra give the constraint

⌦K = �0.052+0.049
�0.055 (95%,Planck TT+lowP). (47)

The “geometric degeneracy” (Bond et al. 1997;
Zaldarriaga et al. 1997) allows for the small-scale linear
CMB spectrum to remain almost unchanged if changes in ⌦K
are compensated by changes in H0 to obtain the same angular
diameter distance to last scattering. The Planck constraint is
therefore mainly determined by the (wide) priors on H0, and the
e↵ect of lensing smoothing on the power spectra. As discussed
in Sect. 5.1, the Planck temperature power spectra show a slight
preference for more lensing than expected in the base ⇤CDM
cosmology, and since positive curvature increases the amplitude
of the lensing signal, this preference also drives ⌦K towards
negative values.

Taken at face value, Eq. (47) represents a detection of posi-
tive curvature at just over 2�, largely via the impact of lensing
on the power spectra. One might wonder whether this is mainly
a parameter volume e↵ect, but that is not the case, since the best
fit closed model has ��2 ⇡ 6 relative to base ⇤CDM, and the
fit is improved over almost all the posterior volume, with the
mean chi-squared improving by h��2i ⇡ 5 (very similar to the
phenomenological case of ⇤CDM+AL). Addition of the Planck
polarization spectra shifts ⌦K towards zero by �⌦K ⇡ 0.015:

⌦K = �0.040+0.038
�0.041 (95%,Planck TT,TE,EE+lowP), (48)

but ⌦K remains negative at just over 2�.
However the lensing reconstruction from Planck measures

the lensing amplitude directly and, as discussed in Sect. 5.1, this
does not prefer more lensing than base ⇤CDM. The combined
constraint shows impressive consistency with a flat universe:

⌦K = �0.005+0.016
�0.017 (95%,Planck TT+lowP+lensing). (49)

The dramatic improvement in the error bar is another illustration
of the power of the lensing reconstruction from Planck.

The constraint can be sharpened further by adding external
data that break the main geometric degeneracy. Combining the
Planck data with BAO, we find

⌦K = 0.000 ± 0.005 (95%, Planck TT+lowP+lensing+BAO).
(50)
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consistent with both flat models and models with!" ¼ 0. If we
allow for a large SZ signal, then the WMAP data alone favor a
model with !K ¼ "0:04; however, this model is not consistent
with other astronomical data.

The combination of WMAP data and other astronomical data
places strong constraints on the geometry of the universe (see
Table 12):

1. The angular scale of the baryon acoustic oscillation (BAO)
peak in the SDSS LRG sample (Eisenstein et al. 2005) measures
the distance to z ¼ 0:35. The combination of the BAO and CMB
observations strongly constrain the geometry of the universe.
The position of the peak in the galaxy spectrum in the SDSS and
2dFGRS surveys provide local measurements of the angular di-
ameter distance.

2. Figure 21 shows that the Hubble constant varies along this
line, so that the HST Key Project constraint on the Hubble con-
stant leads to a strong bound on the curvature.

3. SNe observations measure the luminosity distance to z # 1.
The combination of SNe data and CMB data also favors a nearly
flat universe.

The strong limits quoted in Table 12 rely on our assumption
that the dark energy has the equation of state, w ¼ "1. In x 7.1,
we discussed relaxing this assumption and assuming that w is a
constant. Figure 15 shows that by using the combination of CMB,
large-scale structure, and supernova data, we can simultaneously
constrain both !k and w. This figure confirms that our minimal
model, !k ¼ 0, and w ¼ "1 is consistent with the current data.

8. ARE CMB FLUCTUATIONS GAUSSIAN?

The detection of primordial non-Gaussian fluctuations in the
CMBwould have a profound impact on our understanding of the
physics of the early universe. While the simplest inflationary
models predict only mild non-Gaussianities that should be un-
detectable in theWMAP data, there are a wide range of plausible
mechanisms for generating significant and detectable non-Gaussian
fluctuations (see Bartolo et al. 2004a for a recent review). There
are a number of plausible extensions of the standard inflationary
model (Lyth et al. 2003; Dvali et al. 2004; Bartolo et al. 2004b)
or alternative early universe models (Arkani-Hamed et al. 2004;
Alishahiha et al. 2004) that predict skewed primordial fluctuations
at a level detectable byWMAP.

There are other cosmological mechanisms for generating non-
Gaussianity. The smallness of the CMB quadrupole seen by both
WMAP and COBE has stimulated interest in the possibility that
the universe may be finite (Luminet et al. 2003; Aurich et al.
2005). If the universe were finite and had a size comparable to
horizon size today, then the CMB fluctuations would be non-
Gaussian (Cornish et al. 1996; Levin et al. 1997; Bond et al. 2000;
Inoue et al. 2000).While analysis of the first-year data did not find
any evidence for a finite universe (Phillips &Kogut 2006; Cornish

et al. 2004), these searches were nonexhaustive so the data rule
out most but not all small universes.
Using an analysis of Minkowski functionals, Komatsu et al.

(2003) did not find evidence for statistically isotropic but non-
Gaussian fluctuations in the first-year sky maps. The Colley &
Gott (2003) reanalysis of the maps confirmed the conclusion that
there was no evidence of non-Gaussianity. Eriksen et al. (2004b)
measured the Minkowski functionals and the length of the skel-
eton for the first-year maps on 11 different smoothing scales.
While they found no evidence for deviations from non-Gaussianity
using theMinkowski area,Minkowski length, and the length of the
skeleton, they did find an intriguingly high!2 for the genus statistic.
For a broad class of theories, we can parameterize the effects

of nonlinear physics by a simple coupling term that couples a
Gaussian random field,  , to the Bardeen curvature potential,#:

#(x) ¼  (x)þ fNL 
2(x): ð16Þ

Simple inflationary models based on a single slowly rolling sca-
lar field with the canonical kinetic Lagrangian predict j fNLj<1
(Maldacena 2003; Bartolo et al. 2004a); however, curvaton infla-
tion (Lyth et al. 2003), ghost inflation (Arkani-Hamed et al. 2004),
and Dirac-Born-Infeld (DBI) inflation models (Alishahiha et al.
2004) can generate much larger non-Gaussianity, j fNLj# 100.
Using the WMAP first-year data, Komatsu et al. (2003) con-
strained "54< fNL< 134 at the 95% confidence level. Several
different groups (Gaztañaga &Wagg 2003; Mukherjee &Wang
2003; Cabella et al. 2004; Phillips & Kogut 2006; Creminelli
et al. 2006) have applied alternative techniques to measure fNL
from the maps and have similar limits on fNL. Babich et al. (2004)
note that these limits are sensitive to the physics that generated the
non-Gaussianity as different mechanisms predict different forms
for the bispectrum.
Since the release of theWMAP data, several groups have claimed

detections of significant non-Gaussianities (Tegmark et al. 2003;

Fig. 21.—Range of nonflat cosmological models consistent with theWMAP
data only. The models in the figure are all power-law CDMmodels with dark en-
ergy and dark matter, but without the constraint that !m þ !" ¼ 1 (model M10
in Table 3). The different colors correspond to values of the Hubble constant as
indicated in the figure.Whilemodelswith!" ¼ 0 are not disfavored by theWMAP
data only ($!2

eA ¼ 0; model M4 in Table 3), the combination ofWMAP data plus
measurements of the Hubble constant strongly constrain the geometry and com-
position of the universe within the framework of these models. The dashed line
shows an approximation to the degeneracy track: !K ¼ "0:3040þ 0:4067!".
Note that for these open universe models, we assume a flat prior on!".

TABLE 12

Joint Data Set Constraints on Geometry and Vacuum Energy

Data Set !K !"

WMAP + h = 0.72 ' 0.08 ....... "0.014 ' 0.017 0.716 ' 0.055

WMAP + SDSS......................... "0:0053þ0:0068
"0:0060 0.707 ' 0.041

WMAP + 2dFGRS .................... "0:0093þ0:0098
"0:0092 0:745þ0:025

"0:024

WMAP + SDSS LRG ............... "0.012 ' 0.010 0.728 ' 0.021

WMAP + SNLS ........................ "0.011 ' 0.012 0.738 ' 0.030

WMAP + SNGold ..................... "0.023 ' 0.014 0.700 ' 0.031
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Using only T+P power 
spectra

Adding CMB lensing 
reconstruction

Parameters degeneracies

Information from the large-scale structure can break those degeneracies!
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Large-scale structure will provide constraints on cosmology from 

Geometry

Parameters degeneracies

- The scale of the sound horizon at recombination is imprinted 
in the matter distribution: Baryonic Acoustic Oscillations 
- Distances

Structure growth

- Dark Energy, hence acceleration of the expansion will 
impede structure formation

So... Let’s observe those galaxies!
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The DES Collaboration  
~300 scientists from 28 institutions from around the world

facebook.com/darkenergysurvey 
http://darkenergysurvey.org

7

        USA: Fermilab, UIUC/NCSA, University of 
Chicago, LBNL, NOAO, University of Michigan, 
University of Pennsylvania, Argonne National 
Laboratory, Ohio State University, Santa Cruz/
SLAC/Stanford Consortium, Texas A&M University, 
CTIO (in Chile

        Spain Consortium: 
CIEMAT (Madrid), ICE, IFAE 
(Barcelona)

        UK Consortium: UCL, Cambridge, 
Edinburgh, Portsmouth, Sussex, Nottingham

       Germany: Munich

        Brazil Consortium

        Switzerland: ETH Zurich
4m Blanco 
telescope at 
CTIO

          Participation from  
a few individuals...
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The Dark Energy Survey
The Dark Energy Survey

Optical/IR imaging survey with the Blanco 4m telescope at Cerro Tololo Inter-American 
Observatory(CTIO) in Chile

5000 sq-deg (1/8 of the sky) in grizY bands (2500 sq-deg overlapping with SPT survey) + 
30 sq-deg time-domain griz (SNe)

New 570 Mpx camera with 3 sq-deg FoV, DECam

Up to 24th magnitude (z~1.5)

Monday, September 8, 2014

New camera mounted on the 4m Blanco telecope at  
Cerro-Tololo Inter-American Observatory in Chile  
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What is DES ?

DES will provide 
 10,000 of these 0.5 sq. deg. tiles

DES is: 
• 1’’ resolution picture of the sky (pixel size 0.26’’) 
• 5000 sq. deg. (1/8th of the sky)  
• Five photometric bands (grizY) 
• 24th magnitude (galaxies,10σ)

0.73 deg
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What is DES ?

Supplemented by: 
• 2500 sq. deg. South Pole Telescope 
• Vista Hemisphere Survey (JHK) SPT 

region 

Galactic
 plane 

DES is: 
• 1’’ resolution picture of the sky (pixel size 0.26’’) 
• 5000 sq. deg. (1/8th of the sky)  
• Five photometric bands (grizY) 
• 24th magnitude (galaxies,10σ)
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What is DES ?

Supplemented by: 
• 2500 sq. deg. South Pole Telescope 
• Vista Hemisphere Survey (JHK)

DECam: 
• 570 Mpixels, 62 CCD 
• 3 sq. deg. field of view

DECam detectors

• 570 Mpixels
• Thick, fully-depleted CCDs

– Very high Q.E in the red
– Very little fringing in i and z
– Care should be taken with strong lighting 

(super-saturation)
– Significant distortion of the pixel grid due 

to lateral electric field variations
• Static:  resistivity  variations  (“tree-rings”)
• Dynamic:  “brighter-fatter”  effect

– Large cosmic ray trails

Journées EUCLID France- Lyon 2014
Ohio State University

DES is: 
• 1’’ resolution picture of the sky (pixel size 0.26’’) 
• 5000 sq. deg. (1/8th of the sky)  
• Five photometric bands (grizY) 
• 24th magnitude (galaxies,10σ)
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Galaxy Clusters (distance, structure growth) 
ten of thousands of clusters up to z~1 
synergies with SPT, VHS

4 probes of Dark Energy

Method σ ("DE) σ (w0) σ (wa) z p σ (wp) [σ (wa)σ (wp)]−1
BAO 0.010 0.097 0.408 0.29 0.034 72.8
Clusters 0.006 0.083 0.287 0.38 0.023 152.4

Weak Lensing 0.007 0.077 0.252 0.40 0.025 155.8
Supernovae 0.008 0.094 0.401 0.29 0.023 107.5

Combined DES 0.004 0.061 0.217 0.37 0.018 263.7
DETF Stage II Combined 0.012 0.112 0.498 0.27 0.035 57.9

Table 1: 68% CL marginalized forecast errorbars for the 4 DES probes on the dark energy density and
equation of state parameters, in each case including Planck priors and the DETF Stage II constraints. The
last column is the DETF FoM; z p is the pivot redshift. Stage II constraints used here agree with those in the
DETF report to better than 10%.

equation of state function w(a). The four techniques in DES employ different combinations of geometric
and structure-growth based probes, so that comparisons of the results will enable us to constrain departures
from GR.

2. Galaxy Clusters
Massive structures observed in the Universe today bear the marks of three influences: the spectrum of

initial density perturbations, the physics of gravitational collapse, and the dynamically evolving underlying
metric. Galaxy clusters, the largest virialized objects in the mass distribution, are a particularly tractable tar-
get for observations of structure and its evolution over cosmic time. For any set of cosmological parameters,
the growth of cluster-sized dark matter haloes as a function of redshift and mass can be precisely predicted
from N-body simulations. Comparing these predictions to observations of the real universe provides con-
straints on cosmology (Allen et al. 2003; Bahcall et al. 2003; Gladders et al. 2007). Large cluster surveys
that extend to intermediate or high redshift can in principle provide very precise measurements of the cosmic
expansion history, thereby revealing the nature of dark energy (e.g. Wang & Steinhardt 1998; Haiman et al.
2001).

A basic example of one such comparison is the redshift distribution of clusters in a survey that finds
systems of mass M with efficiency f (M, z) at redshift z:

d2N (z)
dzd"

=
c

H(z)
D2A(1+ z)2

∫ ∞

0
f (M, z)

dn(z)
dM

dM , (1)

where dn(z)/dM is the space density of clusters of mass M in comoving coordinates, H(z) is the Hubble
parameter as a function of redshift, and DA(z) is the angular diameter distance. In an ideal case, the detection
probability f (M, z) is approximately a step function with a z−dependent mass threshold Mmin(z).

The cosmological sensitivity of cluster counts arises from two factors:

• Geometry: The volume per unit solid angle and redshift depends sensitively on cosmological param-
eters.

• Abundance Evolution: The evolution of the number density of clusters, dn(z)/dM , depends on the
growth rate of density perturbations, which is determined by the expansion rate H(z) and thereby the
cosmological parameters.

The cluster counting method depends critically on understanding the mapping between confidently pre-
dicted properties such as halo mass and the observed properties of clusters, such as galaxy content, X-ray
emission, Sunyaev-Zeldovich flux decrement, or weak lensing shear. In fact, cosmological sensitivity also
arises here, because the observed flux of a cluster at a particular redshift maps into a luminosity and mass

4
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Galaxy Clusters (distance, structure growth) 
ten of thousands of clusters up to z~1 
synergies with SPT, VHS

4 probes of Dark Energy

Weak lensing (distance, structure growth) 
shape and measurements of 200 
millions galaxies

shear, galaxy-shear, and galaxy angular power spectra can be expressed as projections of the corresponding
three-dimensional power spectra (e.g., Hu & Jain 2004),

Cxaxb
l =

∫

dz
H(z)
D2A

Wa(z)Wb(z)Psasb(k = l/DA; z) , (3)

where ℓ denotes the angular multipole, a, b ∈ {1, 2}, x1 and x2 denote the two-dimensional angular galaxy
(g) and shear (γ ) fields, and s1 and s2 respectively denote the three-dimensional galaxy (g) and mass (m)
density fluctuation fields at redshift z. The weight functionsW1 andW2 encode information about the galaxy
redshift distribution and about the lensing efficiency. The dark energy density and equation of state affect
these angular power spectra through geometric factors, i.e., the Hubble parameter, the angular diameter dis-
tance, and the weight factors, and through the growth of structure, i.e., the redshift- and scale-dependence
of the three-dimensional power spectra Pgg, Pmm , and Pgm . It is also possible to extract a purely geometric
probe of dark energy from the redshift dependence of galaxy-shear correlations (Jain & Taylor 2003; Bern-
stein & Jain 2003; Zhang et al. 2005; Hu & Jain 2004). For a given choice of cosmological parameters,
the shape of the mass power spectrum Pmm is well constrained on large scales by CMB anisotropy data; on
scales below ∼ 10 Mpc it must be computed using N -body simulations (§7.). The power spectra involving
galaxies, Pgg and Pgm , require in addition a model for how luminous galaxies are distributed with respect to
the dark matter, i.e., for the galaxy bias, which we model either with the halo occupation distribution (e.g.,
Yoo et al. 2006) or with some other phenomenological bias model with parameters that are marginalized
over.

For the measurement of the shear power spectrum, the statistical uncertainty is (Kaiser 1992)

#Cγ γ
ℓ =

√

2
(2ℓ + 1) fsky

(

Cγ γ
ℓ +

σ 2(γi )

neff

)

(4)

where fsky is the fraction of sky area covered by the survey (0.12 for DES), σ 2(γi ) is the variance in a single
component of the (two-component) shear, and neff is the effective number density per steradian of galaxies
with well-measured shapes. The first term in brackets, which dominates on large scales, comes from cosmic
variance, and the second, shot-noise term results from both the variance in galaxy ellipticities (“shape noise”)
and from shape-measurement errors due to noise in the images. This expression assumes the shear field is
Gaussian; for the forecasts in §1., we only use information at ℓ < 1000, where this approximation should be
reasonable. At even smaller angular scales (larger ℓ), the measurement uncertainties in the power spectrum
can be smaller than the theoretical uncertainties due to baryonic effects that are unmodelled in N -body
simulations that contain only dark matter (White 2004; Zhan & Knox 2004; Lin et al. 2006); we will
address this issue through the simulation program described in §7..

In addition to shear-shear and galaxy-shear two-point functions, we can also measure the shear three-
point function or bispectrum as well as various galaxy-shear three-point correlations. Three-point corre-
lations are induced by nonlinear gravitational evolution, and their dependence on cosmological parameters
differs from that of the power spectrum. Inclusion of three-point information therefore improves dark energy
constraints and, more importantly, makes them more robust to systematic errors, which generally affect the
bispectrum differently than the power spectrum (Takada & Jain 2004; Huterer et al 2005); we quantify this
statement below in at the end of §3.2.

3.1 Weak Lensing in DES
The DES will survey an area 30 times larger than any on-going weak lensing survey and measure shapes

for approximately 300 million galaxies. While this greatly reduces statistical uncertainties, we must ensure
that systematic errors in shear measurement, photo-z determination, and cosmological theory do not come to
dominate the dark energy error budget (see §3.2). Because DES will measure shapes for moderately bright

11
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Galaxy Clusters (distance, structure growth) 
ten of thousands of clusters up to z~1 
synergies with SPT, VHS

4 probes of Dark Energy

Weak lensing (distance, structure growth) 
shape and measurements of 200 
millions galaxies

Baryonic acoustic Oscillations (distance) 
300 millions galaxies to z=1 and beyond

Figure 7: Top panel shows the angular baryonic acoustic oscillations for a redshift slice of thickness !z =

0.1 at z = 1, calculated by dividing the non-linear angular power spectrum Cl for w = −1 (black) and
w = −0.8 (blue) by a linear theory model with no BAO. For this plot, we used halofit (Smith et al. 2003)
to model the non-linear clustering. The red curve shows the effect on the BAO signal in the w = −1 case
when using photo-z’s with standard deviation of σz = 0.05 per galaxy. Bottom panel shows statistical errors
for DES in multipole bins of !l = 30 (dashed lines), compared to the percentage differences of the blue
and red curves of the top panel from the fiducial (black) model.

to sample variance at z = 1.4, so this approach could extend the redshift range, but with steadily decreasing
precision.

The simplest approach to BAO in a multi-band imaging survey is to divide the sample into photo-z
bins and measure the angular power spectrum in each. It is possible that a “global” method that does not
divide the sample into photo-z bins would be better; however, since the typical photo-z error corresponds to
a distance not much smaller than the BAO scale, we expect most of the information in DES to come from
transverse clustering, with little additional information from the galaxy distribution along the line of sight.
The angular power spectrum within a redshift shell can be written as

Ci
gal(l) =

∫ ∞

0
k2dk

2
π
f 2i (l, k)Pgal(k), (5)

where fi (l, k) is the Bessel transform of the radial selection function for redshift shell i (Tegmark et al.
2002, Dodelson et al. 2002).

As an example, the predicted angular power spectrum in a redshift slice of width !z = 0.1 centered
at z = 1 is shown for two dark energy models in the upper panel of Fig. 7; to more clearly display the
BAO signature, a linear perturbation theory power spectrum with w = −1 and no baryons has been divided
out. A change in the dark energy equation of state induces a shift in the positions of the BAO peaks and
troughs. The bottom panel shows the binned statistical errors (dashed curves) compared to the percentage
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Galaxy Clusters (distance, structure growth) 
ten of thousands of clusters up to z~1 
synergies with SPT, VHS

Weak lensing (distance, structure growth) 
shape and measurements of 200 
millions galaxies

Baryonic acoustic Oscillations (distance) 
300 millions galaxies to z=1 and beyond

Type Ia supernovae (distance) 
30 sq. deg. SN fields 
3500 SNIa to z~1
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can produce the best results. Such combinations have been explored to some extent (e.g.,
SNe+CMB+LSS [3]) but DES is the first experiment to combine all four probes from the same
data set, being able to achieve percent-level uncertainty on w0 and, in addition, measure wa. By
combining the four probes we can measure w0 at 5% and wa at 30% uncertainty level, as shown
in Fig. 1, improving the constraints on the dark energy equation-of-state w(a) by a factor of 3-5
with respect to current experiments. 4

FIG. 2: LEFT: Forecasted 1� constraints on dark energy parameters from the DES probes, including only statistical errors
and assuming �CDM as the true model. From the largest to the smallest ellipse, the probes considered are baryon acoustic
oscillations (black), supernovae (green), cluster counts (magenta), and weak lensing (blue). Each constraint is combined with
a prior expected from Planck CMB measurements; additionally, the supernovae constraint includes an 8% prior on H0.

RIGHT: Same as LEFT but now the true model is assumed to be our toy modified gravity model with � = 0.68.
Shown are the forecasted constraints when we incorrectly attempt to fit a GR+dark energy model to the data. The center of
the weak lensing ellipse has moved to (w0, wa)=(-1.1, 0.47) while the cluster counts ellipse has moved to (-1.19, 0.90). The
probes are seemingly consistent, but we discuss the problems with this interpretation in Section IIIB.

Our first task then is to determine the expected values of the measurements for the four probes in the assumed modi-
fied gravity model and compare those to the predictions in standard GR+Dark energy. We consider a set of 8 standard
cosmological parameters with fiducial values {w0, wa, ⌦DE, ⌦k, h, ⌦b, ns, �8} = {�1, 0, 0.73, 0, 0.72, 0.046, 1, 0.8} where
⌦k is the curvature density, h is the Hubble constant in units of 100 km/s/Mpc, ⌦b is the baryon density, ns is the
slope of the primordial spectrum, and �8 normalizes the matter power spectrum at z = 0. For each probe, we then
compute the constraints including projected priors from the Planck satellite [see e.g. 16]. We include only statistical
errors in the projections for each experiment, therefore our parameter constraints will be optimistic but su�cient for
our goal, which is to compare methods of testing GR.

For two probes, supernovae and BAO, the answer is simple: these probes are sensitive only to background geometry
which is assumed identical in our MG and GR models, so the predictions for the distance moduli (from supernovae)
and correlation function peak (due to BAO) are identical to standard GR and �P = 0. The projected contours
therefore are centered on the point in parameter space corresponding to the fiducial values. The only work that needs
to be done is to determine the Fisher matrix which delineates the allowed region. This has been done before; here we
simply reproduce these results, shown projected onto the (w0, wa) plane in Figure 2. The CMB is mostly insensitive to
our choice of MG since � only determines structure growth in the late Universe. The CMB power spectrum is in fact
a↵ected by gravity modifications via the late Integrated Sachs-Wolfe e↵ect [17, 18] and gravitational lensing, but we
ignore these e↵ects, which should only reduce our sensitivity to MG. Our Planck prior is therefore unchanged between
the GR and MG cases. Only the weak lensing and cluster predictions are significantly changed when comparing GR
to our toy MG model. Details on these calculations and Fisher matrix calculations for all probes are provided in the
appendix.

DES expected measurements

w0

wa

BAO
SNe
Clusters
WL
Combined

LSS

Figure 1. Forecast for 1� constraints on
dark energy parameters from the DES probes,
including only statistical errors and assuming
w0 = �1, wa = 0 as the true model [23,
24]. Each individual constraint uses Planck
priors. The supernovae constraint includes
an 8% prior on H0. The constraints from
the combination of the four probes (solid red
region) correspond to uncertainties in w0 and
wa of 5% and 30% respectively.

Our data set also allows us to distinguish between GR and certain modified gravity theories,
by measuring the parameter �. This can be achieved using a multi-dimensional consistency
test of the four dark energy probes [24]. An inconsistency would result in contours slightly
miscentered with respect to each other. Such analysis, performed on DES data, can distinguish
between � = 0.55 (GR case) and � = 0.68 (approximately the value for the Dvali-Gabadadze-
Porrati (DGP) braneworld model [25]) at a 99.1% level [24].

4. Conclusions

DES is a photometric survey designed to shed light on the dark energy problem through four
complementary methods (LSS, SNe, Clusters and Weak Lensing). Commissioning of the DES
imaging instrument, DECam, is imminent. The survey is scheduled to start in the second
semester of 2012, take data over 5 years and make available to the astronomical community a
data set of unprecedented depth for its area (5000 deg2 up to redshift ' 1.5). This rich data
set has the potential for a variety of studies, from galaxy evolution to cosmology. The prospects
for dark energy science are highlighted in this paper with focus on the key analyses of the four
cosmological probes to improve current measurements of the equation-of-state parameter w(a)
by a factor of 3-5. DES also has the potential to distinguish between GR and modified gravity
theories by measuring, for instance, deviations of the parameter � from the GR value � = 0.55
at high significance level.
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can produce the best results. Such combinations have been explored to some extent (e.g.,
SNe+CMB+LSS [3]) but DES is the first experiment to combine all four probes from the same
data set, being able to achieve percent-level uncertainty on w0 and, in addition, measure wa. By
combining the four probes we can measure w0 at 5% and wa at 30% uncertainty level, as shown
in Fig. 1, improving the constraints on the dark energy equation-of-state w(a) by a factor of 3-5
with respect to current experiments. 4

FIG. 2: LEFT: Forecasted 1� constraints on dark energy parameters from the DES probes, including only statistical errors
and assuming �CDM as the true model. From the largest to the smallest ellipse, the probes considered are baryon acoustic
oscillations (black), supernovae (green), cluster counts (magenta), and weak lensing (blue). Each constraint is combined with
a prior expected from Planck CMB measurements; additionally, the supernovae constraint includes an 8% prior on H0.

RIGHT: Same as LEFT but now the true model is assumed to be our toy modified gravity model with � = 0.68.
Shown are the forecasted constraints when we incorrectly attempt to fit a GR+dark energy model to the data. The center of
the weak lensing ellipse has moved to (w0, wa)=(-1.1, 0.47) while the cluster counts ellipse has moved to (-1.19, 0.90). The
probes are seemingly consistent, but we discuss the problems with this interpretation in Section IIIB.

Our first task then is to determine the expected values of the measurements for the four probes in the assumed modi-
fied gravity model and compare those to the predictions in standard GR+Dark energy. We consider a set of 8 standard
cosmological parameters with fiducial values {w0, wa, ⌦DE, ⌦k, h, ⌦b, ns, �8} = {�1, 0, 0.73, 0, 0.72, 0.046, 1, 0.8} where
⌦k is the curvature density, h is the Hubble constant in units of 100 km/s/Mpc, ⌦b is the baryon density, ns is the
slope of the primordial spectrum, and �8 normalizes the matter power spectrum at z = 0. For each probe, we then
compute the constraints including projected priors from the Planck satellite [see e.g. 16]. We include only statistical
errors in the projections for each experiment, therefore our parameter constraints will be optimistic but su�cient for
our goal, which is to compare methods of testing GR.

For two probes, supernovae and BAO, the answer is simple: these probes are sensitive only to background geometry
which is assumed identical in our MG and GR models, so the predictions for the distance moduli (from supernovae)
and correlation function peak (due to BAO) are identical to standard GR and �P = 0. The projected contours
therefore are centered on the point in parameter space corresponding to the fiducial values. The only work that needs
to be done is to determine the Fisher matrix which delineates the allowed region. This has been done before; here we
simply reproduce these results, shown projected onto the (w0, wa) plane in Figure 2. The CMB is mostly insensitive to
our choice of MG since � only determines structure growth in the late Universe. The CMB power spectrum is in fact
a↵ected by gravity modifications via the late Integrated Sachs-Wolfe e↵ect [17, 18] and gravitational lensing, but we
ignore these e↵ects, which should only reduce our sensitivity to MG. Our Planck prior is therefore unchanged between
the GR and MG cases. Only the weak lensing and cluster predictions are significantly changed when comparing GR
to our toy MG model. Details on these calculations and Fisher matrix calculations for all probes are provided in the
appendix.
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Figure 1. Forecast for 1� constraints on
dark energy parameters from the DES probes,
including only statistical errors and assuming
w0 = �1, wa = 0 as the true model [23,
24]. Each individual constraint uses Planck
priors. The supernovae constraint includes
an 8% prior on H0. The constraints from
the combination of the four probes (solid red
region) correspond to uncertainties in w0 and
wa of 5% and 30% respectively.

Our data set also allows us to distinguish between GR and certain modified gravity theories,
by measuring the parameter �. This can be achieved using a multi-dimensional consistency
test of the four dark energy probes [24]. An inconsistency would result in contours slightly
miscentered with respect to each other. Such analysis, performed on DES data, can distinguish
between � = 0.55 (GR case) and � = 0.68 (approximately the value for the Dvali-Gabadadze-
Porrati (DGP) braneworld model [25]) at a 99.1% level [24].

4. Conclusions

DES is a photometric survey designed to shed light on the dark energy problem through four
complementary methods (LSS, SNe, Clusters and Weak Lensing). Commissioning of the DES
imaging instrument, DECam, is imminent. The survey is scheduled to start in the second
semester of 2012, take data over 5 years and make available to the astronomical community a
data set of unprecedented depth for its area (5000 deg2 up to redshift ' 1.5). This rich data
set has the potential for a variety of studies, from galaxy evolution to cosmology. The prospects
for dark energy science are highlighted in this paper with focus on the key analyses of the four
cosmological probes to improve current measurements of the equation-of-state parameter w(a)
by a factor of 3-5. DES also has the potential to distinguish between GR and modified gravity
theories by measuring, for instance, deviations of the parameter � from the GR value � = 0.55
at high significance level.

Acknowledgments

Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S.
National Science Foundation, the Ministry of Science and Education of Spain, the Science and
Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for

3

4 probes of Dark Energy

19



XII International Conference on Topics in Astroparticle and Underground Physics, 2011 – TAUP 2011
Journal of Physics: Conference Series (Preprint)

can produce the best results. Such combinations have been explored to some extent (e.g.,
SNe+CMB+LSS [3]) but DES is the first experiment to combine all four probes from the same
data set, being able to achieve percent-level uncertainty on w0 and, in addition, measure wa. By
combining the four probes we can measure w0 at 5% and wa at 30% uncertainty level, as shown
in Fig. 1, improving the constraints on the dark energy equation-of-state w(a) by a factor of 3-5
with respect to current experiments. 4

FIG. 2: LEFT: Forecasted 1� constraints on dark energy parameters from the DES probes, including only statistical errors
and assuming �CDM as the true model. From the largest to the smallest ellipse, the probes considered are baryon acoustic
oscillations (black), supernovae (green), cluster counts (magenta), and weak lensing (blue). Each constraint is combined with
a prior expected from Planck CMB measurements; additionally, the supernovae constraint includes an 8% prior on H0.

RIGHT: Same as LEFT but now the true model is assumed to be our toy modified gravity model with � = 0.68.
Shown are the forecasted constraints when we incorrectly attempt to fit a GR+dark energy model to the data. The center of
the weak lensing ellipse has moved to (w0, wa)=(-1.1, 0.47) while the cluster counts ellipse has moved to (-1.19, 0.90). The
probes are seemingly consistent, but we discuss the problems with this interpretation in Section IIIB.

Our first task then is to determine the expected values of the measurements for the four probes in the assumed modi-
fied gravity model and compare those to the predictions in standard GR+Dark energy. We consider a set of 8 standard
cosmological parameters with fiducial values {w0, wa, ⌦DE, ⌦k, h, ⌦b, ns, �8} = {�1, 0, 0.73, 0, 0.72, 0.046, 1, 0.8} where
⌦k is the curvature density, h is the Hubble constant in units of 100 km/s/Mpc, ⌦b is the baryon density, ns is the
slope of the primordial spectrum, and �8 normalizes the matter power spectrum at z = 0. For each probe, we then
compute the constraints including projected priors from the Planck satellite [see e.g. 16]. We include only statistical
errors in the projections for each experiment, therefore our parameter constraints will be optimistic but su�cient for
our goal, which is to compare methods of testing GR.

For two probes, supernovae and BAO, the answer is simple: these probes are sensitive only to background geometry
which is assumed identical in our MG and GR models, so the predictions for the distance moduli (from supernovae)
and correlation function peak (due to BAO) are identical to standard GR and �P = 0. The projected contours
therefore are centered on the point in parameter space corresponding to the fiducial values. The only work that needs
to be done is to determine the Fisher matrix which delineates the allowed region. This has been done before; here we
simply reproduce these results, shown projected onto the (w0, wa) plane in Figure 2. The CMB is mostly insensitive to
our choice of MG since � only determines structure growth in the late Universe. The CMB power spectrum is in fact
a↵ected by gravity modifications via the late Integrated Sachs-Wolfe e↵ect [17, 18] and gravitational lensing, but we
ignore these e↵ects, which should only reduce our sensitivity to MG. Our Planck prior is therefore unchanged between
the GR and MG cases. Only the weak lensing and cluster predictions are significantly changed when comparing GR
to our toy MG model. Details on these calculations and Fisher matrix calculations for all probes are provided in the
appendix.
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priors. The supernovae constraint includes
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region) correspond to uncertainties in w0 and
wa of 5% and 30% respectively.

Our data set also allows us to distinguish between GR and certain modified gravity theories,
by measuring the parameter �. This can be achieved using a multi-dimensional consistency
test of the four dark energy probes [24]. An inconsistency would result in contours slightly
miscentered with respect to each other. Such analysis, performed on DES data, can distinguish
between � = 0.55 (GR case) and � = 0.68 (approximately the value for the Dvali-Gabadadze-
Porrati (DGP) braneworld model [25]) at a 99.1% level [24].

4. Conclusions

DES is a photometric survey designed to shed light on the dark energy problem through four
complementary methods (LSS, SNe, Clusters and Weak Lensing). Commissioning of the DES
imaging instrument, DECam, is imminent. The survey is scheduled to start in the second
semester of 2012, take data over 5 years and make available to the astronomical community a
data set of unprecedented depth for its area (5000 deg2 up to redshift ' 1.5). This rich data
set has the potential for a variety of studies, from galaxy evolution to cosmology. The prospects
for dark energy science are highlighted in this paper with focus on the key analyses of the four
cosmological probes to improve current measurements of the equation-of-state parameter w(a)
by a factor of 3-5. DES also has the potential to distinguish between GR and modified gravity
theories by measuring, for instance, deviations of the parameter � from the GR value � = 0.55
at high significance level.
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FIG. 2: LEFT: Forecasted 1� constraints on dark energy parameters from the DES probes, including only statistical errors
and assuming �CDM as the true model. From the largest to the smallest ellipse, the probes considered are baryon acoustic
oscillations (black), supernovae (green), cluster counts (magenta), and weak lensing (blue). Each constraint is combined with
a prior expected from Planck CMB measurements; additionally, the supernovae constraint includes an 8% prior on H0.

RIGHT: Same as LEFT but now the true model is assumed to be our toy modified gravity model with � = 0.68.
Shown are the forecasted constraints when we incorrectly attempt to fit a GR+dark energy model to the data. The center of
the weak lensing ellipse has moved to (w0, wa)=(-1.1, 0.47) while the cluster counts ellipse has moved to (-1.19, 0.90). The
probes are seemingly consistent, but we discuss the problems with this interpretation in Section IIIB.

Our first task then is to determine the expected values of the measurements for the four probes in the assumed modi-
fied gravity model and compare those to the predictions in standard GR+Dark energy. We consider a set of 8 standard
cosmological parameters with fiducial values {w0, wa, ⌦DE, ⌦k, h, ⌦b, ns, �8} = {�1, 0, 0.73, 0, 0.72, 0.046, 1, 0.8} where
⌦k is the curvature density, h is the Hubble constant in units of 100 km/s/Mpc, ⌦b is the baryon density, ns is the
slope of the primordial spectrum, and �8 normalizes the matter power spectrum at z = 0. For each probe, we then
compute the constraints including projected priors from the Planck satellite [see e.g. 16]. We include only statistical
errors in the projections for each experiment, therefore our parameter constraints will be optimistic but su�cient for
our goal, which is to compare methods of testing GR.

For two probes, supernovae and BAO, the answer is simple: these probes are sensitive only to background geometry
which is assumed identical in our MG and GR models, so the predictions for the distance moduli (from supernovae)
and correlation function peak (due to BAO) are identical to standard GR and �P = 0. The projected contours
therefore are centered on the point in parameter space corresponding to the fiducial values. The only work that needs
to be done is to determine the Fisher matrix which delineates the allowed region. This has been done before; here we
simply reproduce these results, shown projected onto the (w0, wa) plane in Figure 2. The CMB is mostly insensitive to
our choice of MG since � only determines structure growth in the late Universe. The CMB power spectrum is in fact
a↵ected by gravity modifications via the late Integrated Sachs-Wolfe e↵ect [17, 18] and gravitational lensing, but we
ignore these e↵ects, which should only reduce our sensitivity to MG. Our Planck prior is therefore unchanged between
the GR and MG cases. Only the weak lensing and cluster predictions are significantly changed when comparing GR
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Our data set also allows us to distinguish between GR and certain modified gravity theories,
by measuring the parameter �. This can be achieved using a multi-dimensional consistency
test of the four dark energy probes [24]. An inconsistency would result in contours slightly
miscentered with respect to each other. Such analysis, performed on DES data, can distinguish
between � = 0.55 (GR case) and � = 0.68 (approximately the value for the Dvali-Gabadadze-
Porrati (DGP) braneworld model [25]) at a 99.1% level [24].

4. Conclusions

DES is a photometric survey designed to shed light on the dark energy problem through four
complementary methods (LSS, SNe, Clusters and Weak Lensing). Commissioning of the DES
imaging instrument, DECam, is imminent. The survey is scheduled to start in the second
semester of 2012, take data over 5 years and make available to the astronomical community a
data set of unprecedented depth for its area (5000 deg2 up to redshift ' 1.5). This rich data
set has the potential for a variety of studies, from galaxy evolution to cosmology. The prospects
for dark energy science are highlighted in this paper with focus on the key analyses of the four
cosmological probes to improve current measurements of the equation-of-state parameter w(a)
by a factor of 3-5. DES also has the potential to distinguish between GR and modified gravity
theories by measuring, for instance, deviations of the parameter � from the GR value � = 0.55
at high significance level.
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DES Timeline

8

2003 Project start
2004-8 R&D
2008-11 DECam construction
2012 [Sept] Installation and first light
2012 [Sept-Oct] Commissioning
Nov 2012 - Feb 2013 Science Verification
Aug 31 2013 - 9 Feb 2014 First Season (Y1)
Aug 15 2014 - Feb 2015 Second Season (Y2)
2015-2018 Third-Fifth Seasons
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At end of Year 3 (Feb. 2016), following major El Nino 
(Y4 was MUCH better)

Observing strategy



SPT-E

SPT-W

Bullet Cluster

COSMOS

SN-S

SN-X

SN-C

SN-E

El Gordo

RXJ2248

Total area:  
330 sq.deg.

All the results presented in this talk are based on these pre-survey data

Nov. 2012 - Feb. 2013: Science Verification campaign
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Systematics maps

4 Leistedt, Peiris, Elsner, Benoit-Lévy et al

Figure 3. The DES SV footprint, partitioned into several discontinuous re-
gions, the largest being the SPT-E and W fields (⇡ 200 and 50 deg2, re-
spectively). The small red regions contain objects where spectroscopic red-
shifts are available, used to train the photometric redshift estimation codes,
as discussed in Section 3.

surements (see e.g., Li et al. 2015). We compress the multi-epoch
information into average and total maps (e.g., mean seeing and total
exposure time). For the former, a natural choice would be to take
the uniformly-weighted average in each HEALPix pixel. However,
this choice is probably too simplistic, as in practice images are
coadded using weights derived from the flux variance. More pre-
cisely, the DESDM pipeline provides a ‘weight’ or ‘variance’ map
for each single-epoch image. An additional quantity, coined ‘sky
sigma’, characterises the variance of the flux in each pixel. For an
image i and a given pixel, it is denoted by �i, and depends on a
number of parameters, including the flux itself, the gain of the am-
plifier, the readout noise, the bias correction, and the flat-fielding.
Single-epoch images are coadded using these variance maps such
that the coadded flux is the weighted average over all exposures,

F

tot

=

P
i wipiFiP

i wi
, (1)

in each coadd pixel, where wi = (p2

i�
2

i )
�1. The extra pis are

rescaling factors to enforce a common photometric calibration to
the single-epoch fluxes. They read

pi = 100(mZ�mZi)/5
, (2)

where m

Zi

is the zero point magnitude of the single-epochs and
m

Z

that of the coadd image. The variance of the total flux in each
pixel of the coadd image is given by

�

2

tot

=

"
X

i

wi

#�1

. (3)

A detailed discussion of these quantities is beyond the scope of
this paper, but we note that the total sky sigma is proportional
to the magnitude limit of the survey. In the above formulae, we
omitted the pixel indexing in �i, but the coadding and the evalu-
ation of �

2

tot

must be performed pixel by pixel across the coadd
image. The technicalities of this process (including the projection
and coadding) are handled by the SWARP software (Bertin et al.
2002). Yet, the projection formalism presented above can be used
to quickly estimate �

2

tot

(and for example construct approximate
magnitude limit maps). For this purpose we compute an average
sky sigma per single-epoch CCD image, defined as the pixel aver-
age of �i across the CCD. Rather than computing �i and �

2

tot

per

Figure 4. Maps of some of the main observational quantities (potential
sources of systematics) in the SPT-E and W fields (top and bottom of each
sub-panel). The HEALPix maps are produced at N

side

= 4096, where
each pixel is the mean value of the observed N

side

= 16384 sub-pixels, in
order to obtain more accurate values near the edges of the survey.

c� 2015 RAS, MNRAS 000, ??–??
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Figure 5. Full-sky angular power spectra of some of the i band observa-
tional systematics shown in Figure 4. Prior to power spectrum estimation,
the maps were divided by their average values in order to obtain dimension-
less C`’s. The power spectrum of the DES-SV coverage mask (presented
in Rykoff et al. 2015; Crocce et al. 2015) is also shown in black. Any ex-
cess of power relative to the mask implies structure and features in the maps,
which can yield non-trivial contamination and systematics in the galaxy cat-
alogues. We also indicate the characteristic scales affected by the geometry
of the SV survey and DECam instrument.

pixel, we only need to calculate �i per CCD and �

2

tot

in the dis-
tinct regions of image overlap, as shown in Figure 1. This yields a
significant reduction of the complexity of the full projection, which
needs to be performed for the five bands for a number of quan-
tities of interest, using several hundred thousands of single-epoch
images. Finally, any quantity of interest can be averaged using the
same weights wi (which we call ‘sky sigma weights’), which is
more useful than the unweighted average. The effective seeing of
the coadd images is better approximated by the sky sigma-weighted
mean since the coadds are based on these weights.

A number of maps were constructed for the DES-SV data, in
order to capture the spatial fluctuations of the observing conditions
and other observational quantities. They are used in numerous SV
analyses to perform spatial null tests with the data (e.g., Vikram
et al. 2015; Crocce et al. 2015; Jarvis et al. 2015; Becker et al.
2015; Giannantonio et al. 2015). Figure 4 shows some of the main
maps for the i band: the total exposure time, the mean sky sigma
and total sky sigma, and the minimum, maximum and mean seeing.
All quantities were calculated according to the previous scheme,
i.e., the weighted average method and the sky sigma weights, with
the exception of the mean sky sigma maps. This is because the
weighted sky sigma is equivalent to the total sky sigma described
above. Showing both maps sheds light on the difference between
adding the noise properties linearly or in quadrature. In the fol-
lowing we analyse these maps and detail the implications for the
analyses of SV data. We focus on the SPT-E and W regions since
they are the largest contiguous regions of the data.

2.3 Analysis of the DES SV observing conditions

The maps shown in Figure 4 exhibit significant structure and fea-
tures on all scales, mostly because DES data have three intrin-
sic scales on which their properties can vary: the size of the DE-
Cam focal plane (2.2 deg diameter field of view), the coadd tile
(0.75⇥ 0.75 deg2), and the single CCD (0.3⇥ 0.15 deg2). In spite
of the random offsets and overlap of the focal plane when obtain-
ing images and coadding them, these three scales get imprinted in
the projected observing conditions. For example, the focal plane

geometry is clearly visible in the total sky sigma maps in a number
of regions. This is due to a significantly lower or greater number of
observations, or to their respective noise levels (sky sigma). Also,
the mean seeing map is affected by outliers, i.e., by extreme (low
or high) values of seeing in the set of single-epochs, as shown in
the min/max maps in the bottom of Figure 4. The rectangular CCD
geometry is also visible in the maps, especially near the edges. In
addition, the observing properties of the 62 CCDs in a given single-
epoch are very correlated since they experience quasi-identical ob-
serving conditions. By contrast, correlations between exposures are
due to proximity in time, for example if the observations were taken
the same night. Finally, the tiles edges are particularly visible in
truncated regions or due to applying different zero point magni-
tudes (e.g., the centre of SPT-W, or the sharp transition in the upper
part of SPT-E).

To identify which scales may be affected by the features de-
scribed above, we compute the full sky angular power spectra of
the maps in Figure 4 (the full SV, not only the SPT-E and W re-
gions). The results are shown in Figure 5; all spectra are made di-
mensionless and normalised such that

P
` C` = 1 to clarify the

comparison. As seen before, all maps exhibit significant power on
all scales. The labels show which multipole ranges correspond to
the typical scales of the SV fields, DECam focal plane, tiles, and
CCDs. It is important to note that many of the features of Figure 5
are due to the sky coverage (i.e., the footprint) of SV, not the corre-
lations in the observed regions. This is emphasised by an extra line
showing the power spectrum of the DES-SV footprint mask. Here
we do not deconvolve the effect of the mask on the power spectra
because it typically redistributes the power between the ` modes.
In the pseudo-spectrum estimation method, this deconvolution as-
sumes flat priors on the power spectra, while quadratic maximum
likelihood estimators can incorporate more flexible priors on the
power spectra (see e.g., Leistedt et al. 2013). This deconvolution
would significantly affect the observed power spectra due to the
small sky coverage of SV data. By contrast, not deconvolving the
mask enables one to separate the scales affected by the survey cov-
erage and by the observing conditions. The significant power in the
` 2 [0, 200] range is mostly due to the size and shape of the SV
fields (all fields except SPT-E and W have approximately the size
of the focal plane). In the other power spectra, any power in excess
of the black line is due to structure within the fields, i.e., to the fea-
tures described previously. As expected, airmass and seeing maps
mostly have additional power on small scales. But the sky sigma
maps have much more power on all scales, in particular around the
focal plane and coadd scales.

As seen in Figure 4, the maps of the observing conditions are
correlated. Figure 6 shows the Pearson correlation coefficients of
the DES-SV maps in the gri bands (calculated for the full SV area).
These spatial correlations have two origins: the time correlations
between observations made closely spaced in time, and physical
correlations between some of the properties. For example, the noise
level and seeing are correlated.

In conclusion, the observing conditions fluctuate significantly
on a wide range of scales, and may affect the properties of the
galaxies detected in DES coadd images. Any resulting spurious
spatial correlations that propagate into the galaxy catalogues will
need to be detected and eliminated. Typical techniques to mitigate
these effects in clustering analyses include modelling the survey
window function (e.g., Maddox, Efstathiou & Sutherland 1996;
Blake et al. 2010), or using cross-correlations (Scranton et al. 2002;
Ross et al. 2011, 2012; Ho et al. 2012; Crocce et al. 2015) or
mode-projection (Leistedt et al. 2013; Leistedt & Peiris 2014) to
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Figure 3. The DES SV footprint, partitioned into several discontinuous re-
gions, the largest being the SPT-E and W fields (⇡ 200 and 50 deg2, re-
spectively). The small red regions contain objects where spectroscopic red-
shifts are available, used to train the photometric redshift estimation codes,
as discussed in Section 3.

surements (see e.g., Li et al. 2015). We compress the multi-epoch
information into average and total maps (e.g., mean seeing and total
exposure time). For the former, a natural choice would be to take
the uniformly-weighted average in each HEALPix pixel. However,
this choice is probably too simplistic, as in practice images are
coadded using weights derived from the flux variance. More pre-
cisely, the DESDM pipeline provides a ‘weight’ or ‘variance’ map
for each single-epoch image. An additional quantity, coined ‘sky
sigma’, characterises the variance of the flux in each pixel. For an
image i and a given pixel, it is denoted by �i, and depends on a
number of parameters, including the flux itself, the gain of the am-
plifier, the readout noise, the bias correction, and the flat-fielding.
Single-epoch images are coadded using these variance maps such
that the coadded flux is the weighted average over all exposures,

F

tot

=

P
i wipiFiP

i wi
, (1)

in each coadd pixel, where wi = (p2

i�
2

i )
�1. The extra pis are

rescaling factors to enforce a common photometric calibration to
the single-epoch fluxes. They read
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that of the coadd image. The variance of the total flux in each
pixel of the coadd image is given by
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A detailed discussion of these quantities is beyond the scope of
this paper, but we note that the total sky sigma is proportional
to the magnitude limit of the survey. In the above formulae, we
omitted the pixel indexing in �i, but the coadding and the evalu-
ation of �

2

tot

must be performed pixel by pixel across the coadd
image. The technicalities of this process (including the projection
and coadding) are handled by the SWARP software (Bertin et al.
2002). Yet, the projection formalism presented above can be used
to quickly estimate �

2

tot

(and for example construct approximate
magnitude limit maps). For this purpose we compute an average
sky sigma per single-epoch CCD image, defined as the pixel aver-
age of �i across the CCD. Rather than computing �i and �

2

tot

per

Figure 4. Maps of some of the main observational quantities (potential
sources of systematics) in the SPT-E and W fields (top and bottom of each
sub-panel). The HEALPix maps are produced at N

side

= 4096, where
each pixel is the mean value of the observed N

side

= 16384 sub-pixels, in
order to obtain more accurate values near the edges of the survey.
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then Eq. (18) can be written as,

wcross,j =

X

i

↵i wauto,ij , (20)

and the solution is a matrix inversion,

~↵ = ~wcross · (wauto)
�1. (21)

Hence if we have 6 systematic maps we have to invert a 6x6 matrix
for each ✓-bin (notice that we are a priori assuming that ↵ is spatially
independent to factor it out of the correlations). From Eq. (17) one
can work out the auto correlation of true fluctuations

w(✓)true = w(✓)obs �
X

i

X

j

↵i↵jh�isys�jsysi (22)

= w(✓)obs � ~↵ · ~wcross, (23)

which reduces to the standard case,

w(✓)true = w(✓)obs � w2
cross/wauto (24)

for just one systematic.
Note that our starting assumption in Eq. (17) of a roughly linear

relation between �obs and �sys can be tested and confirmed with the
one-dimensional relation of galaxy density as a function of potential
systematics as done in Sec. 6.1. If strong non-linear dependencies are
found then Eq. (17) will not apply and the corrections induced will
bias the measurements. For this reason, it is important to mask the
regions (e.g., high g-band seeing) where the relationships are most
clearly non-linear, as is done in the previous section.

In addition, note that our approach does account for the correla-
tion among the potential systematics themselves. Nevertheless, solv-
ing for an arbitrarily large number of maps might still induce over-
corrections and biases due to the inversion in Eq. (23) and the noise
of the measurements particularly on large-scales.

Further below we explain our quantitative criteria based on cross-
correlations to choose which maps impact the galaxy sample and need
to be corrected for. Then we follow a combined approach in which we
also cross check against the density relations as in Sec. 6.1 for those
systematics that pass the criteria that a linear relation exists.

To use a quantitative criterion to select the most relevant sys-
tematics maps, we cross-correlate them with the galaxy distribution
maps at each redshift bin after applying the masking described in Sec-
tion 6.1. For each potential systematic we calculate the correction to
the galaxy correlation according to Eq. (24), w2

cross/wauto, ignoring
cross-correlations among systematics to begin with. This correction
is determined for each angular bin ✓. Using JK resampling over the
footprint, we calculate an error on the correction. Then, if the correc-
tion is inconsistent with zero at a 1� level11, the systematic is deemed
significant and taken into account in further analysis; otherwise, it is
neglected.

Figure 8 shows as an example the correlation between the cen-
tral redshift bin, 0.2 < z < 0.4 for the BPZ sample and the FWHM
map in the i band. The figure shows the auto-correlation of the galaxy
sample, the auto-correlation of the FWHM map, the cross-correlation
between the data and the systematic, and the corresponding correc-
tion that should be applied to the data (ignoring covariance with any
other systematic effects), see Eq. (24). The correction is significantly
non-zero, and therefore we consider the i-band FWHM map to be a
relevant systematic in our analysis.

For the BPZ photo-z catalog the systematics that correlate sig-
nificantly with the data set are:

11 We use 10 logarithmically distributed angular bins in 0.12 � 4 deg. The
1� limit corresponds to �

2
> 11.53, where the �

2 is computed using the
covariance of the w

2
cross/wauto estimates in the JK regions.
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Figure 8. Different two-point correlations entering the clustering correction in
the bin 0.2 < z < 0.4 for the BPZ sample due to spatial variations in i-band
FWHM over the DES footprint. See Sec. 6.2 for details.

• 0.2 < z < 0.4 : i-band r-band and z-band FWHM, r-band Skybrite
and dust extinction (5 maps)

• 0.4 < z < 0.6 : g-band and r-band FWHM (2 maps)
• 0.6 < z < 0.8 : None
• 0.8 < z < 1.0 : None
• 1.0 < z < 1.2 : None after r-band FWHM masking

For the TPZ photo-z catalog the systematics that correlate sig-
nificantly with the data set are:

• 0.2 < z < 0.4 : r-band FWHM, r-band and z-band Skybrite (3
maps)

• 0.4 < z < 0.6 : r-band FWHM (1 map)
• 0.6 < z < 0.8 : None
• 0.8 < z < 1.0 : None
• 1.0 < z < 1.2 : None after i-band FWHM masking

Despite the fact that the limiting depth is the same in all of the
redshift bins we use, we find slight variations in the type and degree
of systematic contamination as a function of redshift. The corrections
arise mainly at low redshifts, hence they might be due to a correlation
between the observing conditions and the determination of photomet-
ric redshifts (the DES filter systems does not contain u-band, which
degrades the low redshift photo-z). Nonetheless, the significance of
the corrections is never beyond 2� at any given angular scale which
signals that the data is not very impacted by systematics and our re-
sults not dominated by these corrections. This is discussed in more
detail in Sec. 7 and Tables 2 and 3.

6.3 Stellar Contamination

Stellar contamination will affect the measured clustering signal, even
if the cross-correlation between the galaxies and stars is negligible.
This is due to the fact that rather than modulate the selection function
of galaxies, stellar contamination introduces a separate population. In
the limit where the stars are un-clustered and the stellar contamination
is constant the observed galaxy density is, �o = (1 � fstar)�gal and
thus

wgal =
wo

(1� fstar)2
, (25)
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Figure 10. Angular auto-correlation functions, w(✓), in photo-z bins for our flux limited sample (i < 22.5) spanning a broad range in redshift, from z ⇠ 0.2 to 1.2.
Blue circles correspond to the measurements after correcting our sample for systematics as discussed in Sec. 6, while red squares is before such corrections (only
shown when relevant). Solid lines correspond to a linear bias model applied to the non-linear matter w(✓) computed with Halofit. The best-fit bias displayed
was obtained from fitting the range of scales shown in each case (main panels). Dashed lines correspond to linear theory, with the same value of the bias. Note how
the simple “linear bias” model describes the clustering towards scales considerably smaller than the linear regime shown by dashed lines. The inset panels show the
performance of the best-fit “linear bias” model towards smaller scales than the ones used in the fit (main panels), see text for a detailed discussion.

BPZ (template method): best-fit bias and 1� error

Photo-z Baseline + Bad Area + Gal-Syst �

2
/

Bin Mask Masking Cross-Corr d.o.f.

0.2 < z < 0.4 1.28± 0.07 1.20± 0.07 1.05± 0.07 2.5/7

0.4 < z < 0.6 1.25± 0.05 1.26± 0.05 1.23± 0.05 8.3/8

0.6 < z < 0.8 1.35± 0.04 � � 2.3/9

0.8 < z < 1.0 1.54± 0.02 � � 10.3/10

1.0 < z < 1.2 2.20± 0.07 2.17± 0.09 � 3.6/10

Table 2. Impact of the different corrections for observational systematic ef-
fects on the derived best-fit bias b for the tomographic bins selected with our
template method. The baseline mask is described in Sec. 4.1 and corresponds
to all regions where our sample is complete (i.e. 10� depth i >= 22.5).
The third column corresponds to an additional masking of regions with high
values of potential systematic variables such as seeing, where we observe
large decrements in galaxy density (as described in Sec. 6.1). The fourth col-
umn refers to further corrections to w(✓) after these masks, in cases where
the data still correlates with maps for potential systematics (as discussed in
Sec. 6.2). The fifth column reports the �

2
/d.o.f after all corrections ap-

plied. Empty entries refer to cases where such corrections were not necessary.
These values were obtained after fitting the “linear growth” model for scales
✓ > ✓min = (0.26, 0.18, 0.12, 0.08, 0.06) deg., from first to last z -bin.

have chosen to display the clustering measurements to scales that go
beyond the linear regime.

There is good qualitative agreement between the linear bias

TPZ (machine learning method)

Photo-z Baseline + Bad Area + Gal-Syst �

2
/

Bin Mask Masking Cross-Corr d.o.f.

0.2 < z < 0.4 1.18± 0.07 1.13± 0.08 1.07± 0.08 2.1/7

0.4 < z < 0.6 1.29± 0.04 1.30± 0.04 1.24± 0.04 6.7/8

0.6 < z < 0.8 1.34± 0.05 � � 14.5/9

0.8 < z < 1.0 1.56± 0.03 � � 3.7/10

1.0 < z < 1.2 1.97± 0.09 1.96± 0.06 � 4.5/10

Table 3. Same as Table 2 but for the tomographic bins selected with the ma-
chine learning method. Different algorithms for photometric redshift estima-
tion use different data quantities (most notably, template based ones use mag-
nitude errors while most machine learning do not). Thus one expects a different
response to potential systematics.

model and the observed clustering at the scales shown in the main
panels of Fig. 10 (we discuss this more in quantitative terms below
in Sec. 7.3). This result is interesting because it implies that, at least
for projected clustering in angular coordinates, the scale of non-linear
biasing is different from the one of non-linear dark matter clustering.
The latter is currently better understood, so in general terms this result
is relevant. We will come back to it in Sec. 7.3.

We further note that at large scales (✓ & 2

�) all the correlations
tend to zero. This is a signal that systematic effects are under control,
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ABSTRACT
We study the clustering of galaxies detected at i < 22.5 in the Science Verification observa-
tions of the Dark Energy Survey (DES). Two-point correlation functions are measured using
2.3 ⇥ 106 galaxies over a contiguous 116 deg2 region in five bins of photometric redshift width
�z = 0.2 in the range 0.2 < z < 1.2. The impact of photometric redshift errors are assessed
by comparing results using a template-based photo-z algorithm (BPZ) to a machine-learning
algorithm (TPZ). A companion paper (Leistedt et al 2015) presents maps of several observa-
tional variables (e.g. seeing, sky brightness) which could modulate the galaxy density. Here we
characterize and mitigate systematic errors on the measured clustering which arise from these
observational variables, in addition to others such as Galactic dust and stellar contamination.
After correcting for systematic effects we measure galaxy bias over a broad range of linear
scales relative to mass clustering predicted from the Planck ⇤CDM model, finding agreement
with CFHTLS measurements with �2 of 4.0 (8.7) with 5 degrees of freedom for the TPZ (BPZ)
redshifts. We test a “linear bias” model, in which the galaxy clustering is a fixed multiple of
the predicted non-linear dark-matter clustering. The precision of the data allow us to deter-
mine that the linear bias model describes the observed galaxy clustering to 2.5% accuracy down
to scales at least 4 to 10 times smaller than those on which linear theory is expected to be sufficient.

Key words: photometric surveys – galaxies clustering – systematic effects – large-scale structure
of Universe.

1 INTRODUCTION

Vast galaxy surveys trace the large-scale structure (LSS) of the Uni-
verse at late times and therefore complement and improve the wealth
of information already provided by cosmic microwave background
(CMB) and supernovae experiments. In particular our understand-

? crocce@ice.cat

ing and characterization of the cosmic accelerated expansion. Imag-
ing from multi-band photometry, e.g., SDSS (York et al. 2000),
PanSTARRS (Kaiser, Tonry & Luppino 2000), KiDS (de Jong et al.
2013), HSC (Miyazaki et al. 2012) and the planned LSST (Tyson
et al. 2003), provides the angular positions and detailed color in-
formation of the galaxies. From this color information, photometric
redshifts (photo-z) can be measured for each galaxy providing dis-
tance estimates that have typically low resolution. While obtaining

c� 0000 RAS

ar
X

iv
:1

50
7.

05
36

0v
1 

 [a
st

ro
-p

h.
C

O
]  

20
 Ju

l 2
01

5

30 Crocce et al., 1507.05360



14 M. Crocce et al.

‡

‡

‡

‡

‡

‡

‡

‡

‡

‡

‡‡

‡‡

0.2 0.4 0.6 0.8 1.0

1.0

1.5

2.0

z

bHzL
Hs 8
ê0.8

3L

TPZ Hmachine learningL
BPZ HtemplateL

Linear bias
DES-SV bench-mark sample Hi<22.5L

CFHTLS Hi<22.5L

Figure 11. Comparison of the large-scale bias measured in a DES-SV flux limited sample (i < 22.5) to equivalent measurements from CFHTLS derived from
Coupon et al. (2012). We present DES results for two different photometric redshift catalogs, one obtained using a template method (BPZ), another with a machine
learning approach (TPZ). The overall agreement between the two DES samples as a function of redshift is better that 2 per cent for z < 1. At z > 1 is difference is
not statistically significant (⇠ 2�). This represents a non-trivial test for DES-SV photometric redshift estimation. Our results are also in good agreement with those
from CFHTLS, with �

2
/d.o.f = 4/5 for TPZ and 8.7/5 for BPZ, representing a cross-validation of data quality and sample selection.

as systematic variations tend to introduce spurious large-scale power
(Ross et al. 2011a; Ho et al. 2012; Leistedt et al. 2013)).

In the inset panels of Fig. 10, we show the clustering measure-
ments at smaller angular scales and using a log scaling for w(✓).
The model curves are merely extrapolations using the best-fit bias
recovered on larger-scales (main panels). Qualitatively, this simple
model does not depart strongly from the measurements. The data at
these scales will be used to constrain the halo occupation distribution
of DES SV galaxies in Sobreira et al. (in prep.). However, the gen-
eral agreement signals that a more elaborate non-linear bias prescrip-
tion based on perturbation theory (Fry & Gaztanaga 1993; McDonald
2006; Chan, Scoccimarro & Sheth 2012) might be adequate to de-
scribe the data in this high signal-to-noise regime. Such study is left
for future work. Instead, in Sec. 7.3 we will show that the current data
size and quality of DES-SV is able to distinguish the breakdown of a
“linear bias” prescription in detail.

Lastly we note that we have chosen not to show the clustering
for the TPZ sample in a manner analogous to Fig. 10, as the results
look almost identical at the qualitative level.

7.1 Bias Evolution and Comparison to CFHTLS

The DES science verification data used in this paper (and in a series of
papers accompanying it) is in several regards similar to that collected
by the CFHTLS collaboration, for example in depth, photometry and
area. CFHTLS has, to this point in time, been regarded as the state of
the art for deep wide area photometric data. Hence in this section we
compare our clustering measurements to those presented by Coupon
et al. (2012).

Galaxies in Coupon et al. (2012) are selected according to SEX-
tractor MAG AUTO magnitudes of i < 22.5, and thus comprise a
very similar sample to the one presented in this paper. To facilitate
the comparison further we have chosen our photo-z bins similarly to
those in the clustering study of Coupon et al. (2012). Although pho-

tometric redshifts in CFHTLS were estimated using a different tem-
plate method, LePhare (Ilbert et al. (2006), Coupon et al. (2009)) we
have used a very similar set of templates to obtain our DES BPZ data
(Sánchez et al. 2014). The comparison to a neural network photo-z
catalog such as TPZ is novel in this regard.

The apparent magnitude sample i < 22.5 in Coupon et al. (2012)
was then split and reported as several volume limited absolute mag-
nitude “threshold” samples in each photo-z bin. Therefore in each
redshift bin, our sample (also selected by i < 22.5) corresponds to
the faintest absolute magnitude sample in Coupon et al. (2012), except
for the fact that Coupon et al. (2012) imposed cuts to make the sample
volume limited, where we have not. For example, for 0.4 < z < 0.6
there is a group of galaxies brighter than i = 22.5 but fainter than
Mr � 5 log h = �18.8 (see their Fig. 4). These galaxies are in our
sample but not in the Mr � 5 log10 h < �18.8 sample of Coupon
et al. (2012). In Appendix C we estimate the impact of these differ-
ences in selection when comparing b(z) results. We find the differ-
ences are most relevant at high z, where the galaxies in the samples
have luminosity thresholds, L, such that db/dL is large.

The bias evolution reported by Coupon et al. (2012), accounting
for the differences in sample selection as described in Appendix C,
is shown by a filled light-red region in Fig. 11 (where the width cor-
responds to the statistical errors bars reported by CFHTLS) 12. The
green squares with error bars correspond to our bias measurements
for the BPZ sample presented in the previous section and in Table
2, while the blue squares correspond to our TPZ sample as reported
in Table 3 (both for the cases where all corrections for observational
systematics have been applied).

Overall, the match in the recovered bias as a function of redshift
between our apparent magnitude sample and the corresponding one

12 We have re-scaled the CFHTLS measurements that assumed at z = 0

�8 = 0.8 to our cosmology �8 = 0.83
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ABSTRACT
We study the clustering of galaxies detected at i < 22.5 in the Science Verification observa-
tions of the Dark Energy Survey (DES). Two-point correlation functions are measured using
2.3 ⇥ 106 galaxies over a contiguous 116 deg2 region in five bins of photometric redshift width
�z = 0.2 in the range 0.2 < z < 1.2. The impact of photometric redshift errors are assessed
by comparing results using a template-based photo-z algorithm (BPZ) to a machine-learning
algorithm (TPZ). A companion paper (Leistedt et al 2015) presents maps of several observa-
tional variables (e.g. seeing, sky brightness) which could modulate the galaxy density. Here we
characterize and mitigate systematic errors on the measured clustering which arise from these
observational variables, in addition to others such as Galactic dust and stellar contamination.
After correcting for systematic effects we measure galaxy bias over a broad range of linear
scales relative to mass clustering predicted from the Planck ⇤CDM model, finding agreement
with CFHTLS measurements with �2 of 4.0 (8.7) with 5 degrees of freedom for the TPZ (BPZ)
redshifts. We test a “linear bias” model, in which the galaxy clustering is a fixed multiple of
the predicted non-linear dark-matter clustering. The precision of the data allow us to deter-
mine that the linear bias model describes the observed galaxy clustering to 2.5% accuracy down
to scales at least 4 to 10 times smaller than those on which linear theory is expected to be sufficient.

Key words: photometric surveys – galaxies clustering – systematic effects – large-scale structure
of Universe.

1 INTRODUCTION

Vast galaxy surveys trace the large-scale structure (LSS) of the Uni-
verse at late times and therefore complement and improve the wealth
of information already provided by cosmic microwave background
(CMB) and supernovae experiments. In particular our understand-

? crocce@ice.cat

ing and characterization of the cosmic accelerated expansion. Imag-
ing from multi-band photometry, e.g., SDSS (York et al. 2000),
PanSTARRS (Kaiser, Tonry & Luppino 2000), KiDS (de Jong et al.
2013), HSC (Miyazaki et al. 2012) and the planned LSST (Tyson
et al. 2003), provides the angular positions and detailed color in-
formation of the galaxies. From this color information, photometric
redshifts (photo-z) can be measured for each galaxy providing dis-
tance estimates that have typically low resolution. While obtaining
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Figure 14. We estimate the smallest scale ✓min at which a linear bias model
is still a good description of the clustering by computing the �

2 difference
between a fit extending to ✓min and a fit only on large linear scales. A ��

2 ⇠
4 + �(dof) roughly corresponds to 2� evidence that the linear bias model
fails to describe the data.

data into cosmological analyses that use the full shape of the correla-
tion function information with a simple bias model. We do stress that
a more thorough analysis would involve allowing for a more complex
model with non-linear and/or non-local bias terms and then investi-
gate how the best-fit value for the linear order term in such scheme
compares to the linear model results we present. This is however be-
yond the scope of the present paper and we postpone it to future work.

8 CONCLUSIONS

We present the first large-scale clustering analysis of a galaxy sample
selected from the Science Verification Data of the Dark Energy Sur-
vey. The sample is selected as an apparent magnitude limited sample
i < 22.5, with no color selection except for very conservative cuts
to remove color outliers. The sample extends from zphot = 0.2 to
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Figure 15. Top Panel: the evolution of the scale down to which the linear
bias model (with non-linear dark matter) reproduces our angular clustering
measurements, compared to the evolution of the linear bias + linear dark matter
clustering. The former is valid to considerably smaller scales. Bottom Panel:
Same information but translated into co-moving distances at the given redshift.

zphot = 1.2. We performed our analysis in five tomographic bins of
width �zphot = 0.2.

This paper has three main foci:

(i) We perform a detailed analysis and amelioration of potential
observational systematic effects. We use a set of maps for different
variables that can modulate galaxy detection efficiency, which
include varying observing conditions, stellar density, and Galactic
dust. We analyze which of them are affecting our sample by means
of angular cross correlations and a measurement of galaxy density
as a function of the value of the potential systematic variable across
the footprint. We then apply cuts to minimize these systematic
correlations, with a small loss of statistical power. We then show
how these two approaches complement and validate each other.
These methods can be widely applied to future clustering studies, in-
cluding our detailed accounting of the effects of stellar contamination.

(ii) We evaluate the clustering in the five redshift bins comparing
it against simple linear theory models. We find good agreement with
these models and between the results we obtain from two separate
photo-z methods (one template based, the other machine learning) of
determining DES photometric redshifts. Both sets of measurements
are also consistent with bias measurements, determined at the same
redshifts for the same i < 22.5 flux limit, obtained by the CHFTLS
survey.

(iii) We explore the regime of validity of our simple models that
involve either linear / non-linear dark matter clustering, and a linear
bias term. We find that, in angular clustering, the scale at which a lin-
ear bias model is not consistent with our data is considerably smaller
than the scale at which non-linear growth in the clustering of dark
matter (as predicted by Halofit 2012) becomes important com-
pared to the linear theory predictions. These results are relevant for
probes that aim to combine weak lensing with large scale structure, as

c� 0000 RAS, MNRAS 000, 1–23

Comparison with CFHTLS 
(Coupon et al.  2012)

Linear scale “breakings”

Crocce et al., 1507.05360



HANDBOOK FOR THE GREAT08 CHALLENGE 5

Fig. 2. Illustration of the forward problem. The upper panels show how the original galaxy
image is sheared, blurred, pixelised and made noisy. The lower panels show the equivalent
process for (point-like) stars. We only have access to the right hand images.

Stars are far enough away from us to appear point-like. They therefore
provide noisy and pixelised images of the convolution kernel (lower panels of
Figure 2). The convolution kernel is typically of a similar size to the galaxies

Fig. 3. Illustration of the inverse problem. We begin on the right with a set of galaxy and
star images. The full inverse problem would be to derive both the shears and the intrinsic
galaxy shapes. However shear is the quantity of interest for cosmologists.

ar
X

iv
:0

80
2.

12
14

v3
  [

as
tro

-p
h]

  1
5 

Ju
n 

20
09

The Annals of Applied Statistics
2009, Vol. 3, No. 1, 6–37
DOI: 10.1214/08-AOAS222
c⃝ Institute of Mathematical Statistics, 2009

HANDBOOK FOR THE GREAT08 CHALLENGE: AN IMAGE
ANALYSIS COMPETITION FOR COSMOLOGICAL LENSING

By Sarah Bridle,1,20 John Shawe-Taylor,1 Adam Amara,2

Douglas Applegate,3 Sreekumar T. Balan,1 Joel Berge,4,5,6

Gary Bernstein,7 Hakon Dahle,8 Thomas Erben,9

Mandeep Gill,10 Alan Heavens,11 Catherine Heymans,12,19,21

F. William High,13 Henk Hoekstra,14 Mike Jarvis,7

Donnacha Kirk,1 Thomas Kitching,15 Jean-Paul Kneib,8

Konrad Kuijken,16 David Lagatutta,17 Rachel Mandelbaum,18

Richard Massey,5 Yannick Mellier,19 Baback Moghaddam,4,5

Yassir Moudden,6 Reiko Nakajima,7

Stephane Paulin-Henriksson,6 Sandrine Pires,6 Anais Rassat,6

Alexandre Refregier,6 Jason Rhodes,4,5,22 Tim Schrabback,16

Elisabetta Semboloni,9 Marina Shmakova,3

Ludovic van Waerbeke,12 Dugan Witherick,1

Lisa Voigt1 and David Wittman17

1University College London, 2University of Hong Kong, 3Stanford Linear
Accelerator Center, 4Jet Propulsion Laboratory, 5California Institute of
Technology, 6Commissariat a l’Energie Atomique, Saclay, 7University of
Pennsylvania, 8Laboratoire d’Astrophysique de Marseille, 9University of

Bonn, 10Ohio State University, 11Royal Observatory, University of
Edinburgh, 12University of British Columbia, 13Harvard University,

14University of Victoria, 15University of Oxford, 16University of Leiden,
17University of California, Davis, 18Institute for Advanced Study,

Princeton and 19Institut d’Astrophysique de Paris

The GRavitational lEnsing Accuracy Testing 2008 (GREAT08)
Challenge focuses on a problem that is of crucial importance for fu-
ture observations in cosmology. The shapes of distant galaxies can

Received April 2008; revised October 2008.
20Supported by the Royal Society in the form of a University Research Fellowship.
21Supported by a European Commission Programme 6th framework Marie Curie Out-

going International Fellowship under Contract MOIF-CT-2006-21891.
22Supported in part by the Jet Propulsion Laboratory, which is run by Caltech under

a contract from NASA.
Key words and phrases. Inference, inverse problems, astronomy.

This is an electronic reprint of the original article published by the
Institute of Mathematical Statistics in The Annals of Applied Statistics,
2009, Vol. 3, No. 1, 6–37. This reprint differs from the original in pagination and
typographic detail.

1

DES Weak lensing

32



From measurements to mass maps

CHAPTER 1. GRAVITATIONAL LENSING BASICS 7

• The lensing potential thus obeys the Poisson equation

~r2 = 2 , (1.34)

which can be solved by means of the Greens function of the
Laplacian in two dimensions,

 (

~✓) =
1

⇡

Z
d

2✓0 (~✓0) ln |~✓ � ~✓0| . (1.35)

The gradient of this expression gives the deflection angle ~↵,

~↵(

~✓) =
1

⇡

Z
(~✓0)(~✓ � ~✓0)
|~✓ � ~✓0|2

d

2✓0 . (1.36)

This illustrates the superposition of individual deflection an-
gles we mentioned earlier: The point-mass deflection angles
of mass elements d2✓ are added up, taking their directions
into account.

1.4 Local imaging properties, shear and

magnification

• Since the deflection angle turns out to be the gradient of a
scalar potential, the lens equation reads

� = ✓ � ~r . (1.37)

The Jacobian matrix of this equation, which describes the local
properties of the lens mapping, has the components

Ai j =
@�i

@✓ j
= �i j �

@2 

@✓i@✓ j
; (1.38)

that is, local image distortions are given by the curvature matrix
of the lensing potential. From now on, we shall denote partial
derivatives of  by subscripts for brevity,

@ 

@✓i
=  i ,

@2 

@✓i@✓ j
=  i j . (1.39)

Source and image transformation
by the Jacobian matrix

• It is instructive to split a trace-free part off the Jacobian matrix
of the lens mapping. Since its trace is

TrA = 2 � ~r2 = 2(1 � ) , (1.40)

its trace-free part is

A � 1

2

ITrA = �
 
�

1

�
2

�
2

��
1

!
, (1.41)
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where !
!"

is called the critical surface mass density (which depends on the redshifts of source and
lens). A mass distribution which has !51 somewhere, i.e. !5!

!"
, produces multiple images for

some source positions ! (see Schneider et al., 1992, Section 5.4.3). Hence, !
!"

is a characteristic
value for the surface mass density which distinguishes between &weak' and &strong' lenses. Note that
!51 is su$cient but not necessary for producing multiple images. In terms of !, the scaled
de#ection angle reads

"(#)"1
! !!!

d!"# !(##)
#!##

$#!##$!
. (3.8)

Eq. (3.8) implies that the de#ection angle can be written as the gradient of the deyection
potential

%(#)"1
!!!!

d!"# !(##) ln$#!##$ (3.9)

as ""&%. The potential %(#) is the two-dimensional analogue of the Newtonian gravitational
potential and satis"es the Poisson equation &!%(#)"2!(#).

3.1.3. Magnixcation and distortion
The solutions # of the lens equation yield the angular positions of the images of a source at !. The

shapes of the images will di!er from the shape of the source because light bundles are de#ected
di!erentially. The most visible consequence of this distortion is the occurrence of giant luminous
arcs in galaxy clusters. In general, the shape of the images must be determined by solving the lens
equation for all points within an extended source. Liouville's theorem and the absence of emission
and absorption of photons in gravitational light de#ection imply that lensing conserves surface
brightness (or speci"c intensity). Hence, if I"!#(!) is the surface-brightness distribution in the source
plane, the observed surface-brightness distribution in the lens plane is

I(#)"I"!#[!(#)] . (3.10)

If a source is much smaller than the angular scale on which the lens properties change, the lens
mapping can locally be linearised. The distortion of images is then described by the Jacobian
matrix

A(#)"R!R#""'"#
!R!%(#)
R"

"
R"

#
#""

1!!!(
$

!(
!

!(
!

1!!#(
$
# , (3.11)

where we have introduced the components of the shear (,(
$
#i(

!
"$($e!#!,

(
$
"$

!
(%

%$$
!%

%!!
), (

!
"%

%$!
(3.12)

and ! is related to % through Poisson's equation. Hence, if #
&

is a point within an image,
corresponding to the point !

&
"!(#

&
) within the source, we "nd from (3.10) using the locally

linearised lens equation

I(#)"I"!#[!
&
#A(#

&
) ) (#!#

&
)] . (3.13)
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• The lensing potential thus obeys the Poisson equation
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which can be solved by means of the Greens function of the
Laplacian in two dimensions,
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This illustrates the superposition of individual deflection an-
gles we mentioned earlier: The point-mass deflection angles
of mass elements d2✓ are added up, taking their directions
into account.

1.4 Local imaging properties, shear and

magnification
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scalar potential, the lens equation reads
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that is, local image distortions are given by the curvature matrix
of the lensing potential. From now on, we shall denote partial
derivatives of  by subscripts for brevity,
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Source and image transformation
by the Jacobian matrix

• It is instructive to split a trace-free part off the Jacobian matrix
of the lens mapping. Since its trace is
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where !
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lens). A mass distribution which has !51 somewhere, i.e. !5!
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Eq. (3.8) implies that the de#ection angle can be written as the gradient of the deyection
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shapes of the images will di!er from the shape of the source because light bundles are de#ected
di!erentially. The most visible consequence of this distortion is the occurrence of giant luminous
arcs in galaxy clusters. In general, the shape of the images must be determined by solving the lens
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INTRODUCTION

Gravitational lensing refers to the bending of light due to
the curvature of space-time induced by massive bodies [1].
This effect allows one to probe the total matter distribution in
the Universe, including both luminous and dark matter. Weak
lensing is the technique of using the subtle gravitational lens-
ing effect of a large number of galaxies to statistically infer
the large-scale matter distribution in the Universe [see 2, 3,
for detailed reviews]. The measurement is based on small,
percent-level “shears”, or distortions of galaxy shapes due to
lensing. With several ongoing large optical surveys collecting
data [4–7], this technique is one of the most powerful probes
for constraining the nature of dark energy [8].

Conventional weak lensing analyses involve calculating the
N-point statistics of the shear field. In particular, the cosmic
shear measurement, which refers to the 2-point correlation
function (or its Fourier counterpart, the power spectrum) of
the shear field, has been measured in several earlier datasets
[9–14]. Shear g is defined to be a combination of second
derivatives of the lensing potential y ,

g = g1 + ig2 =
1
2
(y,11 �y,22)+ iy,12, (1)

where the notation “y,i j” represents derivative of y with re-
spect to the i and j coordinates, or ∂ 2y/∂qi∂q j (qi are the
two angular sky coordinates). y is defined as

y (q ,r) =�2
Z r

0
dr0

r� r0

rr0
F
�
q ,r0

�
. (2)

In the above equation, r is the comoving distance and F is the
3D gravitational potential, whose spatial structure and time
evolution contains cosmological information.

Instead of measuring statistics based on shear, here we fo-
cus on an alternative approach by converting shear into the
projected density field, the convergence k , also a combination
of second derivatives of y ,

k =
1
2

—2y =
1
2
(y,11 +y,22) . (3)

The convergence directly represents the integrated mass distri-
bution, which can be seen by using the cosmological Poisson
equation and the Limber approximation to re-write Equation 3
as [2]

k(q ,r) =
3H2

0 Wm

2c2

Z r

0
dr0

(r� r0)r0

r
d (q ,r0)

a(r0)
, (4)

where H0 is the Hubble constant today, Wm is the total matter
density today, a is the cosmological scale factor, and d = (D�
D̄)/D̄ is the mass overdensity (D and D̄ are the 3D density and
mean density respectively).

Note that the same weak lensing effect also introduces
distortions in the observed cosmic microwave background

(CMB) maps. Reconstructing the convergence map from the
CMB gives the integrated mass up to the surface of last scat-
tering (z ⇠ 1100). Compared to the weak lensing convergence
map constructed from galaxies, the CMB convergence map
typically covers a larger area with lower spatial resolution,
and is measured at a single redshift plane [15–17]. In this let-
ter, we use “weak lensing mass maps” to refer to convergence
maps generated from source galaxies.

Weak lensing mass maps supplement measurements based
on shear in many ways. Mass maps can be easily cross-
correlated with other data since they represent a scalar, the
local (projected) mass density, while the shear is a complex
variable and is sensitive to the global mass distribution. Cross
correlating with X-ray and Sunyaev-Zel’dovich observations
helps us understand the relation of hot gas and dark matter
in galaxy clusters. Cross correlating with the CMB conver-
gence map provides an important cross check of lensing mea-
surements using different tracers. Other applications of mass
maps include peak statistics [18–22], higher-order moments
of k [23], and the identification of superclusters and cosmic
voids [24].

The methodology of generating weak lensing mass maps
has been demonstrated in earlier work. Massey et al. [25]
generated a 3D mass map using COSMOS data in a 1.64 deg2

area. The high-quality shear measurements and redshift in-
formation allow for good mass reconstruction on small scales
and in the radial direction. Van Waerbeke et al. [26], on the
other hand, focused on larger-scale information and gener-
ated 2D wide-field mass maps from four fields of size 25–72
deg2 in the Canada-France-Hawaii Telescope Lensing Survey
(CFHTLenS). Our work is similar to Van Waerbeke et al. [26],
but uses one contiguous region of 139 deg2 from the Dark En-
ergy Survey [DES, 5, 27] data. This is the first step towards
building mass maps from the full DES data set.

The data used in this work is part of the Science Verifica-
tion (SV) dataset from DES, an ongoing ground-based galaxy
survey that is scheduled to operate from September 2013 to
February 2018. The SV data were collected between Novem-
ber 2012 and February 2013 shortly after the commissioning
of the new wide-field mosaic camera, the Dark Energy Cam-
era [DECam, 28–30] on the 4m Blanco telescope at the Cerro
Tololo Inter-American Observatory (CTIO) in Chile. This
data was used to test survey operations and assess data qual-
ity. The images are taken in 5 optical filter bands (grizY ) on
a total area of ⇠ 250 deg2 and reach close to the expected full
depth of DES at r ⇠ 23.9.

The main goal of this work is to reconstruct the weak
lensing mass map from shear measurements of the DES SV
data in a 139 deg2 contiguous region overlapping with the
South Pole Telescope Survey (the SPT-E field). We present
the methodology used for the map construction, followed by
cross-correlation results and conclusions. Throughout the pa-
per, we adopt the following cosmological parameters [31]:
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• The lensing potential thus obeys the Poisson equation

~r2 = 2 , (1.34)

which can be solved by means of the Greens function of the
Laplacian in two dimensions,

 (
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Z
d

2✓0 (~✓0) ln |~✓ � ~✓0| . (1.35)

The gradient of this expression gives the deflection angle ~↵,
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d

2✓0 . (1.36)

This illustrates the superposition of individual deflection an-
gles we mentioned earlier: The point-mass deflection angles
of mass elements d2✓ are added up, taking their directions
into account.

1.4 Local imaging properties, shear and

magnification

• Since the deflection angle turns out to be the gradient of a
scalar potential, the lens equation reads

� = ✓ � ~r . (1.37)

The Jacobian matrix of this equation, which describes the local
properties of the lens mapping, has the components

Ai j =
@�i

@✓ j
= �i j �

@2 

@✓i@✓ j
; (1.38)

that is, local image distortions are given by the curvature matrix
of the lensing potential. From now on, we shall denote partial
derivatives of  by subscripts for brevity,

@ 

@✓i
=  i ,

@2 

@✓i@✓ j
=  i j . (1.39)

Source and image transformation
by the Jacobian matrix

• It is instructive to split a trace-free part off the Jacobian matrix
of the lens mapping. Since its trace is

TrA = 2 � ~r2 = 2(1 � ) , (1.40)

its trace-free part is

A � 1

2

ITrA = �
 
�

1

�
2

�
2

��
1

!
, (1.41)

where !
!"

is called the critical surface mass density (which depends on the redshifts of source and
lens). A mass distribution which has !51 somewhere, i.e. !5!

!"
, produces multiple images for

some source positions ! (see Schneider et al., 1992, Section 5.4.3). Hence, !
!"

is a characteristic
value for the surface mass density which distinguishes between &weak' and &strong' lenses. Note that
!51 is su$cient but not necessary for producing multiple images. In terms of !, the scaled
de#ection angle reads
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. (3.8)

Eq. (3.8) implies that the de#ection angle can be written as the gradient of the deyection
potential

%(#)"1
!!!!

d!"# !(##) ln$#!##$ (3.9)

as ""&%. The potential %(#) is the two-dimensional analogue of the Newtonian gravitational
potential and satis"es the Poisson equation &!%(#)"2!(#).

3.1.3. Magnixcation and distortion
The solutions # of the lens equation yield the angular positions of the images of a source at !. The

shapes of the images will di!er from the shape of the source because light bundles are de#ected
di!erentially. The most visible consequence of this distortion is the occurrence of giant luminous
arcs in galaxy clusters. In general, the shape of the images must be determined by solving the lens
equation for all points within an extended source. Liouville's theorem and the absence of emission
and absorption of photons in gravitational light de#ection imply that lensing conserves surface
brightness (or speci"c intensity). Hence, if I"!#(!) is the surface-brightness distribution in the source
plane, the observed surface-brightness distribution in the lens plane is

I(#)"I"!#[!(#)] . (3.10)

If a source is much smaller than the angular scale on which the lens properties change, the lens
mapping can locally be linearised. The distortion of images is then described by the Jacobian
matrix
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and ! is related to % through Poisson's equation. Hence, if #
&

is a point within an image,
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as [2]
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where H0 is the Hubble constant today, Wm is the total matter
density today, a is the cosmological scale factor, and d = (D�
D̄)/D̄ is the mass overdensity (D and D̄ are the 3D density and
mean density respectively).

Note that the same weak lensing effect also introduces
distortions in the observed cosmic microwave background

(CMB) maps. Reconstructing the convergence map from the
CMB gives the integrated mass up to the surface of last scat-
tering (z ⇠ 1100). Compared to the weak lensing convergence
map constructed from galaxies, the CMB convergence map
typically covers a larger area with lower spatial resolution,
and is measured at a single redshift plane [15–17]. In this let-
ter, we use “weak lensing mass maps” to refer to convergence
maps generated from source galaxies.

Weak lensing mass maps supplement measurements based
on shear in many ways. Mass maps can be easily cross-
correlated with other data since they represent a scalar, the
local (projected) mass density, while the shear is a complex
variable and is sensitive to the global mass distribution. Cross
correlating with X-ray and Sunyaev-Zel’dovich observations
helps us understand the relation of hot gas and dark matter
in galaxy clusters. Cross correlating with the CMB conver-
gence map provides an important cross check of lensing mea-
surements using different tracers. Other applications of mass
maps include peak statistics [18–22], higher-order moments
of k [23], and the identification of superclusters and cosmic
voids [24].

The methodology of generating weak lensing mass maps
has been demonstrated in earlier work. Massey et al. [25]
generated a 3D mass map using COSMOS data in a 1.64 deg2

area. The high-quality shear measurements and redshift in-
formation allow for good mass reconstruction on small scales
and in the radial direction. Van Waerbeke et al. [26], on the
other hand, focused on larger-scale information and gener-
ated 2D wide-field mass maps from four fields of size 25–72
deg2 in the Canada-France-Hawaii Telescope Lensing Survey
(CFHTLenS). Our work is similar to Van Waerbeke et al. [26],
but uses one contiguous region of 139 deg2 from the Dark En-
ergy Survey [DES, 5, 27] data. This is the first step towards
building mass maps from the full DES data set.

The data used in this work is part of the Science Verifica-
tion (SV) dataset from DES, an ongoing ground-based galaxy
survey that is scheduled to operate from September 2013 to
February 2018. The SV data were collected between Novem-
ber 2012 and February 2013 shortly after the commissioning
of the new wide-field mosaic camera, the Dark Energy Cam-
era [DECam, 28–30] on the 4m Blanco telescope at the Cerro
Tololo Inter-American Observatory (CTIO) in Chile. This
data was used to test survey operations and assess data qual-
ity. The images are taken in 5 optical filter bands (grizY ) on
a total area of ⇠ 250 deg2 and reach close to the expected full
depth of DES at r ⇠ 23.9.

The main goal of this work is to reconstruct the weak
lensing mass map from shear measurements of the DES SV
data in a 139 deg2 contiguous region overlapping with the
South Pole Telescope Survey (the SPT-E field). We present
the methodology used for the map construction, followed by
cross-correlation results and conclusions. Throughout the pa-
per, we adopt the following cosmological parameters [31]:
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the shear field, has been measured in several earlier datasets
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3D gravitational potential, whose spatial structure and time
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Instead of measuring statistics based on shear, here we fo-
cus on an alternative approach by converting shear into the
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of second derivatives of y ,
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The convergence directly represents the integrated mass distri-
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where H0 is the Hubble constant today, Wm is the total matter
density today, a is the cosmological scale factor, and d = (D�
D̄)/D̄ is the mass overdensity (D and D̄ are the 3D density and
mean density respectively).

Note that the same weak lensing effect also introduces
distortions in the observed cosmic microwave background
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CMB gives the integrated mass up to the surface of last scat-
tering (z ⇠ 1100). Compared to the weak lensing convergence
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typically covers a larger area with lower spatial resolution,
and is measured at a single redshift plane [15–17]. In this let-
ter, we use “weak lensing mass maps” to refer to convergence
maps generated from source galaxies.
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maps include peak statistics [18–22], higher-order moments
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deg2 in the Canada-France-Hawaii Telescope Lensing Survey
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but uses one contiguous region of 139 deg2 from the Dark En-
ergy Survey [DES, 5, 27] data. This is the first step towards
building mass maps from the full DES data set.

The data used in this work is part of the Science Verifica-
tion (SV) dataset from DES, an ongoing ground-based galaxy
survey that is scheduled to operate from September 2013 to
February 2018. The SV data were collected between Novem-
ber 2012 and February 2013 shortly after the commissioning
of the new wide-field mosaic camera, the Dark Energy Cam-
era [DECam, 28–30] on the 4m Blanco telescope at the Cerro
Tololo Inter-American Observatory (CTIO) in Chile. This
data was used to test survey operations and assess data qual-
ity. The images are taken in 5 optical filter bands (grizY ) on
a total area of ⇠ 250 deg2 and reach close to the expected full
depth of DES at r ⇠ 23.9.

The main goal of this work is to reconstruct the weak
lensing mass map from shear measurements of the DES SV
data in a 139 deg2 contiguous region overlapping with the
South Pole Telescope Survey (the SPT-E field). We present
the methodology used for the map construction, followed by
cross-correlation results and conclusions. Throughout the pa-
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structures found via independent optical techniques. In §VI,
we quantify the wide-field mass-to-light correlation on differ-
ent spatial scales using the full field. We show that our results
are consistent with expectations from simulations. In §VII we
estimate the level of contamination by systematics in our re-
sults from a wide range of sources. Finally, we conclude in
§VIII.

II. METHODOLOGY

In this section we first briefly review the principles of weak
lensing in §II A. Then, we describe the adopted mass recon-
struction method in §II B. Finally in §II C, we describe our
method of generating galaxy density maps. The galaxy den-
sity maps are used as independent mass tracers in this work
to help confirm the signal measured in the weak lensing mass
maps.

A. Weak gravitational lensing

When light from galaxies passes through a foreground mass
distribution, the resulting bending of light leads to the galaxy
images being distorted [e.g. 1]. This phenomenon is called
gravitational lensing. The local mapping between the source
(b ) and image (q ) plane coordinates (aside from an overall
displacement) can be described by the lens equation:

b �b0 = A(q)(q �q0), (1)

where b0 and q0 is the reference point in the source and the
image plane. A is the Jacobian of this mapping, given by

A(q) = (1�k)

✓
1� µ1 �µ2
�µ2 1+ µ1

◆
, (2)

where k is the convergence, µi = gi/(1 � k) is the reduced
shear and gi is the shear. i = 1,2 refers to the 2D coordinates
in the plane. The premultiplying factor (1�k) causes galaxy
images to be dilated or reduced in size, while the terms in the
matrix cause distortion in the image shapes. Under the Born
approximation, which assumes that the deflection of the light
rays due to the lensing effect is small, A is given by [e.g. 1]

Ai j(q ,r) = di j �y,i j, (3)

where y is the lensing deflection potential, or projected grav-
itational potential along the line of sight. For a spatially flat
Universe, it is given by the line of sight integral of the 3D
gravitational potential F,

y (q ,r) = �2
Z r

0
dr0 r � r0

rr0 F
�
q ,r0�, (4)

where r is the comoving distance. Comparison of Eqn. 3 with
Eqn. 2 gives

k =
1
2

—2y; (5)

g = g1 + ig2 =
1
2

(y,11 �y,22)+ iy,12. (6)

For the purpose of this paper, we use the Limber approxima-
tion which lets us use the Poisson equation for the density
fluctuation d = (D� D̄)/D̄ (where D and D̄ are the 3D density
and mean density respectively):

—2F =
3H2

0 Wm

2a
d , (7)

where a is the cosmological scale factor. Equations 4 and 5
give the convergence measured at a sky coordinate q from
sources at comoving distance r:

k(q ,r) =
3H2

0 Wm

2c2

Z r

0
dr0 (r � r0)r0

r
d (q ,r0)

a(r0)
. (8)

We can generalize to sources with a distribution in comoving
distance (or redshift) f (r) as: k(q) =

R
k(q ,r) f (r)dr. That

is, a k map constructed over a region on the sky gives us the
integrated mass density fluctuation in the foreground of the k
map weighted by the lensing weight p(r), which is itself an
integral over f (r):

k(q) =
3H2

0 Wm

2c2

Z
drp(r)r

d (q ,r)
a(r)

, (9)

with

p(r) =
Z rH

r
dr0 f (r0)

r0 � r
r

. (10)

where rH is the comoving distance to the horizon. For a spec-
ified cosmological model and f (r) specified by the redshift
distribution of source galaxies, the above equations provide
the basis for predicting the statistical properties of k .

B. Mass maps from Kaiser-Squires reconstruction

In this paper we perform weak lensing mass reconstruction
based on the method developed in Kaiser and Squires [39].
The Kaiser-Squires (KS) method is known to work well up
to a constant additive factor as long as the structures are in
the linear regime [33], i.e. scales larger than clusters. In the
non-linear regime (scales corresponding to clusters or smaller
structures) improved methods have been developed to recover
the mass distribution [e.g. 40, 41]. In this paper we are inter-
ested in the mass distribution on large scales; we can therefore
restrict ourselves to the KS method. The KS method works as
follows. The Fourier transform of the observed shear, ĝ , re-
lates to the Fourier transform of the convergence, k̂ through

k̂l = D⇤
l ĝl , (11)

Dl =
l2
1 � l2

2 +2il1l2
|l|2 , (12)

where li are the Fourier counterparts for the angular coordi-
nates qi, i = 1,2 represent the two dimensions of sky coordi-
nate. The above equations hold true for l 6= 0. In practice we
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where H0 is the Hubble constant today, Wm is the total matter
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D̄)/D̄ is the mass overdensity (D and D̄ are the 3D density and
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CMB gives the integrated mass up to the surface of last scat-
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map constructed from galaxies, the CMB convergence map
typically covers a larger area with lower spatial resolution,
and is measured at a single redshift plane [15–17]. In this let-
ter, we use “weak lensing mass maps” to refer to convergence
maps generated from source galaxies.

Weak lensing mass maps supplement measurements based
on shear in many ways. Mass maps can be easily cross-
correlated with other data since they represent a scalar, the
local (projected) mass density, while the shear is a complex
variable and is sensitive to the global mass distribution. Cross
correlating with X-ray and Sunyaev-Zel’dovich observations
helps us understand the relation of hot gas and dark matter
in galaxy clusters. Cross correlating with the CMB conver-
gence map provides an important cross check of lensing mea-
surements using different tracers. Other applications of mass
maps include peak statistics [18–22], higher-order moments
of k [23], and the identification of superclusters and cosmic
voids [24].

The methodology of generating weak lensing mass maps
has been demonstrated in earlier work. Massey et al. [25]
generated a 3D mass map using COSMOS data in a 1.64 deg2

area. The high-quality shear measurements and redshift in-
formation allow for good mass reconstruction on small scales
and in the radial direction. Van Waerbeke et al. [26], on the
other hand, focused on larger-scale information and gener-
ated 2D wide-field mass maps from four fields of size 25–72
deg2 in the Canada-France-Hawaii Telescope Lensing Survey
(CFHTLenS). Our work is similar to Van Waerbeke et al. [26],
but uses one contiguous region of 139 deg2 from the Dark En-
ergy Survey [DES, 5, 27] data. This is the first step towards
building mass maps from the full DES data set.

The data used in this work is part of the Science Verifica-
tion (SV) dataset from DES, an ongoing ground-based galaxy
survey that is scheduled to operate from September 2013 to
February 2018. The SV data were collected between Novem-
ber 2012 and February 2013 shortly after the commissioning
of the new wide-field mosaic camera, the Dark Energy Cam-
era [DECam, 28–30] on the 4m Blanco telescope at the Cerro
Tololo Inter-American Observatory (CTIO) in Chile. This
data was used to test survey operations and assess data qual-
ity. The images are taken in 5 optical filter bands (grizY ) on
a total area of ⇠ 250 deg2 and reach close to the expected full
depth of DES at r ⇠ 23.9.

The main goal of this work is to reconstruct the weak
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• The lensing potential thus obeys the Poisson equation

~r2 = 2 , (1.34)

which can be solved by means of the Greens function of the
Laplacian in two dimensions,

 (

~✓) =
1

⇡

Z
d

2✓0 (~✓0) ln |~✓ � ~✓0| . (1.35)

The gradient of this expression gives the deflection angle ~↵,

~↵(

~✓) =
1

⇡

Z
(~✓0)(~✓ � ~✓0)
|~✓ � ~✓0|2

d

2✓0 . (1.36)

This illustrates the superposition of individual deflection an-
gles we mentioned earlier: The point-mass deflection angles
of mass elements d2✓ are added up, taking their directions
into account.

1.4 Local imaging properties, shear and

magnification

• Since the deflection angle turns out to be the gradient of a
scalar potential, the lens equation reads

� = ✓ � ~r . (1.37)

The Jacobian matrix of this equation, which describes the local
properties of the lens mapping, has the components

Ai j =
@�i

@✓ j
= �i j �

@2 

@✓i@✓ j
; (1.38)

that is, local image distortions are given by the curvature matrix
of the lensing potential. From now on, we shall denote partial
derivatives of  by subscripts for brevity,

@ 

@✓i
=  i ,

@2 

@✓i@✓ j
=  i j . (1.39)

Source and image transformation
by the Jacobian matrix

• It is instructive to split a trace-free part off the Jacobian matrix
of the lens mapping. Since its trace is

TrA = 2 � ~r2 = 2(1 � ) , (1.40)

its trace-free part is

A � 1

2

ITrA = �
 
�

1

�
2

�
2

��
1

!
, (1.41)

where !
!"

is called the critical surface mass density (which depends on the redshifts of source and
lens). A mass distribution which has !51 somewhere, i.e. !5!

!"
, produces multiple images for

some source positions ! (see Schneider et al., 1992, Section 5.4.3). Hence, !
!"

is a characteristic
value for the surface mass density which distinguishes between &weak' and &strong' lenses. Note that
!51 is su$cient but not necessary for producing multiple images. In terms of !, the scaled
de#ection angle reads
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Eq. (3.8) implies that the de#ection angle can be written as the gradient of the deyection
potential

%(#)"1
!!!!

d!"# !(##) ln$#!##$ (3.9)

as ""&%. The potential %(#) is the two-dimensional analogue of the Newtonian gravitational
potential and satis"es the Poisson equation &!%(#)"2!(#).

3.1.3. Magnixcation and distortion
The solutions # of the lens equation yield the angular positions of the images of a source at !. The

shapes of the images will di!er from the shape of the source because light bundles are de#ected
di!erentially. The most visible consequence of this distortion is the occurrence of giant luminous
arcs in galaxy clusters. In general, the shape of the images must be determined by solving the lens
equation for all points within an extended source. Liouville's theorem and the absence of emission
and absorption of photons in gravitational light de#ection imply that lensing conserves surface
brightness (or speci"c intensity). Hence, if I"!#(!) is the surface-brightness distribution in the source
plane, the observed surface-brightness distribution in the lens plane is

I(#)"I"!#[!(#)] . (3.10)

If a source is much smaller than the angular scale on which the lens properties change, the lens
mapping can locally be linearised. The distortion of images is then described by the Jacobian
matrix

A(#)"R!R#""'"#
!R!%(#)
R"

"
R"

#
#""

1!!!(
$

!(
!

!(
!

1!!#(
$
# , (3.11)
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and ! is related to % through Poisson's equation. Hence, if #
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is a point within an image,
corresponding to the point !

&
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&
) within the source, we "nd from (3.10) using the locally

linearised lens equation
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In the above equation, r is the comoving distance and F is the
3D gravitational potential, whose spatial structure and time
evolution contains cosmological information.

Instead of measuring statistics based on shear, here we fo-
cus on an alternative approach by converting shear into the
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where H0 is the Hubble constant today, Wm is the total matter
density today, a is the cosmological scale factor, and d = (D�
D̄)/D̄ is the mass overdensity (D and D̄ are the 3D density and
mean density respectively).

Note that the same weak lensing effect also introduces
distortions in the observed cosmic microwave background

(CMB) maps. Reconstructing the convergence map from the
CMB gives the integrated mass up to the surface of last scat-
tering (z ⇠ 1100). Compared to the weak lensing convergence
map constructed from galaxies, the CMB convergence map
typically covers a larger area with lower spatial resolution,
and is measured at a single redshift plane [15–17]. In this let-
ter, we use “weak lensing mass maps” to refer to convergence
maps generated from source galaxies.

Weak lensing mass maps supplement measurements based
on shear in many ways. Mass maps can be easily cross-
correlated with other data since they represent a scalar, the
local (projected) mass density, while the shear is a complex
variable and is sensitive to the global mass distribution. Cross
correlating with X-ray and Sunyaev-Zel’dovich observations
helps us understand the relation of hot gas and dark matter
in galaxy clusters. Cross correlating with the CMB conver-
gence map provides an important cross check of lensing mea-
surements using different tracers. Other applications of mass
maps include peak statistics [18–22], higher-order moments
of k [23], and the identification of superclusters and cosmic
voids [24].

The methodology of generating weak lensing mass maps
has been demonstrated in earlier work. Massey et al. [25]
generated a 3D mass map using COSMOS data in a 1.64 deg2

area. The high-quality shear measurements and redshift in-
formation allow for good mass reconstruction on small scales
and in the radial direction. Van Waerbeke et al. [26], on the
other hand, focused on larger-scale information and gener-
ated 2D wide-field mass maps from four fields of size 25–72
deg2 in the Canada-France-Hawaii Telescope Lensing Survey
(CFHTLenS). Our work is similar to Van Waerbeke et al. [26],
but uses one contiguous region of 139 deg2 from the Dark En-
ergy Survey [DES, 5, 27] data. This is the first step towards
building mass maps from the full DES data set.

The data used in this work is part of the Science Verifica-
tion (SV) dataset from DES, an ongoing ground-based galaxy
survey that is scheduled to operate from September 2013 to
February 2018. The SV data were collected between Novem-
ber 2012 and February 2013 shortly after the commissioning
of the new wide-field mosaic camera, the Dark Energy Cam-
era [DECam, 28–30] on the 4m Blanco telescope at the Cerro
Tololo Inter-American Observatory (CTIO) in Chile. This
data was used to test survey operations and assess data qual-
ity. The images are taken in 5 optical filter bands (grizY ) on
a total area of ⇠ 250 deg2 and reach close to the expected full
depth of DES at r ⇠ 23.9.

The main goal of this work is to reconstruct the weak
lensing mass map from shear measurements of the DES SV
data in a 139 deg2 contiguous region overlapping with the
South Pole Telescope Survey (the SPT-E field). We present
the methodology used for the map construction, followed by
cross-correlation results and conclusions. Throughout the pa-
per, we adopt the following cosmological parameters [31]:
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function (or its Fourier counterpart, the power spectrum) of
the shear field, has been measured in several earlier datasets
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Instead of measuring statistics based on shear, here we fo-
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where H0 is the Hubble constant today, Wm is the total matter
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D̄)/D̄ is the mass overdensity (D and D̄ are the 3D density and
mean density respectively).

Note that the same weak lensing effect also introduces
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and is measured at a single redshift plane [15–17]. In this let-
ter, we use “weak lensing mass maps” to refer to convergence
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variable and is sensitive to the global mass distribution. Cross
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maps include peak statistics [18–22], higher-order moments
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deg2 in the Canada-France-Hawaii Telescope Lensing Survey
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ergy Survey [DES, 5, 27] data. This is the first step towards
building mass maps from the full DES data set.

The data used in this work is part of the Science Verifica-
tion (SV) dataset from DES, an ongoing ground-based galaxy
survey that is scheduled to operate from September 2013 to
February 2018. The SV data were collected between Novem-
ber 2012 and February 2013 shortly after the commissioning
of the new wide-field mosaic camera, the Dark Energy Cam-
era [DECam, 28–30] on the 4m Blanco telescope at the Cerro
Tololo Inter-American Observatory (CTIO) in Chile. This
data was used to test survey operations and assess data qual-
ity. The images are taken in 5 optical filter bands (grizY ) on
a total area of ⇠ 250 deg2 and reach close to the expected full
depth of DES at r ⇠ 23.9.

The main goal of this work is to reconstruct the weak
lensing mass map from shear measurements of the DES SV
data in a 139 deg2 contiguous region overlapping with the
South Pole Telescope Survey (the SPT-E field). We present
the methodology used for the map construction, followed by
cross-correlation results and conclusions. Throughout the pa-
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structures found via independent optical techniques. In §VI,
we quantify the wide-field mass-to-light correlation on differ-
ent spatial scales using the full field. We show that our results
are consistent with expectations from simulations. In §VII we
estimate the level of contamination by systematics in our re-
sults from a wide range of sources. Finally, we conclude in
§VIII.

II. METHODOLOGY

In this section we first briefly review the principles of weak
lensing in §II A. Then, we describe the adopted mass recon-
struction method in §II B. Finally in §II C, we describe our
method of generating galaxy density maps. The galaxy den-
sity maps are used as independent mass tracers in this work
to help confirm the signal measured in the weak lensing mass
maps.

A. Weak gravitational lensing

When light from galaxies passes through a foreground mass
distribution, the resulting bending of light leads to the galaxy
images being distorted [e.g. 1]. This phenomenon is called
gravitational lensing. The local mapping between the source
(b ) and image (q ) plane coordinates (aside from an overall
displacement) can be described by the lens equation:

b �b0 = A(q)(q �q0), (1)

where b0 and q0 is the reference point in the source and the
image plane. A is the Jacobian of this mapping, given by

A(q) = (1�k)

✓
1� µ1 �µ2
�µ2 1+ µ1

◆
, (2)

where k is the convergence, µi = gi/(1 � k) is the reduced
shear and gi is the shear. i = 1,2 refers to the 2D coordinates
in the plane. The premultiplying factor (1�k) causes galaxy
images to be dilated or reduced in size, while the terms in the
matrix cause distortion in the image shapes. Under the Born
approximation, which assumes that the deflection of the light
rays due to the lensing effect is small, A is given by [e.g. 1]

Ai j(q ,r) = di j �y,i j, (3)

where y is the lensing deflection potential, or projected grav-
itational potential along the line of sight. For a spatially flat
Universe, it is given by the line of sight integral of the 3D
gravitational potential F,

y (q ,r) = �2
Z r

0
dr0 r � r0

rr0 F
�
q ,r0�, (4)

where r is the comoving distance. Comparison of Eqn. 3 with
Eqn. 2 gives

k =
1
2

—2y; (5)

g = g1 + ig2 =
1
2

(y,11 �y,22)+ iy,12. (6)

For the purpose of this paper, we use the Limber approxima-
tion which lets us use the Poisson equation for the density
fluctuation d = (D� D̄)/D̄ (where D and D̄ are the 3D density
and mean density respectively):

—2F =
3H2

0 Wm

2a
d , (7)

where a is the cosmological scale factor. Equations 4 and 5
give the convergence measured at a sky coordinate q from
sources at comoving distance r:

k(q ,r) =
3H2

0 Wm

2c2

Z r

0
dr0 (r � r0)r0

r
d (q ,r0)

a(r0)
. (8)

We can generalize to sources with a distribution in comoving
distance (or redshift) f (r) as: k(q) =

R
k(q ,r) f (r)dr. That

is, a k map constructed over a region on the sky gives us the
integrated mass density fluctuation in the foreground of the k
map weighted by the lensing weight p(r), which is itself an
integral over f (r):

k(q) =
3H2

0 Wm

2c2

Z
drp(r)r

d (q ,r)
a(r)

, (9)

with

p(r) =
Z rH

r
dr0 f (r0)

r0 � r
r

. (10)

where rH is the comoving distance to the horizon. For a spec-
ified cosmological model and f (r) specified by the redshift
distribution of source galaxies, the above equations provide
the basis for predicting the statistical properties of k .

B. Mass maps from Kaiser-Squires reconstruction

In this paper we perform weak lensing mass reconstruction
based on the method developed in Kaiser and Squires [39].
The Kaiser-Squires (KS) method is known to work well up
to a constant additive factor as long as the structures are in
the linear regime [33], i.e. scales larger than clusters. In the
non-linear regime (scales corresponding to clusters or smaller
structures) improved methods have been developed to recover
the mass distribution [e.g. 40, 41]. In this paper we are inter-
ested in the mass distribution on large scales; we can therefore
restrict ourselves to the KS method. The KS method works as
follows. The Fourier transform of the observed shear, ĝ , re-
lates to the Fourier transform of the convergence, k̂ through

k̂l = D⇤
l ĝl , (11)

Dl =
l2
1 � l2

2 +2il1l2
|l|2 , (12)

where li are the Fourier counterparts for the angular coordi-
nates qi, i = 1,2 represent the two dimensions of sky coordi-
nate. The above equations hold true for l 6= 0. In practice we
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where H0 is the Hubble constant today, Wm is the total matter
density today, a is the cosmological scale factor, and d = (D�
D̄)/D̄ is the mass overdensity (D and D̄ are the 3D density and
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Note that the same weak lensing effect also introduces
distortions in the observed cosmic microwave background

(CMB) maps. Reconstructing the convergence map from the
CMB gives the integrated mass up to the surface of last scat-
tering (z ⇠ 1100). Compared to the weak lensing convergence
map constructed from galaxies, the CMB convergence map
typically covers a larger area with lower spatial resolution,
and is measured at a single redshift plane [15–17]. In this let-
ter, we use “weak lensing mass maps” to refer to convergence
maps generated from source galaxies.

Weak lensing mass maps supplement measurements based
on shear in many ways. Mass maps can be easily cross-
correlated with other data since they represent a scalar, the
local (projected) mass density, while the shear is a complex
variable and is sensitive to the global mass distribution. Cross
correlating with X-ray and Sunyaev-Zel’dovich observations
helps us understand the relation of hot gas and dark matter
in galaxy clusters. Cross correlating with the CMB conver-
gence map provides an important cross check of lensing mea-
surements using different tracers. Other applications of mass
maps include peak statistics [18–22], higher-order moments
of k [23], and the identification of superclusters and cosmic
voids [24].

The methodology of generating weak lensing mass maps
has been demonstrated in earlier work. Massey et al. [25]
generated a 3D mass map using COSMOS data in a 1.64 deg2

area. The high-quality shear measurements and redshift in-
formation allow for good mass reconstruction on small scales
and in the radial direction. Van Waerbeke et al. [26], on the
other hand, focused on larger-scale information and gener-
ated 2D wide-field mass maps from four fields of size 25–72
deg2 in the Canada-France-Hawaii Telescope Lensing Survey
(CFHTLenS). Our work is similar to Van Waerbeke et al. [26],
but uses one contiguous region of 139 deg2 from the Dark En-
ergy Survey [DES, 5, 27] data. This is the first step towards
building mass maps from the full DES data set.

The data used in this work is part of the Science Verifica-
tion (SV) dataset from DES, an ongoing ground-based galaxy
survey that is scheduled to operate from September 2013 to
February 2018. The SV data were collected between Novem-
ber 2012 and February 2013 shortly after the commissioning
of the new wide-field mosaic camera, the Dark Energy Cam-
era [DECam, 28–30] on the 4m Blanco telescope at the Cerro
Tololo Inter-American Observatory (CTIO) in Chile. This
data was used to test survey operations and assess data qual-
ity. The images are taken in 5 optical filter bands (grizY ) on
a total area of ⇠ 250 deg2 and reach close to the expected full
depth of DES at r ⇠ 23.9.

The main goal of this work is to reconstruct the weak
lensing mass map from shear measurements of the DES SV
data in a 139 deg2 contiguous region overlapping with the
South Pole Telescope Survey (the SPT-E field). We present
the methodology used for the map construction, followed by
cross-correlation results and conclusions. Throughout the pa-
per, we adopt the following cosmological parameters [31]:

Gravitational potential 
 of LSS

Matter density constrast

3

TABLE I: Catalogs and cuts used to construct the foreground and
background sample for this work, and the number of galaxies in each
sample after all the cuts are applied. The redshift cut is based on the
mean redshift output from the BPZ photo-z code and the magnitude
cut is based on the MAG AUTO parameter in the SEXTRACTOR output.

Background (source) Foreground (lens)
Input catalog ngmix011 im3shape SVA1 Gold
Photo-z 0.6<z<1.2 0.1<z<0.5
Selection “conservative additive” i <22
Number of galaxies 1,111,487 1,013,317 1,106,189
Number density 2.22 2.03 2.21
(arcmin�2)
Mean redshift 0.826 0.825 0.367

Wm = 0.3, WL = 0.7, Wk = 0.0, h = 0.72. A detailed account
of this work can be found in a companion paper in PRD.

METHODOLOGY

Data and simulations

Our galaxy samples are based on the DES SV Gold cata-
log (Rykoff et al., in preparation) and several extensions to
it. The Gold catalog is a product of the DES Data Man-
agement [DESDM, 32–35] pipeline version “SVA1” (Yanny
et al., in preparation), which includes calibrated photometry
and astrometry, object morphology, object classification and
masking of the co-add SV images. DESDM utilizes the soft-
ware packages SCAMP [36], SWARP [37], PSFEX [38] and
SEXTRACTOR [39] in the pipeline.

Several additional catalogs are used in this work. We use a
photometric redshift (photo-z) catalog from the photo-z code
Bayesian Photometric Redshifts [BPZ, 40, 41]. We use two
shear catalogs from the ngmix code [42] and the im3shape

code [43]. Both codes are publicly available [53]. The shear
measurement algorithms operate on single-exposure images
and measure the galaxy shapes, or “ellipticities”, by jointly fit-
ting all the images of the same galaxy with one galaxy model
and the different point-spread-function (PSF) model in each
image. The resulting ellipticity is a noisy estimator for shear
[2]. The shear estimates used in this work have passed a series
of tests described in Jarvis et al. (in preparation).

We construct from these catalogs background (“source”)
and foreground (“lens”) galaxy samples. The objective is to
construct the convergence, or mass map, from the background
sample and cross-correlate it with the galaxy map built from
the foreground sample. Table I lists the final selection cuts
for the samples. In the companion paper we also discuss a
second foreground sample composed of luminous red galax-
ies (LRGs). Note that the plots in this letter rely on the ngmix
shear catalog. However both shear catalogs have been used in
our analyses – we find the results described in the next section
from both catalogs to be statistically consistent. The “conser-
vative additive” selection cut on the background sample in-
volves a combination of signal-to-noise (S/N) cuts, size cuts

and other quality cuts (see Jarvis et al. in preparation for de-
tail).

To facilitate our understanding of possible systematics in
the procedure of constructing the mass map, we use a set
of simulated galaxy catalogs that we match closely to the
characteristics of the data (including intrinsic galaxy prop-
erties, galaxy number counts, noise, photo-z errors, survey
mask). We use the simulated galaxy catalogs developed for
the DES collaboration [44]. The catalog is based on three flat
LCDM dark matter-only N-body simulations with different
resolutions. Galaxies are populated using the prescriptions de-
rived from a high-resolution simulation using SubHalo Abun-
dance Matching techniques [44–46]. Photometric properties
for each galaxy are then assigned so that the magnitude-color-
redshift distribution reproduces that observed in the SDSS
DR8 [47] and DEEP2 [48] data. Weak lensing parameters
(shear and convergence) are assigned to each galaxy based on
the high-resolution ray-tracing algorithm Curved-sky grAvi-
tational Lensing for Cosmological Light conE simulatioNS
[49]. Details of the data and simulation catalogs are presented
in the companion paper.

Mass and galaxy maps

Equation 1 and Equation 3 can be Fourier transformed to
get a simple relationship between the Fourier transforms of
the shear and convergence, denoted ĝ and k̂ [50]:

k̂l = D⇤
l ĝl , (5)

Dl =
l2
1 � l2

2 +2il1l2
|l|2 , (6)

where li are the components of the angular wavenumber. The
above equations hold for l > 0.

In practice, we pixelate the shear measurements into a map
of 5⇥5 arcmin2 pixels and Fourier transform the map. We
then use Equation 5 to obtain k̂ and inverse Fourier transform
to yield our final real-space convergence map. In an ideal sce-
nario, this reconstructed convergence map does not contain
an imaginary component. However, due to noise and the fi-
nite area of the map, a non-zero imaginary component is re-
covered. We separate the real and imaginary parts of the mea-
sured convergence map into E- and B-modes, or k = kE + ikB.
The B-mode convergence is a useful diagnostic tool for test-
ing systematics, as it should vanish for real lensing signals
on a sufficiently large area. Finally, as the uncertainty in this
reconstruction is formally infinite for a discrete set of noisy
shear estimates, it is important to apply a filter to remove the
high-frequency noise [51]. In this work we apply a Gaussian
filter of different sizes.

One of the main goals of this work is to cross-correlate the
mass map with the foreground galaxy distribution. For this
purpose, we construct a second mass map assuming that the
foreground galaxy sample traces the mass distribution – we

It gets simpler in Fourier space: Kaiser & Squires, 93
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FIG. 1: The DES SV main foreground galaxy maps kg,main (left), E-mode convergence map kE (middle) and B-mode convergence map kB
(right) are shown in these panels. All maps are generated with 5⇥5 arcmin2 pixels and 20 arcmin RMS Gaussian smoothing. In the kg and
kE maps, red areas corresponds to overdensities and blue areas to underdensities. White regions correspond to the survey mask. The scale of
the Gaussian smoothing kernel is indicated by the Gaussian profile on the upper right corner of the right panel. The kE map is overlaid by
Redmapper galaxy clusters with optical richness l > 20. The radius of the circles scale with l .

refer to this map as kg. It is constructed using equation Equa-
tion 4 with d replaced by dg, the fractional overdensity of
galaxy counts. Under the assumption of linear bias (i.e. galaxy
overdensities are linearly proportional to the total mass over-
densities, which is expected to be valid on sufficiently large
scales), the smoothed kg is simply a product of the mass map
k with a constant bias factor. In practice, the limited redshift
range of our foreground galaxy sample means that we can-
not expect a perfect estimate of the mass map even if the bias
factor were unity.

RESULTS

Figure 1 shows the resulting galaxy map and the E and
B-mode convergence maps generated from the procedure de-
scribed above. The maps shown are for a Gaussian smoothing
of 20 arcmin RMS. We expect kE to correlate with kg, while
kB should not correlate with either of the other maps.

Correlation with clusters

The kE map shown in the middle panel of Figure 1 is over-
laid with galaxy clusters detected in the same data using the
algorithm Redmapper [52]. Each cluster is represented by a
circle with radius proportional to the optical richness l . l is
related to mass via a roughly linear relation (see Rykoff et al.
[52] for details of the mass calibration of l ). We select only
clusters with l > 20, which corresponds to mass larger than a
few times 1014 M�. Visually, one can see that the spatial dis-
tribution of the clusters traces the mass map very well, with

most clusters detected in or around the high kE regions.
We analyze the redshift distributions of the clusters in the

high and low mass density regions. Two examples are shown
in Figure 2, where we plot (in blue) the l -weighted redshift
distribution of the clusters within a 1 degree radius of the iden-
tified high and low-mass positions. Compared to the aver-
age redshift distribution of clusters (overlaid in grey), we find
that the high-mass (low-mass) regions indeed contain many
more (fewer) clusters than average. The redshift binning is
Dz=0.03, corresponding to between 1.5–3 sz in this redshift
range, where sz is the cluster photo-z error uncertainty. The
photo-z’s for Redmapper clusters are very well determined
(sz ⇡ 0.01(1+ z)), which is important for the identifications
of the 3D structures. Using these histograms we can identify
potential candidates for super-clusters. For example, the peak
at z ⇠ 0.14 in the left panel indicates that this spatial structure
is contained in a redshift range localized to within about 100
Mpc along the line of sight. This line of sight has multiple
structures at different redshifts, others have just one or two.
The redshift range above z = 0.6 (marked with the shaded
grey area) overlaps with the background sample, hence the
interpretation of their relation with the mass map is more com-
plicated. The largest mass concentrations are investigated in
more detail in the companion paper and in follow-up studies.

Mass-galaxy correlation

Next, we investigate quantitatively the correlation between
the foreground galaxies and the mass map by calculating the
Pearson correlation coefficient between the two maps over a
range of smoothing scales that span 5 to 40 arcmin. That is,
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We present a mass map reconstructed from weak gravitational lensing shear measurements over 139 deg2

from the Dark Energy Survey (DES) Science Verification data. The mass map probes both luminous and dark
matter, thus providing a tool for studying cosmology. We find good agreement between the mass map and
the distribution of massive galaxy clusters identified using a red-sequence cluster finder. Potential candidates
for super-clusters and voids are identified using these maps. We measure the cross-correlation between the
mass map and a magnitude-limited foreground galaxy sample and find a detection at the 5–7s level on a large
range of scales. These measurements are consistent with simulated galaxy catalogs based on LCDM N-body
simulations, suggesting low systematics uncertainties in the map. We summarize our key findings in this letter;
the detailed methodology and tests for systematics are presented in a companion paper.
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FIG. 1: The DES SV main foreground galaxy maps kg,main (left), E-mode convergence map kE (middle) and B-mode convergence map kB
(right) are shown in these panels. All maps are generated with 5⇥5 arcmin2 pixels and 20 arcmin RMS Gaussian smoothing. In the kg and
kE maps, red areas corresponds to overdensities and blue areas to underdensities. White regions correspond to the survey mask. The scale of
the Gaussian smoothing kernel is indicated by the Gaussian profile on the upper right corner of the right panel. The kE map is overlaid by
Redmapper galaxy clusters with optical richness l > 20. The radius of the circles scale with l .

refer to this map as kg. It is constructed using equation Equa-
tion 4 with d replaced by dg, the fractional overdensity of
galaxy counts. Under the assumption of linear bias (i.e. galaxy
overdensities are linearly proportional to the total mass over-
densities, which is expected to be valid on sufficiently large
scales), the smoothed kg is simply a product of the mass map
k with a constant bias factor. In practice, the limited redshift
range of our foreground galaxy sample means that we can-
not expect a perfect estimate of the mass map even if the bias
factor were unity.

RESULTS

Figure 1 shows the resulting galaxy map and the E and
B-mode convergence maps generated from the procedure de-
scribed above. The maps shown are for a Gaussian smoothing
of 20 arcmin RMS. We expect kE to correlate with kg, while
kB should not correlate with either of the other maps.

Correlation with clusters

The kE map shown in the middle panel of Figure 1 is over-
laid with galaxy clusters detected in the same data using the
algorithm Redmapper [52]. Each cluster is represented by a
circle with radius proportional to the optical richness l . l is
related to mass via a roughly linear relation (see Rykoff et al.
[52] for details of the mass calibration of l ). We select only
clusters with l > 20, which corresponds to mass larger than a
few times 1014 M�. Visually, one can see that the spatial dis-
tribution of the clusters traces the mass map very well, with

most clusters detected in or around the high kE regions.
We analyze the redshift distributions of the clusters in the

high and low mass density regions. Two examples are shown
in Figure 2, where we plot (in blue) the l -weighted redshift
distribution of the clusters within a 1 degree radius of the iden-
tified high and low-mass positions. Compared to the aver-
age redshift distribution of clusters (overlaid in grey), we find
that the high-mass (low-mass) regions indeed contain many
more (fewer) clusters than average. The redshift binning is
Dz=0.03, corresponding to between 1.5–3 sz in this redshift
range, where sz is the cluster photo-z error uncertainty. The
photo-z’s for Redmapper clusters are very well determined
(sz ⇡ 0.01(1+ z)), which is important for the identifications
of the 3D structures. Using these histograms we can identify
potential candidates for super-clusters. For example, the peak
at z ⇠ 0.14 in the left panel indicates that this spatial structure
is contained in a redshift range localized to within about 100
Mpc along the line of sight. This line of sight has multiple
structures at different redshifts, others have just one or two.
The redshift range above z = 0.6 (marked with the shaded
grey area) overlaps with the background sample, hence the
interpretation of their relation with the mass map is more com-
plicated. The largest mass concentrations are investigated in
more detail in the companion paper and in follow-up studies.

Mass-galaxy correlation

Next, we investigate quantitatively the correlation between
the foreground galaxies and the mass map by calculating the
Pearson correlation coefficient between the two maps over a
range of smoothing scales that span 5 to 40 arcmin. That is,
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33Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain

34SEPnet, South East Physics Network, (www.sepnet.ac.uk)
(Dated: May 11, 2015)

We present a mass map reconstructed from weak gravitational lensing shear measurements over 139 deg2

from the Dark Energy Survey (DES) Science Verification data. The mass map probes both luminous and dark
matter, thus providing a tool for studying cosmology. We find good agreement between the mass map and
the distribution of massive galaxy clusters identified using a red-sequence cluster finder. Potential candidates
for super-clusters and voids are identified using these maps. We measure the cross-correlation between the
mass map and a magnitude-limited foreground galaxy sample and find a detection at the 5–7s level on a large
range of scales. These measurements are consistent with simulated galaxy catalogs based on LCDM N-body
simulations, suggesting low systematics uncertainties in the map. We summarize our key findings in this letter;
the detailed methodology and tests for systematics are presented in a companion paper.
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FIG. 2: Blue lines show the richness-weighted redshift distribution
of redmapper galaxy clusters along along overdense (left) and un-
derdense (right) regions in the convergence map. The (RA, DEC)
positions of the each region is shown in the upper right corner of
each panel. The thick grey line shows the average redshift distribu-
tion over the full map. The redshift range above z = 0.6 (marked with
the shaded grey area) overlap with the background sample, hence the
interpretation of the structures there is more complicated.

we calculate

rkE kg =
hkEkgi
skE skg

, (7)

where hkEkgi is the covariance between kE and kg, and skE
and skg are the standard deviations of the two maps. In this
calculation, pixels in the masked region are not used. We also
remove pixels within 10 arcmin of the boundaries to avoid
significant artefacts from the smoothing. Similarly we cal-
culate the Pearson correlation coefficient between kB and the
other maps to check for any significant systematic effects. The
errors on the correlation coefficients are estimated by a jack-
knife resampling of 10 deg2 sub-regions of the maps.

The results are shown in Figure 3. We find that the Pear-
son correlation coefficient between kg and the E-mode conver-
gence is 0.39±0.06 at 10 arcmin smoothing and 0.52±0.08
at 20 arcmin smoothing. This corresponds to a ⇠ 6.8s sig-
nificance at these scales. The correlation between the B-mode
convergence and the kg maps is consistent with zero at all
smoothing scales. Similarly, the correlation between the E
and B-modes convergence is consistent with zero. The grey
shaded regions show the 1s range of results from the simu-
lated galaxy catalogs modelled to match the main characteris-
tics of the data samples. The black data points agree well with
the simulations, suggesting there are no significant contribu-
tions to our signal from systematic errors.

To further examine the potential contamination by system-
atics in the maps, we construct maps of 20 external quantities
(e.g. airmass, extinction, seeing, PSF ellipticity etc.) and cross
correlate with our kE and kg maps. We find that none of these
quantities contribute significantly to the cross correlation sig-
nal we have measured, with most of them consistent with zero.
Details are presented in the companion paper.

FIG. 3: The Pearson correlation coefficient between the foreground
galaxy and convergence maps is shown as a function of smoothing
scale. The solid and open symbols show correlation coefficients from
the E and B-modes of the convergence respectively. The grey shaded
regions show the 1s bounds from simulations for the correlation
between the E and B-mode convergence and the foreground galax-
ies, with the same pixelization and smoothing as the data as well as
sources of statistical uncertainty. The green points show the correla-
tion between E and B-modes of the convergence map. The various
correlation coefficients with the B-mode convergence are consistent
with zero. Uncertainties on all measurements are estimated using
jackknife resampling.

SUMMARY

We present in this letter a weak lensing convergence map
generated from shear measurements in the 139 deg2 SPT-E
field in the Dark Energy Survey Science Verification data. The
mean redshift of the source galaxies is 0.82 and corresponds
to a comoving distance of 2.9 Gpc. This map probes the pro-
jected total mass (luminous and dark), with matter half-way
between us and the source galaxies making the most contri-
bution to the lensing. We study the correlation of the mass
map with galaxies and clusters that trace the foreground mass
distribution.

The spatial distribution of galaxy clusters identified in the
same data using an independent technique is highly correlated
with the mass map. The combination of the mass map and
the cluster catalog provide a powerful tool for exploring po-
tential super-clusters and super-voids in the Universe. Cross-
correlating the E-mode mass map with a magnitude-limited
foreground galaxy sample gives a 5–7 s detection, while the
cross correlation between B-mode mass map and the galaxies
is consistent with zero on all scales. These results are consis-
tent with simulations of the LCDM model in which we have
modeled several sources of statistical uncertainties in the lens-
ing and galaxy maps. We have carried out a number of tests
for external systematic errors and find that the main source of
uncertainty in the maps is statistical.

With the detailed simulations and the methodology to test
for, and potentially correct, contributions from systematic er-
rors, we have the basis for cosmological studies with forth-
coming DES datasets. Topics for follow-up studies include

34
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Figure 3. The estimated redshift distributions from SkyNet for the ngmix shape catalog (left) and the im3shape shape catalog (right).
The full n(z) for objects with mean redshifts in the redshift range 0.3 < z̄ < 1.3 (top) and the n(z) for three tomographic bins (bottom)
are shown. The redshift distributions are estimated by summing and rescaling the photometric redshift probability distributions for each
galaxy in the tomographic bin using the weights applied to the shear catalog.

measure will be an underestimate if the model employed
is not well matched to the data. However, given the good
match of our fiducial model to the data as shown in Fig-
ures 1 and 2, the degree to which the signal-to-noise is un-
derestimated is small in this case. We use the COSMOSIS pack-
age11 by Zuntz et al. (2014) to compute the shear correlation
functions with the Takahashi et al. (2012) non-linear power
spectrum fitting function. See the companion paper present-
ing cosmological constraints from these measurements for
additional details (DES et al. 2015). The covariance ma-
trix has been validated through comparisons to both a de-
tailed halo model prediction and jackknife estimates in sin-
gle mock patches versus the survey data, which are discussed
in detail in the Section 5. We find non-tomographic cosmic
shear detections at 6.5� and 4.7� significance for ngmix and
im3shape respectively.

Figure 2 shows the full three-bin tomographic shear cor-
relation function measurements for ngmix on the left and
im3shape on the right. The redshift distributions of the
three tomographic bins for the SkyNet code are given in the
lower panels of Figure 3. In order to compute the covariance
matrix of these measurements, we use the same procedure
in the mock catalogs as for the non-tomographic case, ex-
cept that we use the tomographic redshift distributions to
assign the mock galaxies to di↵erent tomographic bins. We
additionally draw the shape noise in the mock from only the
galaxies in the data in the same tomographic bin. We find
overall tomographic cosmic shear detections of 9.7� and 7.0�
for ngmix and im3shape, respectively. Note that the ngmix

catalog has more sources and extends to slightly higher red-
shift on average, yielding higher significance detections of
cosmic shear.

In Figures 1 and 2, the solid black line shows the ex-
pected amplitude and shape of the shear correlation func-
tions in the cosmological model given above. This curve is
not a fit, and is merely presented as a reference for com-

11 https://bitbucket.org/joezuntz/cosmosis

parison. Due to the fact that the two catalogs have di↵er-
ent redshift distributions, a direct comparison of the shear
correlation functions between the two catalogs is not pos-
sible without further work matching the two catalogs and
accounting for the shared shape noise, sample variance, and
image noise between the two catalogs. This matched com-
parison is described further in Sec. 6.2.

4.3 Alternative Two-point Statistics

In Appendix A, we describe results from two alternative two-
point statistics of the shear field. These include the methods
of: (i) Becker & Rozo (2014), which use a weighting of the
real-space correlation estimates to construct e�cient esti-
mates of the C` values and (ii) a second estimation of the
spherical harmonic shear power spectrum using PolSpice12

(Szapudi et al. 2000; Chon et al. 2004). Note that these esti-
mators weight the data at di↵erent angular scales di↵erently
than the default two0point correlation functions so that we
do not expect to get identical results in terms of the signif-
icance of the cosmic shear detection. We do find detections
of cosmic shear that are consistent with the conventional
real-space estimators we use by default, indicating no strong
preference for any given estimator. Tests of B-mode statis-
tics from these estimators are discussed in Sec. 6.1, where we
again find consistency between di↵erent two-point function
estimation methods.

5 ESTIMATING AND VALIDATING THE
COVARIANCE MATRIX

In this section, we present our covariance matrix and a set of
validation tests. The fiducial covariance matrix for our mea-
surements is estimated from the mock catalogs presented
in Section 3. First we compare the covariance matrix from

12 http://www2.iap.fr/users/hivon/software/PolSpice/

c� 2015 RAS, MNRAS 000, 1–21
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Figure 2. Constraints on the amplitude of fluctuations �8 and
the matter density ⌦m from DES SV cosmic shear (purple filled
contours) compared with constraints from Planck (red filled con-
tours) and CFHTLenS (orange filled, using the correlation func-
tions and covariances presented in Heymans et al. (2013), and the
‘original conservative scale cuts’ described in Section 6.1.1). DES
SV and CFHTLenS are marginalised over the same astrophysical
systematics parameters and DES SV is additionally marginalised
over uncertainties in photometric redshifts and shear calibration.
Planck is marginalised over the 6 parameters of ⇤CDM (the 5 we
vary in our fiducial analysis plus ⌧). The DES SV and CFHTLenS
constraints are marginalised over wide flat priors on ns, ⌦b and
h (see text), assuming a flat universe. For each dataset, we show
contours which encapsulate 68% and 95% of the probability, as is
the case for subsequent contour plots.

The fiducial data vector is the real-space shear–shear
angular correlation function ⇠±(✓) measured in three red-
shift bins (hereafter bins 1, 2, 3, with ranges of 0.3 < z <
0.55, 0.55 < z < 0.83 and 0.83 < z < 1.3, and galaxies
assigned to bins according the mean of their photometric
redshift probability distribution function) including cross-
correlations, as shown in Figure 1. The data vector initially
includes galaxy pairs with separations between 2 and 300 ar-
cmin (although many of these pairs are excluded by the scale
cuts described in Section 4.2). We focus mostly on placing
constraints on the matter density of the Universe, ⌦m, and
�8, defined as the rms mass density fluctuations in 8 Mpc/h
spheres at the present day, as predicted by linear theory.

We marginalise over wide flat priors 0.2 < h < 1, 0.01 <
⌦b < 0.07 and 0.7 < ns < 1.3, assuming a flat Universe, and
thus we vary 5 cosmological parameters in total. The priors
were chosen to be wider than the constraints in a variety
of existing Planck chains.. In practice the results are very
similar to those with these parameters fixed, due to the weak
dependence of cosmic shear on these other parameters. We
use a fixed neutrino mass of 0.06 eV.

We summarise our systematics treatments below:
(i) Shear calibration: For each redshift bin, we
marginalise over a single free parameter to account for
shear measurement uncertainties: the predicted data vector
is modified to account for a potential unaccounted multi-
plicative bias ⇠ij ! (1+mi)(1+mj)⇠

ij . We place a separate
Gaussian prior on each of the three mi parameters. Each is

centred on 0 and of width 0.05, as advocated by J15. See
Section 5.1 for more details.
(ii) Photometric redshift calibration: Similarly, we
marginalise over one free parameter per redshift bin to de-
scribe photometric redshift calibration uncertainties. We al-
low for an independent shift of the estimated photomet-
ric redshift distribution ni(z) in redshift bin i i.e. ni(z) !
ni(z � �zi). We use independent Gaussian priors on each of
the three �zi values of width 0.05 as recommended by Bo15.
See Section 5.2 for more details.
(iii) Intrinsic alignments: We assume an unknown ampli-
tude of the intrinsic alignment signal and marginalise over
this single parameter, assuming the non-linear alignment
model of Bridle & King (2007). See Section 5.3 for more
details of our implementation and tests on the sensitivity of
our results to intrinsic alignment model choice.
(iv) Matter power spectrum: We use halofit (Smith
et al. 2003a), with updates from Takahashi et al. (2012) to
model the non-linear matter power spectrum, and refer to
this prescription simply as ‘halofit’ henceforth. The range
of scales for the fiducial data vector is chosen to reduce the
bias from theoretical uncertainties in the non-linear matter
power spectrum to a level which is not significant given our
statistical uncertainties (see Sections 4.2 and 5.4, and Table
2 for the minimum angular scale for each bin combination).
We thus marginalise over 3 + 3 + 1 = 7 nuisance parame-
ters characterising potential biases in the shear calibration,
photometric redshift estimates and intrinsic alignments re-
spectively.

Figure 2 shows our main DES SV cosmological con-
straints in the ⌦m � �8 plane, from the fiducial data vec-
tor and systematics treatment, compared to those from
CFHTLenS and Planck. For the CFHTLenS constraints, we
use the same six redshift bin data vector and covariance as
H13, but apply the conservative cuts to small scales used
as a consistency test in that work (for ⇠+ we exclude an-
gles < 30 for redshift bin combinations involving the lowest
two redshift bins, and for ⇠�, we exclude angles < 300 for
bin combinations involving the lowest four redshift bins, and
angles < 160 for bin combinations involving the highest two
redshift bins). We see that in this plane, our results are mid-
way between the two datasets and are compatible with both.
We discuss this further in Section 6.1.

Using the MCMC chains generated for Figure 2 we find
the best fit power law �8(⌦m/0.3)↵ to describe the degen-
eracy direction in the �8, ⌦m plane (we estimate ↵ using
the covariance of the samples in the chain in log�8 � log⌦m

space). We find ↵ = 0.478 and so use a fiducial value for ↵
of 0.5 for the remainder of the paper 9 We find a constraint
perpendicular to the degeneracy direction of

S8 ⌘ �8(⌦m/0.3)0.5 = 0.81± 0.06 (68%). (1)

Because of the strong degeneracy, the marginalised 1d con-
straints on either ⌦m or �8 alone are weaker; we find
⌦m = 0.36+0.09

�0.21 and �8 = 0.81+0.16
�0.26. In Table 1 we also show

other results which are discussed in the later sections, includ-

9 We would advise caution when using S8 to characterise the DES
SV constraints instead of a full likelihood analysis - S8 is sensi-
tive to the tails of the probability distribution, and also weakly
depends on the priors used on the other cosmological parameters.
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Figure 3. Graphical illustration of the 68% confidence limits on S8 ⌘ �8(⌦m/0.3)0.5 values given in Table 1, showing the robustness
of our results (purple) and comparing with the CFHTLenS and CMB lensing results (orange) and Planck (red). The grey vertical band
aligns with the fiducial constraints at the top of the plot. Note that Planck lensing in particular optimally constrains a di↵erent quantity
than S8 shown above e.g. see the second and third columns of Table 1.

ing variations of the DES SV analysis (see Section 5) and
combinations with CFHTLenS and Planck (see Section 6.1).

For comparison with other constraints we also investi-
gated the impact of ignoring shear measurement and photo-
metric redshift uncertainties and find that the central value
of S8 changes negligibly, and the error bar decreases by
⇠20% (see Table 1 for details).

In Table 1 we also show results ignoring all systematics.
This is the same as the “No photoz or shear systematics”
case but additionally ignoring intrinsic alignments, so that
only the other cosmological parameters are varied. The cen-
tral value shifts down by 0.037 and the error bar is reduced
by 27% compared to the fiducial case. Therefore the sys-
tematics contribute almost half (in quadrature) of our total
error budget, and further e↵ort will need to be made to re-
duce systematic uncertainties if we are to realise a significant
improvement in the constraints (from shear 2pt correlations
alone) with larger upcoming DES samples.

4 CHOICE OF DATA VECTOR AND SCALES
USED

In this Section we consider the impact of the choice of two-
point statistic on the cosmological constraints, and investi-
gate how our fiducial estimators are a↵ected by the choice
of angular scales used.

4.1 Choice of two-point statistic

Be15 present results for a selection of two-point statistics
– see that work, and references therein for more detailed
description of the statistics and their estimators. For an
overview of the theory presented here see Bartelmann &
Schneider (2001).

The statistics can all be described as weighted integrals
over the weak lensing convergence power spectrum at an-
gular wavenumber `, Cij

` , of tomographic bin i and tomo-
graphic bin j, which can be related to the matter power

MNRAS 000, 1–20 (2015)
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Figure 11. Non-tomographic DES SV (blue circles), CFHTLenS
K13 (orange squares) and Planck (red) data points projected
onto the matter power spectrum (black line). This projection is
cosmology-dependent and assumes the Planck best fit cosmology
in ⇤CDM. The Planck error bars change size abruptly because
the C`s are binned in larger ` bins above ` = 50.

of the point is the median of the window function of the
P (k) integral used to predict the observable (⇠+ or C`). The
height of the point is given by the ratio of the observed to
predicted observable, multiplied by the theory power spec-
trum at that wavenumber. For simplicity we use the no-
tomography results from each of DES SV and CFHTLenS
(K13). The results are therefore cosmology dependent, and
we use the Planck best fit cosmology for the version shown
here. The CFHTLenS results are below the Planck best fit
at almost all scales (see also discussion in MacCrann et al.
2014). The DES results agree relatively well with Planck up
to the maximum wavenumber probed by Planck, and then
drop towards the CFHTLenS results.

6.2 Dark Energy

The DES SV data is only 3% of the total area of the full
DES survey, so we do not expect to be able to significantly
constrain dark energy with this data. Nonetheless, we have
recomputed the fiducial DES SV constraints for the second
simplest dark energy model, wCDM, which has a free (but
constant with redshift) equation of state parameter w, in
addition to the other cosmological and fiducial nuisance pa-
rameters (see Section 3). The purple contours in Figure 12
show constraints on w versus the main cosmic shear param-
eter S8; we find DES SV has a slight preference for lower
values of w, with w < �0.68 at 95% confidence. There is a
small positive correlation between w and S8, but our con-
straints on S8 are generally robust to variation in w.

The Planck constraints (the red contours in Figure 12)
agree well with the DES SV constraints: combining DES SV
with Planck gives negligibly di↵erent results to Planck alone.
This is also the case when combining with the Planck+ext
results shown in grey. Planck Collaboration et al. (2015b)

Figure 12. Constraints on the dark energy equation of state w
and S8 ⌘ �8(⌦m/0.3)0.5, from DES SV (purple), Planck (red),
CFHTLenS (orange), and Planck+ext (grey). DES SV is consis-
tent with Planck at w = �1. The constraints on S8 from DES SV
alone are also generally robust to variation in w.

discuss that while Planck CMB temperature data alone do
not strongly constrain w, they do appear to show close to a
2� preference for w < �1. However, they attribute it partly
to a parameter volume e↵ect, and note that the values of
other cosmological parameters in much of the w < �1 region
are ruled out by other datasets (such as those used in the
‘ext’ combination).

Planck CMB data combined with CFHTLenS also show
a preference for w < �1 (Planck Collaboration et al. 2015b).
The CFHTLenS constraints (orange contours) in Figure 12
show a similar degeneracy direction to the DES SV results,
although with a preference for slightly higher values of w
and lower S8. The tension between Planck and CFHTLenS
in ⇤CDM is visible at w = �1, and interestingly, is not fully
resolved at any value of w in Figure 12. This casts doubt on
the validity of combining the two datasets in wCDM.

7 CONCLUSIONS

We have presented the first constraints on cosmology from
the Dark Energy Survey. Using 139 square degrees of Science
Verification data we have constrained the matter density of
the Universe ⌦m and the amplitude of fluctuations �8, and
find that the tightest constraints are placed on the degener-
ate combination S8 ⌘ �8(⌦m/0.3)0.5, which we measure to
7% accuracy to be S8 = 0.81± 0.06.

DES SV alone places weak constraints on the dark
energy equation of state: w < �0.68 (95%). These do
not significantly change constraints on w compared to
Planck alone, and the cosmological constant remains within
marginalised DES SV+Planck contours.

The state of the art in cosmic shear, CFHTLenS, gives
rise to some tension when compared with the most powerful
dataset in cosmology, Planck (Planck Collaboration et al.
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Using galaxy clustering + galaxy-galaxy lensing

Next Y1 analysis will consider galaxy clustering + 
galaxy-galaxy lensing + galaxy lensing
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Temperature E-modes B-modes

Unlensed

Lensed
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Typical deflections: ~2.5 arcmin

Coherent on the degree scale

Planck SPT3G
CMB lens. - galaxy 26 28
CMB lens. - shear 38 66
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CMB lensing potential

CMB lensing potential is an unbiased tracer of all the matter distribution up to z~1100

DES will enable CMB lensing tomography

Absolute spectrum Ratio

CMB Lensing kernel is wide and peaks at z ~2

Planck Collaboration: Gravitational lensing by large-scale structures with Planck

1. Introduction

When Blanchard and Schneider first considered the e↵ect of
gravitational lensing on the cosmic microwave background
(CMB) anisotropies in 1987, they wrote with guarded optimism
that although “such an observation is far from present possibil-
ities [...] such an e↵ect will not be impossible to find and to
identify in the future.” (Blanchard & Schneider 1987). In the
proceeding years, and with the emergence of the concordance
⇤CDM cosmology, a standard theoretical picture has emerged,
in which the large-scale, linear structures of the Universe which
intercede between ourselves and the CMB last-scattering sur-
face induce small but coherent (Cole & Efstathiou 1989) de-
flections of the observed CMB temperature and polarisation
anisotropies, with a typical magnitude of 20. These deflec-
tions blur the acoustic peaks (Seljak 1996), generate small-scale
power (Linder 1990; Metcalf & Silk 1997), non-Gaussianity
(Bernardeau 1997), and convert a portion of the dominant E-
mode polarisation to B-mode (Zaldarriaga & Seljak 1998).
Gravitational lensing of the CMB is both a nuisance, in that it
obscures the primordial fluctuations (Knox & Song 2002), as
well as a potentially useful source of information; the charac-
teristic signatures of lensing provide a measure of the distri-
bution of mass in the Universe at intermediate redshifts (typi-
cally 0.1 < z < 5). In the⇤CDM framework, there exist accurate
methods to calculate the e↵ects of lensing on the CMB power
spectra (Challinor & Lewis 2005), as well as optimal estimators
for the distinct statistical signatures of lensing (Hu & Okamoto
2002; Hirata & Seljak 2003a).

In recent years there have been a number of increasingly sen-
sitive experimental measurements of CMB lensing. Lensing has
been measured in the data of the WMAP satellite both in cross-
correlation with large-scale-structure probed by galaxy surveys
(Hirata et al. 2004; Smith et al. 2007; Hirata et al. 2008; Feng
et al. 2012a), as well as internally at lower signal-to-noise (Smidt
et al. 2011; Feng et al. 2012b). The current generation of low-
noise, high-resolution ground-based experiments has done even
better; the Atacama Cosmology Telescope (ACT) has provided
an internal detection of lensing at 4.6� (Das et al. 2011, 2013),
and the South Pole Telescope detects lensing at 6� in the tem-
perature power spectrum, and 6.3� from a direct reconstruction
of the lensing potential (Keisler et al. 2011; van Engelen et al.
2012). Significant measurements of the correlation between the
reconstructed lensing potential and other tracers of large-scale
structure have also been observed (Bleem et al. 2012; Sherwin
et al. 2012).

Planck enters this field with unique full-sky, multi-frequency
coverage. Nominal map noise levels for the first data release (ap-
proximately 105, 45, and 60 µK arcmin for the three CMB chan-
nels at 100, 143, and 217 GHz respectively) are approximately
five times lower than those of WMAP (or twenty five times lower
in power), and the Planck beams (approximately 100, 70 and 50
at 100, 143 and 217 GHz), are small enough to probe the 2.04
deflections typical of lensing. Full sky coverage is particularly
beneficial for the statistical analysis of lensing e↵ects, as much
of the “noise” in temperature lens reconstruction comes from
CMB fluctuations themselves, which can only be beaten down
by averaging over many modes.

Lensing performs a remapping of the CMB fluctuations,
such that the observed temperature anisotropy in direction n̂
is given in terms of the unlensed, “primordial” temperature

anisotropy as (e.g. Lewis & Challinor 2006)

T (n̂) = T unl(n̂+ r�(n̂)),

= T unl(n̂) +
X

i

ri�(n̂)riT (n̂) + O(�2), (1)

where �(n̂) is the CMB lensing potential, defined by

�(n̂) = �2
Z �⇤

0
d�

fK(�⇤ � �)
fK(�⇤) fK(�)

 (�n̂; ⌘0 � �). (2)

Here � is conformal distance (with �⇤ ⇡ 14000 Mpc) denoting
the distance to the CMB last-scattering surface) and  (�n̂, ⌘)
is the gravitational potential at conformal distance � along the
direction n̂ at conformal time ⌘ (the conformal time today is de-
noted as ⌘0). The angular-diameter distance fK(�) depends on
the curvature of the Universe, and is given by

fK(�) =

8>>>><
>>>>:

K�1/2 sin(K1/2�) for K > 0 (closed),
� for K = 0 (flat),
|K|�1/2 sinh(|K|1/2�) for K < 0 (open).

(3)

The lensing potential is a measure of the integrated mass distri-
bution back to the last-scattering surface. It contains information
on both the gravitational potentials  To first order, its e↵ect on
the CMB is to introduce a correlation between the lensed tem-
perature and the gradient of the unlensed temperature, a property
which can be exploited to make a (noisy) reconstruction of the
lensing potential itself.

In Fig. 1 we plot the noise power spectrum N��L for recon-
struction of the lensing potential using the three Planck frequen-
cies which are most sensitive to the CMB anisotropies on the
arcminute angular scales at which lensing e↵ects become ap-
parent. The angular size of the Planck beams (50 FWHM and
greater) does not allow a high signal-to-noise (S/N) reconstruc-
tion of the lensing potential for any individual mode (our high-
est S/N ratio on an individual mode is approximately 2/3 for the
143 and 217 GHz channels, or 3/4 for a minimum-variance com-
bination of both channels), however with full-sky coverage the
large number of modes which are probed provides considerable
statistical power. To provide a feeling for the statistical weight of
di↵erent regions of the lensing measurement, in Fig. 2 we plot
(forecasted) contributions to the total detection significance for
the potential power spectrum C��L as a function of lensing mul-
tipole L. In addition to the power spectrum of the lensing po-
tential, there is tremendous statistical power in cross-correlation
of the Planck lensing potential with other tracers of the matter
distribution. In Fig. 2 we also plot forecasted S/N contributions
for several representative tracers.

This paper describes the production, characterization, and
first science results for two Planck-derived lensing products:

(I) A map of the CMB lensing potential �(n̂) over a large
fraction of the sky (approximately 70%). This repre-
sents an integrated measure of mass in the entire visible
Universe, with a peak sensitivity to redshifts of z ⇠ 2.
At the resolution of Planck, this map provides an esti-
mate of the lensing potential down to angular scales of
50 at L = 2048, corresponding to structures on the order
of 3 Mpc in size at z = 2.

(II) An estimate of the lensing potential power spec-
trum C��L and an associated likelihood, which is
used in the cosmological parameter analysis of
Planck Collaboration XVI (2013). Our likelihood is

2
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Figure 7. Measured auto- (left) and cross-correlation functions (right) of DES-SV main galaxies as a function of photometric redshift. The panels refer to thin
photo-z bins, from low to high redshift. The error bars are derived from the N-body covariance matrix. The lines show the fiducial Planck cosmology rescaled
by the best-fit linear bias or amplitude obtained from the auto- (dashed) and from the cross-correlations (solid); for each case, the linear theory is shown with
thin dotted lines. The best-fit bias values and their 1� errors are also shown in each panel; the coloured bands represent 1 and 2� uncertainties on the best
fits. When fitting the auto-correlation bias, the points at # < #NL have been excluded from the fit, consistently with Crocce et al. (2015), as they lie in the
non-linear regime where the non-linear corrections are > 20%. All points are included in the cross-correlation fits. The auto-correlation results are presented
and discussed in more detail by Crocce et al. (2015), including a further discussion on the anomalous behaviour of the lowest-redshift bin at small angular
scales.

computationally expensive optimal estimators that extract all in-
formation contained in the data (Tegmark 1997; Bond et al. 1998),
and pseudo-C` estimators that are sub-optimal, but have a much
lower computational complexity (e.g., Hivon et al. 2002; Chon
et al. 2004).

5.2.1 Power spectrum estimators

In the following, we repeat our cross-correlation analysis in har-
monic space using two di↵erent estimators of the angular power
spectra C`: the pseudo-C` estimator PolSpice (Szapudi et al. 2001;
Chon et al. 2004; Fosalba & Szapudi 2004) for our main results
of Sections 5.2.2, 5.2.3, 5.2.4, and as a cross-check, a quadratic
maximum likelihood estimator described in Section 5.2.5. Masks

and data remain the same as for the real-space analysis presented
above.

We measure here the power spectra C` with the nearly-optimal
and unbiased pseudo-C` estimator implemented in the PolSpice
code. This public code measures the two-point auto (or cross-)
correlation functions w(#) and the angular auto- (or cross-) power
spectra C` from one (or two) sky map(s). It is based on the fast
spherical harmonic transforms allowed by isolatitude pixelisations
such as Healpix; for Npix pixels over the whole sky, and a C` com-
puted up to ` = `max, the PolSpice complexity scales like N1/2

pix `
2
max

instead of Npix `2max. The algorithm corrects for the e↵ects of the
masks and can deal with inhomogeneous weights given to the map
pixels. In detail, PolSpice computes the (pseudo) C` of the map
and weights/masks, calculates their (fast) Legendre transforms, i.e,
the corresponding correlation functions, computes their ratio, ap-
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where wab
i (x) are the binned theoretical correlation functions pre-

dicted from the parameters x. The e↵ect of the uncertainty on the
data covariance itself onto the final parameters variance can be es-
timated (Taylor et al. 2013; Dodelson & Schneider 2013; Percival
et al. 2014). We have tested that this contribution is small through-
out this work; the central values of fit parameters are unchanged
while error bars are a↵ected at the < 10% level.

In the following, we use a theory template based on the fidu-
cial (fid) Planck cosmology, and we fit its amplitude. We therefore
have for the auto- and cross-correlations:

wgg
i = b2

⇣
wgg

i

⌘
fid
, wgi = A

⇣
wgi

⌘
fid
. (23)

The amplitude of the auto-correlations is given by the galaxy bias
b2. The amplitude of the cross-correlations A depends on both the
galaxy bias and the actual amplitude of the CMB lensing signal
ALens, so that A = b ALens. If the underlying true cosmology matches
our fiducial ⇤CDM model, so that hALensi = 1, the expectation
value for the amplitude should be equal to the galaxy bias from
the auto-correlation hAi = b, if the same scales are considered; if
instead the scales considered do not match precisely, we expect this
to hold only approximately. A and b are the parameters that we fit
from our measurements on data and mocks below.

5.1.3 Real-space results: full sample

We show in Fig. 5 the measured two-point correlation functions
in real space of the DES-SV main galaxies in the SPT-E field.
The three panels show, from top to bottom, the galaxy auto-
correlation function, and the cross-correlation functions with SPT
and Planck CMB lensing.

We compare the measurements with the predictions from our
fiducial cosmology, where we use the non-linear matter power
spectrum from the Halofit formalism (Smith et al. 2003; Takahashi
et al. 2012). We fit the amplitudes of auto- and cross-correlations
given this model, binned consistently with the data, with simple
one-parameter likelihood fits.

In the case of the auto-correlation we determine the galaxy
bias b, assumed constant and linear. Given the comparatively large
e↵ect of non-linearities compared with the statistical error bars,
and in order to obtain a physically meaningful value for the lin-
ear galaxy bias, we restrict the fit to the bins at angular scales
# > #NL, where #NL is defined as the scale where the non-linear
auto-correlation function diverges from the linear theory by > 20%.
In the case of the cross-correlations, our main purpose is instead to
extract as much signal as possible, and the theoretical uncertainties
due to non-linearities are much smaller than the statistical errors.
For these reasons, we fit in this case the overall amplitude A to the
galaxy-CMB lensing cross-correlation functions at all scales. For
the DES-Planck correlation, we exclude the first angular bin, as it
is ⇠ 100% correlated with the second bin due to the larger smooth-
ing applied.

We can see in Fig. 5 that the galaxy auto-correlation is in
agreement with our fiducial ⇤CDM model with a linear bias b =
1.22± 0.03 (N-body covariance). The physically crude approxima-
tion of an e↵ective average bias across the full redshift range is
actually able to correctly model the observed auto-correlation of
the full galaxy sample; we study in our tomographic analysis be-
low the actual redshift evolution of galaxy bias. The CMB lensing
cross-correlations prefer a lower amplitude: A = 0.84 ± 0.13 and
A = 0.78±0.21 using the SPT and Planck maps, respectively. These
results are quoted for our most reliable covariance matrix (N-body),

Figure 5. Measured two-point correlation functions of DES-SV main galax-
ies and their correlations with CMB lensing maps. The red dots show the
measured results using our full galaxy catalogue. The top panel shows the
galaxy auto-correlation, the central panel is the correlation with SPT lens-
ing convergence, while the bottom panel shows the same with Planck. The
thick lines show the theoretical expectations from our Planck fiducial cos-
mology, rescaled by the best-fit bias b to the auto-correlation (dashed) and
best-fit amplitude A = bALens to the cross-correlation functions (solid).
The thin dotted lines refer to linear theory; the scale below which linear
and non-linear theories di↵er by > 20%, #NL, is marked in the first panel.
The dark and light gray bands represent the 1 and 2� uncertainties on the
best fit respectively. The error bars are from the N-body covariance, and
they are highly correlated. The correlation shapes for DES-SPT and DES-
Planck correlations di↵er because the Planck map is smoothed on larger
scales.

which we show in Fig. 6 for the three correlation functions consid-
ered; we present in Appendix C a detailed comparison of the four
covariance matrix estimators, where we demonstrate consistency
and robustness of both diagonal and o↵-diagonal elements.

We estimate the significance of the detections by evaluating
the best fits of the linear bias b ± �b and amplitude A ± �A for the
auto- and cross-correlations obtained with a simple one-parameter
�2 fit from the measured correlation functions. We show a summary
of the results in the left section of Table 1, from which we can al-
ready anticipate that the real and harmonic-space results presented
in Section 5.2.3 below yield consistent results in all cases. For both
SPT and Planck, the cross-correlation amplitude is lower than the
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Planck lensing and Herschel was performed recently by Bianchini
et al. (2014), while Omori & Holder (2015) measured at >5� the
cross-correlation with the Canada-France-Hawaii Telescope Lens-
ing Survey (CFHTLenS) galaxy number density.

However, none of the existing galaxy surveys has the depth
and density of sources over a contiguous area required for a com-
prehensive tomographic analysis of the CMB lensing signal; this is
finally possible with the Dark Energy Survey (DES) and SPT, and it
is the main focus of this work. The DES finished its second of five
years of operations in March 2015, and will eventually image 5000
square degrees in the Southern Hemisphere from the Blanco Tele-
scope in Chile, in the bands g, r, i, z, and Y using the Dark Energy
Camera (Flaugher et al. 2015). Its depth makes it well-suited for
measuring CMB lensing tomography, because it allows the survey
to detect a larger fraction of the CMB lensing signal, whose contri-
bution peaks at redshifts z > 1. In this paper, we cross-correlate the
initial DES Science Verification (SV) data with the CMB lensing
maps reconstructed by the Planck and SPT surveys, and report a de-
tection of the correlation in broad agreement with the expectations
under the assumption of a concordance ⇤CDM model, with a sig-
nificance of 6� and 4� for SPT and Planck respectively. The DES
SV data consist of near full-depth imaging of ⇠ 300 deg2, of which
we use the ⇠ 200 deg2 of the SPT-E field, which is reduced to 131
deg2 after masking. The SPT lensing data we use were derived by
van Engelen et al. (2012) from the 2500 deg2 SPT-SZ survey (Story
et al. 2013), which fully overlaps by design with the DES footprint,
while the Planck public data (Planck Collaboration et al. 2014c,
2015a) cover the entire extra-galactic sky. Motivated by the high
significance of the SPT detection, we measure this cross-correlation
in redshift bins, reconstructing the time evolution of CMB lensing.

The plan of this paper is as follows: after briefly reviewing the
theoretical expectations in Section 2, we present the data in Sec-
tion 3 and the mocks we use to estimate the covariances in Sec-
tion 4; we then report our results in Section 5, tests for possible
systematics in Section 6, and present some basic cosmological im-
plications in Section 7, before concluding in Section 8.

2 THEORY

2.1 Power spectra

Gravitational lensing deflects the primordial CMB temperature
anisotropies, so that the temperature we observe in a direction n̂
corresponds to the primordial unlensed anisotropy in the direction
n̂+r'(n̂). Here '(n̂) is the CMB lensing potential, defined in a flat
universe as (Lewis & Challinor 2006)

'(n̂) = �
Z �⇤

0
d�
�⇤ � �
�⇤�

[� +  ] (�n̂, ⌘0 � �) , (1)

where � is the comoving distance, asterisks denote quantities eval-
uated at the last-scattering surface, ⌘0 is the conformal time today,
and �, are the matter and light gravitational potentials, which are
e↵ectively equal in the standard⇤CDM model in linear theory. The
convergence field (n̂) can be used in place of the lensing potential
'(n̂); the two are related in multipole space as

`m =
`(` + 1)

2
'`m . (2)

By applying the Poisson equation, the CMB convergence in a di-
rection n̂ can be rewritten as a function of the matter overdensity �

(see e.g. Bleem et al. 2012):

(n̂) =
3⌦mH2

0

2

Z �⇤

0
d�
�2

a(�)
�⇤ � �
�⇤�

�(�n̂, ⌘0 � �) , (3)

where H0 is the Hubble parameter today,⌦m the matter energy den-
sity and a(�) is the scale factor.

In the local bias model (Fry & Gaztanaga 1993), the smoothed
galaxy overdensity �g is related to the smoothed matter overden-
sity � by a Taylor expansion, so that if the bias is assumed to be
deterministic, �g(x, z) =

P1
i=0 bi(z) �i(x, z)/i!. In the present anal-

ysis of DES data we will consider only scales where the linear
bias su�ces, as demonstrated by Crocce et al. (2015). In this case,
�g(x, z) = b(z) �(x, z). A galaxy catalogue with redshift distribution
dn/dz(z) thus provides an estimate of the projected overdensity in
a direction n̂ as

�g(n̂) =
Z 1

0
b(z)

dn
dz

(z) �(�n̂, z) dz , (4)

where b(z) is the galaxy bias (assumed here linear, deterministic
and scale-independent) and � the total matter overdensity field.

The two-point statistics of the galaxy-galaxy and galaxy-CMB
lensing correlations can be written in harmonic space as

Cgg
` =

2
⇡

Z 1

0
dk k2 P(k) Wg

` (k) Wg
` (k) (5)

Cg` =
2
⇡

Z 1

0
dk k2 P(k) W

` (k) Wg
` (k) , (6)

where P(k) is the matter power spectrum at z = 0, and the ker-
nels for galaxies and CMB lensing convergence are in the standard
model (� =  ) for a flat universe (Lewis & Challinor 2006; Bleem
et al. 2012; Sherwin et al. 2012):

Wg
` (k) =

Z 1

0
dz b(z)

dn
dz

(z) D(z) j`[k�(z)] (7)

W
` (k) =

3⌦mH2
0

2

Z 1

0
dz
�⇤ � �
�⇤�

(z) D(z) j`[k�(z)] , (8)

where D(z) is the linear growth function defined so that �(z) =
D(z) �(z = 0), j` are the spherical Bessel functions, and we have
assumed c = 1; the lensing potential power spectra can be read-
ily obtained using Eq. (2). The equivalent expressions in real space
can be derived with a Legendre transformation. We will indicate in
the following the two-point statistics of generic fields a, b as Cab

` ,
wab(#), related by

wab(#) =
1X

`=0

 
2` + 1

4⇡

!
P`(cos#) Cab

` , (9)

where P` are the Legendre polynomials, and in practice the sum
is limited to `max, chosen to be su�ciently high to ensure conver-
gence.

From the definitions of Eqs. (5), it is clear that to first approx-
imation, valid in the limit of a narrow redshift range for local and
deterministic linear bias,

Cgg
` (z) / b2(z) D2(z) , Cg` (z) / b(z) D2(z) , (10)

so that a joint measurement of these two quantities can break the de-
generacy between bias and linear growth (see e.g. Gaztañaga et al.
2012). We develop this idea in Section 7 below.

2.2 Stochasticity

Alternatively, it is possible to assume cosmology to be fixed, and to
use the data to constrain galaxy bias instead. Non-linear bias is ex-
pected at small scales, as well as a stochastic component due to the

MNRAS 000, 1–32 (2015)

22 T. Giannantonio, P. Fosalba et al.

In order to estimate the theoretical power spectrum at the de-
nominator of Eq. (28), we still need the galaxy bias. We can remove
the dependence on bias by introducing the following estimator:

⇣
D̂G

⌘
i
⌘
* ⇣Cg`

⌘i
obs⇣

/Cg`
⌘i

the

vuuuut⇣/Cgg
`

⌘i
the⇣

Cgg
`

⌘i
obs

+

`

. (32)

We can see that DG does not directly depend on the galaxy bias, as
its observed and theoretical values simplify exactly in the limit of
narrow redshift bins, and that it contains no direct dependence on
the theoretical growth function either: we therefore propose this es-
timator as a novel simplified method for extracting cosmic growth
information. The DG estimator still includes a dependence on the
combination of cosmological parameters ⌦m H2

0 �8 from the CMB
lensing kernel of Eqs. (29, 31); this dependence is degenerate with
the growth function information in any redshift bin, but the degen-
eracy can be broken by a multi-bin tomography.

We evaluate DG directly using the harmonic space bandpowers
and the real-space correlation functions; we further improve the
estimator of Eq. (32) by weighting the averages with the diagonal
errors on the power spectra and correlation functions respectively.
While the expectation value is hDGi = D on linear scales, we note
that the dependence on non-linearities will largely cancel between
the theoretical and observed parts of the estimator. We nonetheless
use scales at ` < 1000 only, to reduce potential contamination by
non-linear contributions. We estimate the errors on DG and the full
covariance matrix between the redshift bins by repeating the DG

calculation for our set of 100 N-body realisations of the galaxy
density and CMB lensing data.

Our estimator DG is related to, but di↵erent from, the EG esti-
mator introduced by Zhang et al. (2007), used to confirm GR with
observations by Reyes et al. (2010), and studied for projections
with future surveys by Pullen et al. (2015). This alternative esti-
mator is defined as

EG /
Cg`
C✓g`
=

Cg`
�Cgg

`

, (33)

where ✓ indicates the linear velocity perturbations, given by ✓ = f �,
where f = d ln D/d ln a is the linear growth rate, and � = f /b is
observable from redshift space distortions (RSD). Both EG and DG

have the advantage of being independent from galaxy bias by con-
struction. EG has the additional bonus of being more easily related
to modified gravity theories, as it can be directly connected to de-
partures from the Poisson equation and the anisotropic stress; fur-
thermore it is scale-independent in GR. On the other hand, EG can
only be accurately measured from a spectroscopic survey.

In the case of photometric data, such as DES, a further pos-
sible alternative to EG would be to simply test the ratio Cg` /C

gg
` ,

which would retain many of the desirable features of EG, as this is
still scale-independent in GR and easily related to modified gravity
theories. However, this simple ratio requires external information
on the galaxy bias, which is a serious drawback. For this reason,
we propose to use the DG estimator as an alternative for photomet-
ric surveys.

7.2 Results and interpretation

By applying the DG estimator described above to our tomographic
data in real and harmonic space, we obtain the results shown in
Fig. 21. Here we plot the redshift evolution of linear bias (top
panel), galaxy-CMB lensing cross-correlation amplitude (central

Figure 21. Reconstructed measurements of the redshift evolution of lin-
ear bias b(z) from galaxy auto-correlations, as also presented by Crocce
et al. (2015) (top panel), galaxy-CMB lensing cross-correlation amplitudes
A(z) from the cross-correlations (central panel) and linear growth function
from the DG(z) estimator (bottom panel) from the combined tomography
of galaxy clustering and galaxy-CMB lensing correlations. The red (round)
points are derived from the correlation functions, while the blue (square)
points are from the angular power spectra. The purple dashed line shows
the mean best fit amplitude to DG with 1 and 2� uncertainty bands. We
also show for comparison the best-fit bias model of Eq. (34) in the top
and central panels (dotted lines), and the theoretical growth function for
the Planck fiducial cosmology in the bottom panel (thick solid line). The
low values of A we observe translate into a preference for a lower DG in
most redshift bins.

panel) and the linear growth function derived with the DG estimator
(bottom panel).

The evolution of galaxy bias is presented and discussed in
more detail by Crocce et al. (2015); we follow this study, and com-
pare the bias with a simple third-order polynomial fit, which was
shown in Appendix A by Crocce et al. (2015) to be in good agree-
ment with results from the MICE N-body simulations:

b(z) = 1 + a1z + a2z2 + a3z3 . (34)

We show in the top panel of Fig. 21 that the best-fit model by
Crocce et al. (2015), of parameters a1 = 0.87, a2 = �1.83,
a3 = 1.77 is also an excellent fit to our measurements in both real
and harmonic spaces, further validating both analyses.

We show in the central panel of Fig. 21 the redshift evolution
of the galaxy-CMB lensing correlation amplitude A = bALens: as
shown above in Table 2, A is in most cases lower than the expected
value given the auto-correlations. We can see once again that real-
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In order to estimate the theoretical power spectrum at the de-
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We can see that DG does not directly depend on the galaxy bias, as
its observed and theoretical values simplify exactly in the limit of
narrow redshift bins, and that it contains no direct dependence on
the theoretical growth function either: we therefore propose this es-
timator as a novel simplified method for extracting cosmic growth
information. The DG estimator still includes a dependence on the
combination of cosmological parameters ⌦m H2

0 �8 from the CMB
lensing kernel of Eqs. (29, 31); this dependence is degenerate with
the growth function information in any redshift bin, but the degen-
eracy can be broken by a multi-bin tomography.

We evaluate DG directly using the harmonic space bandpowers
and the real-space correlation functions; we further improve the
estimator of Eq. (32) by weighting the averages with the diagonal
errors on the power spectra and correlation functions respectively.
While the expectation value is hDGi = D on linear scales, we note
that the dependence on non-linearities will largely cancel between
the theoretical and observed parts of the estimator. We nonetheless
use scales at ` < 1000 only, to reduce potential contamination by
non-linear contributions. We estimate the errors on DG and the full
covariance matrix between the redshift bins by repeating the DG

calculation for our set of 100 N-body realisations of the galaxy
density and CMB lensing data.

Our estimator DG is related to, but di↵erent from, the EG esti-
mator introduced by Zhang et al. (2007), used to confirm GR with
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where ✓ indicates the linear velocity perturbations, given by ✓ = f �,
where f = d ln D/d ln a is the linear growth rate, and � = f /b is
observable from redshift space distortions (RSD). Both EG and DG

have the advantage of being independent from galaxy bias by con-
struction. EG has the additional bonus of being more easily related
to modified gravity theories, as it can be directly connected to de-
partures from the Poisson equation and the anisotropic stress; fur-
thermore it is scale-independent in GR. On the other hand, EG can
only be accurately measured from a spectroscopic survey.

In the case of photometric data, such as DES, a further pos-
sible alternative to EG would be to simply test the ratio Cg` /C
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which would retain many of the desirable features of EG, as this is
still scale-independent in GR and easily related to modified gravity
theories. However, this simple ratio requires external information
on the galaxy bias, which is a serious drawback. For this reason,
we propose to use the DG estimator as an alternative for photomet-
ric surveys.
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By applying the DG estimator described above to our tomographic
data in real and harmonic space, we obtain the results shown in
Fig. 21. Here we plot the redshift evolution of linear bias (top
panel), galaxy-CMB lensing cross-correlation amplitude (central

Figure 21. Reconstructed measurements of the redshift evolution of lin-
ear bias b(z) from galaxy auto-correlations, as also presented by Crocce
et al. (2015) (top panel), galaxy-CMB lensing cross-correlation amplitudes
A(z) from the cross-correlations (central panel) and linear growth function
from the DG(z) estimator (bottom panel) from the combined tomography
of galaxy clustering and galaxy-CMB lensing correlations. The red (round)
points are derived from the correlation functions, while the blue (square)
points are from the angular power spectra. The purple dashed line shows
the mean best fit amplitude to DG with 1 and 2� uncertainty bands. We
also show for comparison the best-fit bias model of Eq. (34) in the top
and central panels (dotted lines), and the theoretical growth function for
the Planck fiducial cosmology in the bottom panel (thick solid line). The
low values of A we observe translate into a preference for a lower DG in
most redshift bins.

panel) and the linear growth function derived with the DG estimator
(bottom panel).

The evolution of galaxy bias is presented and discussed in
more detail by Crocce et al. (2015); we follow this study, and com-
pare the bias with a simple third-order polynomial fit, which was
shown in Appendix A by Crocce et al. (2015) to be in good agree-
ment with results from the MICE N-body simulations:

b(z) = 1 + a1z + a2z2 + a3z3 . (34)

We show in the top panel of Fig. 21 that the best-fit model by
Crocce et al. (2015), of parameters a1 = 0.87, a2 = �1.83,
a3 = 1.77 is also an excellent fit to our measurements in both real
and harmonic spaces, further validating both analyses.

We show in the central panel of Fig. 21 the redshift evolution
of the galaxy-CMB lensing correlation amplitude A = bALens: as
shown above in Table 2, A is in most cases lower than the expected
value given the auto-correlations. We can see once again that real-
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where D(z) is the linear growth function defined so that

CMB lensing tomography

CMB lensing tomography with DES-SV 3

Planck lensing and Herschel was performed recently by Bianchini
et al. (2014), while Omori & Holder (2015) measured at >5� the
cross-correlation with the Canada-France-Hawaii Telescope Lens-
ing Survey (CFHTLenS) galaxy number density.

However, none of the existing galaxy surveys has the depth
and density of sources over a contiguous area required for a com-
prehensive tomographic analysis of the CMB lensing signal; this is
finally possible with the Dark Energy Survey (DES) and SPT, and it
is the main focus of this work. The DES finished its second of five
years of operations in March 2015, and will eventually image 5000
square degrees in the Southern Hemisphere from the Blanco Tele-
scope in Chile, in the bands g, r, i, z, and Y using the Dark Energy
Camera (Flaugher et al. 2015). Its depth makes it well-suited for
measuring CMB lensing tomography, because it allows the survey
to detect a larger fraction of the CMB lensing signal, whose contri-
bution peaks at redshifts z > 1. In this paper, we cross-correlate the
initial DES Science Verification (SV) data with the CMB lensing
maps reconstructed by the Planck and SPT surveys, and report a de-
tection of the correlation in broad agreement with the expectations
under the assumption of a concordance ⇤CDM model, with a sig-
nificance of 6� and 4� for SPT and Planck respectively. The DES
SV data consist of near full-depth imaging of ⇠ 300 deg2, of which
we use the ⇠ 200 deg2 of the SPT-E field, which is reduced to 131
deg2 after masking. The SPT lensing data we use were derived by
van Engelen et al. (2012) from the 2500 deg2 SPT-SZ survey (Story
et al. 2013), which fully overlaps by design with the DES footprint,
while the Planck public data (Planck Collaboration et al. 2014c,
2015a) cover the entire extra-galactic sky. Motivated by the high
significance of the SPT detection, we measure this cross-correlation
in redshift bins, reconstructing the time evolution of CMB lensing.

The plan of this paper is as follows: after briefly reviewing the
theoretical expectations in Section 2, we present the data in Sec-
tion 3 and the mocks we use to estimate the covariances in Sec-
tion 4; we then report our results in Section 5, tests for possible
systematics in Section 6, and present some basic cosmological im-
plications in Section 7, before concluding in Section 8.

2 THEORY

2.1 Power spectra

Gravitational lensing deflects the primordial CMB temperature
anisotropies, so that the temperature we observe in a direction n̂
corresponds to the primordial unlensed anisotropy in the direction
n̂+r'(n̂). Here '(n̂) is the CMB lensing potential, defined in a flat
universe as (Lewis & Challinor 2006)

'(n̂) = �
Z �⇤

0
d�
�⇤ � �
�⇤�

[� +  ] (�n̂, ⌘0 � �) , (1)

where � is the comoving distance, asterisks denote quantities eval-
uated at the last-scattering surface, ⌘0 is the conformal time today,
and �, are the matter and light gravitational potentials, which are
e↵ectively equal in the standard⇤CDM model in linear theory. The
convergence field (n̂) can be used in place of the lensing potential
'(n̂); the two are related in multipole space as
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2
'`m . (2)

By applying the Poisson equation, the CMB convergence in a di-
rection n̂ can be rewritten as a function of the matter overdensity �

(see e.g. Bleem et al. 2012):
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where H0 is the Hubble parameter today,⌦m the matter energy den-
sity and a(�) is the scale factor.

In the local bias model (Fry & Gaztanaga 1993), the smoothed
galaxy overdensity �g is related to the smoothed matter overden-
sity � by a Taylor expansion, so that if the bias is assumed to be
deterministic, �g(x, z) =

P1
i=0 bi(z) �i(x, z)/i!. In the present anal-

ysis of DES data we will consider only scales where the linear
bias su�ces, as demonstrated by Crocce et al. (2015). In this case,
�g(x, z) = b(z) �(x, z). A galaxy catalogue with redshift distribution
dn/dz(z) thus provides an estimate of the projected overdensity in
a direction n̂ as

�g(n̂) =
Z 1

0
b(z)

dn
dz

(z) �(�n̂, z) dz , (4)

where b(z) is the galaxy bias (assumed here linear, deterministic
and scale-independent) and � the total matter overdensity field.

The two-point statistics of the galaxy-galaxy and galaxy-CMB
lensing correlations can be written in harmonic space as
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where P(k) is the matter power spectrum at z = 0, and the ker-
nels for galaxies and CMB lensing convergence are in the standard
model (� =  ) for a flat universe (Lewis & Challinor 2006; Bleem
et al. 2012; Sherwin et al. 2012):
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where D(z) is the linear growth function defined so that �(z) =
D(z) �(z = 0), j` are the spherical Bessel functions, and we have
assumed c = 1; the lensing potential power spectra can be read-
ily obtained using Eq. (2). The equivalent expressions in real space
can be derived with a Legendre transformation. We will indicate in
the following the two-point statistics of generic fields a, b as Cab

` ,
wab(#), related by

wab(#) =
1X

`=0

 
2` + 1
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!
P`(cos#) Cab

` , (9)

where P` are the Legendre polynomials, and in practice the sum
is limited to `max, chosen to be su�ciently high to ensure conver-
gence.

From the definitions of Eqs. (5), it is clear that to first approx-
imation, valid in the limit of a narrow redshift range for local and
deterministic linear bias,

Cgg
` (z) / b2(z) D2(z) , Cg` (z) / b(z) D2(z) , (10)

so that a joint measurement of these two quantities can break the de-
generacy between bias and linear growth (see e.g. Gaztañaga et al.
2012). We develop this idea in Section 7 below.

2.2 Stochasticity

Alternatively, it is possible to assume cosmology to be fixed, and to
use the data to constrain galaxy bias instead. Non-linear bias is ex-
pected at small scales, as well as a stochastic component due to the
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In order to estimate the theoretical power spectrum at the de-
nominator of Eq. (28), we still need the galaxy bias. We can remove
the dependence on bias by introducing the following estimator:
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We can see that DG does not directly depend on the galaxy bias, as
its observed and theoretical values simplify exactly in the limit of
narrow redshift bins, and that it contains no direct dependence on
the theoretical growth function either: we therefore propose this es-
timator as a novel simplified method for extracting cosmic growth
information. The DG estimator still includes a dependence on the
combination of cosmological parameters ⌦m H2

0 �8 from the CMB
lensing kernel of Eqs. (29, 31); this dependence is degenerate with
the growth function information in any redshift bin, but the degen-
eracy can be broken by a multi-bin tomography.

We evaluate DG directly using the harmonic space bandpowers
and the real-space correlation functions; we further improve the
estimator of Eq. (32) by weighting the averages with the diagonal
errors on the power spectra and correlation functions respectively.
While the expectation value is hDGi = D on linear scales, we note
that the dependence on non-linearities will largely cancel between
the theoretical and observed parts of the estimator. We nonetheless
use scales at ` < 1000 only, to reduce potential contamination by
non-linear contributions. We estimate the errors on DG and the full
covariance matrix between the redshift bins by repeating the DG

calculation for our set of 100 N-body realisations of the galaxy
density and CMB lensing data.

Our estimator DG is related to, but di↵erent from, the EG esti-
mator introduced by Zhang et al. (2007), used to confirm GR with
observations by Reyes et al. (2010), and studied for projections
with future surveys by Pullen et al. (2015). This alternative esti-
mator is defined as

EG /
Cg`
C✓g`
=

Cg`
�Cgg

`

, (33)

where ✓ indicates the linear velocity perturbations, given by ✓ = f �,
where f = d ln D/d ln a is the linear growth rate, and � = f /b is
observable from redshift space distortions (RSD). Both EG and DG

have the advantage of being independent from galaxy bias by con-
struction. EG has the additional bonus of being more easily related
to modified gravity theories, as it can be directly connected to de-
partures from the Poisson equation and the anisotropic stress; fur-
thermore it is scale-independent in GR. On the other hand, EG can
only be accurately measured from a spectroscopic survey.

In the case of photometric data, such as DES, a further pos-
sible alternative to EG would be to simply test the ratio Cg` /C

gg
` ,

which would retain many of the desirable features of EG, as this is
still scale-independent in GR and easily related to modified gravity
theories. However, this simple ratio requires external information
on the galaxy bias, which is a serious drawback. For this reason,
we propose to use the DG estimator as an alternative for photomet-
ric surveys.

7.2 Results and interpretation

By applying the DG estimator described above to our tomographic
data in real and harmonic space, we obtain the results shown in
Fig. 21. Here we plot the redshift evolution of linear bias (top
panel), galaxy-CMB lensing cross-correlation amplitude (central

Figure 21. Reconstructed measurements of the redshift evolution of lin-
ear bias b(z) from galaxy auto-correlations, as also presented by Crocce
et al. (2015) (top panel), galaxy-CMB lensing cross-correlation amplitudes
A(z) from the cross-correlations (central panel) and linear growth function
from the DG(z) estimator (bottom panel) from the combined tomography
of galaxy clustering and galaxy-CMB lensing correlations. The red (round)
points are derived from the correlation functions, while the blue (square)
points are from the angular power spectra. The purple dashed line shows
the mean best fit amplitude to DG with 1 and 2� uncertainty bands. We
also show for comparison the best-fit bias model of Eq. (34) in the top
and central panels (dotted lines), and the theoretical growth function for
the Planck fiducial cosmology in the bottom panel (thick solid line). The
low values of A we observe translate into a preference for a lower DG in
most redshift bins.

panel) and the linear growth function derived with the DG estimator
(bottom panel).

The evolution of galaxy bias is presented and discussed in
more detail by Crocce et al. (2015); we follow this study, and com-
pare the bias with a simple third-order polynomial fit, which was
shown in Appendix A by Crocce et al. (2015) to be in good agree-
ment with results from the MICE N-body simulations:

b(z) = 1 + a1z + a2z2 + a3z3 . (34)

We show in the top panel of Fig. 21 that the best-fit model by
Crocce et al. (2015), of parameters a1 = 0.87, a2 = �1.83,
a3 = 1.77 is also an excellent fit to our measurements in both real
and harmonic spaces, further validating both analyses.

We show in the central panel of Fig. 21 the redshift evolution
of the galaxy-CMB lensing correlation amplitude A = bALens: as
shown above in Table 2, A is in most cases lower than the expected
value given the auto-correlations. We can see once again that real-
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In order to estimate the theoretical power spectrum at the de-
nominator of Eq. (28), we still need the galaxy bias. We can remove
the dependence on bias by introducing the following estimator:

⇣
D̂G

⌘
i
⌘
* ⇣Cg`

⌘i
obs⇣

/Cg`
⌘i

the

vuuuut⇣/Cgg
`

⌘i
the⇣

Cgg
`

⌘i
obs

+

`

. (32)

We can see that DG does not directly depend on the galaxy bias, as
its observed and theoretical values simplify exactly in the limit of
narrow redshift bins, and that it contains no direct dependence on
the theoretical growth function either: we therefore propose this es-
timator as a novel simplified method for extracting cosmic growth
information. The DG estimator still includes a dependence on the
combination of cosmological parameters ⌦m H2

0 �8 from the CMB
lensing kernel of Eqs. (29, 31); this dependence is degenerate with
the growth function information in any redshift bin, but the degen-
eracy can be broken by a multi-bin tomography.

We evaluate DG directly using the harmonic space bandpowers
and the real-space correlation functions; we further improve the
estimator of Eq. (32) by weighting the averages with the diagonal
errors on the power spectra and correlation functions respectively.
While the expectation value is hDGi = D on linear scales, we note
that the dependence on non-linearities will largely cancel between
the theoretical and observed parts of the estimator. We nonetheless
use scales at ` < 1000 only, to reduce potential contamination by
non-linear contributions. We estimate the errors on DG and the full
covariance matrix between the redshift bins by repeating the DG

calculation for our set of 100 N-body realisations of the galaxy
density and CMB lensing data.

Our estimator DG is related to, but di↵erent from, the EG esti-
mator introduced by Zhang et al. (2007), used to confirm GR with
observations by Reyes et al. (2010), and studied for projections
with future surveys by Pullen et al. (2015). This alternative esti-
mator is defined as

EG /
Cg`
C✓g`
=
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�Cgg
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, (33)

where ✓ indicates the linear velocity perturbations, given by ✓ = f �,
where f = d ln D/d ln a is the linear growth rate, and � = f /b is
observable from redshift space distortions (RSD). Both EG and DG

have the advantage of being independent from galaxy bias by con-
struction. EG has the additional bonus of being more easily related
to modified gravity theories, as it can be directly connected to de-
partures from the Poisson equation and the anisotropic stress; fur-
thermore it is scale-independent in GR. On the other hand, EG can
only be accurately measured from a spectroscopic survey.

In the case of photometric data, such as DES, a further pos-
sible alternative to EG would be to simply test the ratio Cg` /C

gg
` ,

which would retain many of the desirable features of EG, as this is
still scale-independent in GR and easily related to modified gravity
theories. However, this simple ratio requires external information
on the galaxy bias, which is a serious drawback. For this reason,
we propose to use the DG estimator as an alternative for photomet-
ric surveys.

7.2 Results and interpretation

By applying the DG estimator described above to our tomographic
data in real and harmonic space, we obtain the results shown in
Fig. 21. Here we plot the redshift evolution of linear bias (top
panel), galaxy-CMB lensing cross-correlation amplitude (central

Figure 21. Reconstructed measurements of the redshift evolution of lin-
ear bias b(z) from galaxy auto-correlations, as also presented by Crocce
et al. (2015) (top panel), galaxy-CMB lensing cross-correlation amplitudes
A(z) from the cross-correlations (central panel) and linear growth function
from the DG(z) estimator (bottom panel) from the combined tomography
of galaxy clustering and galaxy-CMB lensing correlations. The red (round)
points are derived from the correlation functions, while the blue (square)
points are from the angular power spectra. The purple dashed line shows
the mean best fit amplitude to DG with 1 and 2� uncertainty bands. We
also show for comparison the best-fit bias model of Eq. (34) in the top
and central panels (dotted lines), and the theoretical growth function for
the Planck fiducial cosmology in the bottom panel (thick solid line). The
low values of A we observe translate into a preference for a lower DG in
most redshift bins.

panel) and the linear growth function derived with the DG estimator
(bottom panel).

The evolution of galaxy bias is presented and discussed in
more detail by Crocce et al. (2015); we follow this study, and com-
pare the bias with a simple third-order polynomial fit, which was
shown in Appendix A by Crocce et al. (2015) to be in good agree-
ment with results from the MICE N-body simulations:

b(z) = 1 + a1z + a2z2 + a3z3 . (34)

We show in the top panel of Fig. 21 that the best-fit model by
Crocce et al. (2015), of parameters a1 = 0.87, a2 = �1.83,
a3 = 1.77 is also an excellent fit to our measurements in both real
and harmonic spaces, further validating both analyses.

We show in the central panel of Fig. 21 the redshift evolution
of the galaxy-CMB lensing correlation amplitude A = bALens: as
shown above in Table 2, A is in most cases lower than the expected
value given the auto-correlations. We can see once again that real-

MNRAS 000, 1–32 (2015)

45

Measuring the linear growth function with photometric surveys

Giannantonio et al., 1507.05551



CMB Lensing & ISW
K. Benabed
Institut d’Astrophysique de Paris - UPMC
On behalf of the Planck Collaboration 
XVII. Gravitational lensing by large scale structures
XIX. The integrated Sachs-Wolfe effect

Planck SPT

DES

lensed CMB

sheared galaxies

CMB lensing and Cosmic shear 

W
GWL

[�(z)] =
3H2

0

⌦
m

2c2
�

a(�)

Z
�

hor

�

d�0n(�0)
�0 � �

�0 , W
CMBWL

[�(z)] =
3H2

0

⌦
m

2c2
�

a(�)
�⇤ � �

�⇤
,

46

2

by the gravitational potentials of the same large-scale mass
fluctuations. The cross-correlation of the lensing measure-
ments from two such di↵erent sources o↵ers a number of
important applications. First, it o↵ers a powerful check of
systematics for cosmic shear measurements. For example,
Vallinotto (2012) suggested that this cross-correlation can
be used to mitigate the shear measurement bias, to which
CMBWL is insensitive. The same is true of other observa-
tional and astronomical systematics such as modelling the
point spread function (PSF) and galaxy intrinsic alignments
(IAs). In addition, CMB lensing o↵ers an extra high-redshift
source bin that can be included in joint analyses of late-
universe probes (Vallinotto 2013) to study late-time dark
energy or modifications to gravity.

The volume of GWL surveys will greatly increase over
the coming years. Dark Energy Survey1 (DES) will deliver
an unprecedented 5000 deg2 of lensing data by 2018 with
projects including Hyper Suprime Cam (HSC)2, Kilo-Degree
Survey (KiDS)3, Euclid4 and Large Synoptic Survey Tele-
scope (LSST)5 also producing data over the next decade.
These surveys will push deeper than previous e↵orts, in-
creasing the overlap with the CMB lensing kernel, which is
broad and peaks at z ⇠ 2 (Lewis & Challinor 2006). On
the CMB side, Planck6 has set a new standard for all-sky
CMB surveys from space, but it will also be important to
maximise the overlap of galaxy surveys with high-resolution
CMB surveys like South Pole Telescope (SPT)7, Atacama
Cosmology Telescope (ACT)8 and PolarBear9.

Two measurements of the GWL⇥CMBWL cross-
correlation have been previously reported (Hand et al. 2013;
Liu & Hill 2015). Both report low detected signals compared
with expectations for the Planck best-fit cosmology, with
Liu & Hill (2015) reporting signal at roughly half the ex-
pected amplitude, a 2� discrepancy. In this paper we aim
to obtain a new measurement of the GWL⇥CMBWL cross-
correlation using new data from DES Science Verification
(SV) and the CMBWL maps from the South Pole Telescope
(SPT) and Planck using similar sky coverage but shallower
galaxy shear measurements and slightly deeper CMBWL
(SPT compared with ACT and Planck) data. Our measure-
ment uses, with DES, a di↵erent GWL to results already
in the literature, which also covers a di↵erent patch of sky.
On the CMBWL front, SPT provides a new lensing mea-
surement, never before used in this cross-correlation. Our
results therefore serve as an independent check on the mea-
surements made by Hand et al. and Liu & Hill.

We begin by describing the relevant theory and for-
malism for GWL and CMBWL in section Section 2.
In section Section 3 we describe our data from DES,
SPT and Planck. We present our measurements of the
GWL⇥CMBWL cross-correlation in section Section 4. In
section Section 5 we demonstrate that our results are ro-

1 http://www.darkenergysurvey.org/
2 http://www.naoj.org/Projects/HSC/
3 http://kids.strw.leidenuniv.nl/
4 http://www.euclid-ec.org/
5 http://www.lsst.org/
6 http://www.cosmos.esa.int/web/planck
7 https://pole.uchicago.edu/
8 http://www.princeton.edu/act/
9 http://bolo.berkeley.edu/polarbear/

bust to a variety of important systematic e↵ects and con-
sistency checks. We discuss the implications of our mea-
surements, their relation to previous results and the fu-
ture potential of this cross-correlation in section Section 6.
Throughout this paper we employ Planck 2015 cosmol-
ogy (TT+TE+EE+lowP+lensing+ext) with ⌦

b

= 0.049,
⌦

m

= 0.309, ⌦
⇤

= 0.691, �
8

= 0.816, h = 0.677.

2 THEORY

In this paper we consider two light sources that experience
weak lensing: galaxies and the CMB.

Two particularly useful quantities associated with the
distortion of light are the spin-0 convergence field, , and
spin-2 shear field, �, (see for example Bartelmann & Schnei-
der 2001; Munshi et al. 2008; Hoekstra & Jain 2008, for
details and definitions of the lensing quantities). Both are
derivatives of the lensing potential, which describes the
strength of lensing for a given configuration of source,
lens and observer. In GWL, the main observable is shear,
which is measured by the distortions of the source galaxy
shapes.10 Convergence can be reconstructed from the shear.
In CMBWL, both shear and convergence can be recon-
structed from the temperature map. The analytic expres-
sions given in this section are equally applicable to shear or
convergence power spectra.

Since the means vanish, it is convenient to quantify the
fluctuations in both GWL and CMBWL with angular two-
point functions, in particular auto- and cross-power spectra
in harmonic space. Under the Limber approximation (Kaiser
1992), these take the form of integrals over the non-linear
matter power spectrum, P

��

(`/�(z), z), and a pair of appro-
priately chosen window functions. We are interested in the
cross-correlation between GWL and CMBWL,
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where �(z) is the comoving distance to redshift z and �
hor

is
the distance to the horizon. Here W

GWL

and W
CMBWL

are
the GWL and CMBWL window functions.

The GWL window function, also known as the lensing
e�ciency function or lensing kernel, takes the form
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where H
0

is the Hubble parameter, c the speed of light, ⌦
m

the total matter density and n(�0) is the galaxy redshift
distribution. We have assumed a flat universe, as we will
throughout the paper.

The CMBWL window function takes a similar form but
is somewhat simpler due to the single source plane,

W
CMBWL
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3H2
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, (3)

where �⇤ is the comoving distance to the last scattering
surface. Although the CMBWL weight function peaks at

10 Or, more correctly, the reduced shear, g = �/(1�). For WL,
 ⌧ 1 and g ⇡ .
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by the gravitational potentials of the same large-scale mass
fluctuations. The cross-correlation of the lensing measure-
ments from two such di↵erent sources o↵ers a number of
important applications. First, it o↵ers a powerful check of
systematics for cosmic shear measurements. For example,
Vallinotto (2012) suggested that this cross-correlation can
be used to mitigate the shear measurement bias, to which
CMBWL is insensitive. The same is true of other observa-
tional and astronomical systematics such as modelling the
point spread function (PSF) and galaxy intrinsic alignments
(IAs). In addition, CMB lensing o↵ers an extra high-redshift
source bin that can be included in joint analyses of late-
universe probes (Vallinotto 2013) to study late-time dark
energy or modifications to gravity.

The volume of GWL surveys will greatly increase over
the coming years. Dark Energy Survey1 (DES) will deliver
an unprecedented 5000 deg2 of lensing data by 2018 with
projects including Hyper Suprime Cam (HSC)2, Kilo-Degree
Survey (KiDS)3, Euclid4 and Large Synoptic Survey Tele-
scope (LSST)5 also producing data over the next decade.
These surveys will push deeper than previous e↵orts, in-
creasing the overlap with the CMB lensing kernel, which is
broad and peaks at z ⇠ 2 (Lewis & Challinor 2006). On
the CMB side, Planck6 has set a new standard for all-sky
CMB surveys from space, but it will also be important to
maximise the overlap of galaxy surveys with high-resolution
CMB surveys like South Pole Telescope (SPT)7, Atacama
Cosmology Telescope (ACT)8 and PolarBear9.

Two measurements of the GWL⇥CMBWL cross-
correlation have been previously reported (Hand et al. 2013;
Liu & Hill 2015). Both report low detected signals compared
with expectations for the Planck best-fit cosmology, with
Liu & Hill (2015) reporting signal at roughly half the ex-
pected amplitude, a 2� discrepancy. In this paper we aim
to obtain a new measurement of the GWL⇥CMBWL cross-
correlation using new data from DES Science Verification
(SV) and the CMBWL maps from the South Pole Telescope
(SPT) and Planck using similar sky coverage but shallower
galaxy shear measurements and slightly deeper CMBWL
(SPT compared with ACT and Planck) data. Our measure-
ment uses, with DES, a di↵erent GWL to results already
in the literature, which also covers a di↵erent patch of sky.
On the CMBWL front, SPT provides a new lensing mea-
surement, never before used in this cross-correlation. Our
results therefore serve as an independent check on the mea-
surements made by Hand et al. and Liu & Hill.

We begin by describing the relevant theory and for-
malism for GWL and CMBWL in section Section 2.
In section Section 3 we describe our data from DES,
SPT and Planck. We present our measurements of the
GWL⇥CMBWL cross-correlation in section Section 4. In
section Section 5 we demonstrate that our results are ro-

1 http://www.darkenergysurvey.org/
2 http://www.naoj.org/Projects/HSC/
3 http://kids.strw.leidenuniv.nl/
4 http://www.euclid-ec.org/
5 http://www.lsst.org/
6 http://www.cosmos.esa.int/web/planck
7 https://pole.uchicago.edu/
8 http://www.princeton.edu/act/
9 http://bolo.berkeley.edu/polarbear/

bust to a variety of important systematic e↵ects and con-
sistency checks. We discuss the implications of our mea-
surements, their relation to previous results and the fu-
ture potential of this cross-correlation in section Section 6.
Throughout this paper we employ Planck 2015 cosmol-
ogy (TT+TE+EE+lowP+lensing+ext) with ⌦

b

= 0.049,
⌦

m

= 0.309, ⌦
⇤

= 0.691, �
8

= 0.816, h = 0.677.

2 THEORY

In this paper we consider two light sources that experience
weak lensing: galaxies and the CMB.

Two particularly useful quantities associated with the
distortion of light are the spin-0 convergence field, , and
spin-2 shear field, �, (see for example Bartelmann & Schnei-
der 2001; Munshi et al. 2008; Hoekstra & Jain 2008, for
details and definitions of the lensing quantities). Both are
derivatives of the lensing potential, which describes the
strength of lensing for a given configuration of source,
lens and observer. In GWL, the main observable is shear,
which is measured by the distortions of the source galaxy
shapes.10 Convergence can be reconstructed from the shear.
In CMBWL, both shear and convergence can be recon-
structed from the temperature map. The analytic expres-
sions given in this section are equally applicable to shear or
convergence power spectra.

Since the means vanish, it is convenient to quantify the
fluctuations in both GWL and CMBWL with angular two-
point functions, in particular auto- and cross-power spectra
in harmonic space. Under the Limber approximation (Kaiser
1992), these take the form of integrals over the non-linear
matter power spectrum, P

��

(`/�(z), z), and a pair of appro-
priately chosen window functions. We are interested in the
cross-correlation between GWL and CMBWL,

C
GWL,CMBWL

(`) =
Z

�

hor

0

d�

�(z)2
W

GWL

[�(z)]W
CMBWL

[�(z)]P
��

✓
`

�(z)
, z

◆
,

(1)

where �(z) is the comoving distance to redshift z and �
hor

is
the distance to the horizon. Here W

GWL

and W
CMBWL

are
the GWL and CMBWL window functions.

The GWL window function, also known as the lensing
e�ciency function or lensing kernel, takes the form

W
GWL

[�(z)] =
3H2

0

⌦
m

2c2
�

a(�)

Z
�

hor

�

d�0n(�0)
�0 � �

�0 , (2)

where H
0

is the Hubble parameter, c the speed of light, ⌦
m

the total matter density and n(�0) is the galaxy redshift
distribution. We have assumed a flat universe, as we will
throughout the paper.

The CMBWL window function takes a similar form but
is somewhat simpler due to the single source plane,

W
CMBWL

[�(z)] =
3H2

0

⌦
m

2c2
�

a(�)
�⇤ � �

�⇤
, (3)

where �⇤ is the comoving distance to the last scattering
surface. Although the CMBWL weight function peaks at

10 Or, more correctly, the reduced shear, g = �/(1�). For WL,
 ⌧ 1 and g ⇡ .
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Figure 1. Blue region: Redshift distribution of the source
galaxies from the DES ngmix shape catalogue over our chosen red-
shift range, 0.3 < z < 1.3, normalised such that the total area un-
der the curve equals 1. The solid and dashed black lines show the
lensing kernels for GWL and CMBWL respectively. Each weight
function has been normalised for visual comparison with the n(z).

cosmology analysis (The Dark Energy Survey Collaboration
et al. 2015). We repeat our analysis using the im3shape cat-
alogue as a consistency check. The results, as well as more
details on both shape measurement pipelines, can be found
in Section 5.1. Both catalogues have demonstrated that they
can provide shear measurement with systematic uncertain-
ties subdominant to the statistical uncertainty in the SV
data for di↵erent cosmological probes including two-point
statistics in real and harmonic space, galaxy-galaxy lensing
and mass-mapping (Jarvis et al. 2015; Chang et al. 2015;
Vikram et al. 2015; Becker et al. 2015; Clampitt et al. 2015).

We produce maps of our shear catalogues, described in
more detail in Section 4.1, using the HEALPix pixelisation
scheme at N

side

= 2048 (Górski et al. 2005). This corre-
sponds to a pixel area of 2.95 arcmin2 or a pixel scale of
⇠ 600kpc at z = 0.44, our redshift of maximal sensitivity.

Shape estimates from both pipelines were “blinded”
during our analysis to avoid experimenter bias. This meant
that a constant scaling factor (between 0.9 and 1) was ap-
plied to all ellipticities. This would slightly alter the ampli-
tude of the cross-correlation, preventing over-fitting to re-
sults from other papers or to any given cosmology. Our anal-
ysis procedure was finalised and fixed before de-blinding.

3.2 CMBWL Maps

3.2.1 SPT Lensing Maps

The 
CMB

maps are based on temperature measurements
made by the South Pole Telescope (Carlstrom et al. 2011),
which is a 10 m diameter telescope located at South Pole
station in Antarctica. During 2008-2011, this telescope was

used to conduct a tri-band (90, 150, 220 GHz) wide-field
survey covering ⇠ 2540 deg2 (Story et al. 2013). The survey
area is composed of 19 subfields, all of which were scanned
in an similar fashion, reaching depths down to 40 µK-arcmin
(90 GHz), 18 µK-arcmin (150 GHz) and 70 µK-arcmin (220
GHz) with roughly arcminute resolution.

The 
CMB

maps are then produced by applying
quadratic estimators (Okamoto & Hu 2003) as outlined in
van Engelen et al. (2012) on a 25� ⇥ 25� region extracted
from the full survey area centred on the DES SPT-E field.
Due to the limitations from noise, only the 150 GHz chan-
nel is used. Bright positive sources and galaxy clusters were
masked as well as fainter sources down to 10 mJy, and the
masked regions were filled using Wiener filter interpolation.
The maps are produced on a HEALPix grid of N

side

= 2048.
The SPT  map is mostly noise dominated above

`
max

= 2000. Scales smaller than this ` get additional con-
taminations from sources such as clusters and point-sources
due to e↵ects such as the thermal Sunyaev-Zel’dovich (tSZ)
e↵ect, which could lead to biased measurements (van En-
gelen et al. 2012). The noise in our cross-correlation is
significant at high `, so we impose a conservative cut of
`
max

= 1600 without loss of significance in our measurement.
We have tested this choice and found our result robust to
`
max

between 1200 and 2000.

3.2.2 Planck

We also use the Planck lensing maps from the second data
release, which were made public in 2015. These 

CMB

maps
are produced by using filtered temperature and polarisa-
tion measurements from the Planck satellite (Planck Col-
laboration et al. 2015a). The temperature and polarisa-
tion maps are both constructed by taking linear combina-
tions of multi-frequency data (30 GHz-857 GHz for tem-
perature and 30 GHz-353 GHz for polarisation) with scale-
dependent coe�cients using the SMICA method to produce
foreground cleaned minimum variance maps (Planck Collab-
oration et al. 2015b).

Similar to the SPT 
CMB

map, the CMBWL potential
is estimated by using quadratic estimators in Okamoto &
Hu (2003). The main di↵erence here is the availability of E
and B-mode polarisation, which allows for additional esti-
mators (�TE , �EE , �EB , �TB) in addition to �TT . These
estimators are combined to form a minimum-variance esti-
mate of the lensing potential �, which is provided in the form
of spherical harmonic coe�cients of the lensing convergence

CMB

filtered to 8 6 ` < 2048, along with the analysis mask.
The map is in HEALPix format with resolution N

side

= 2048.
For consistency we apply the same `

max

= 1600 cut to the
Planck analysis as to the SPT.

3.3

We test our estimators using dedicated simulation data sets,
constructed specifically to mimic the noise and other statis-
tical properties of each of our data sets: GWL for DES and
CMBWL for SPT and Planck.

For DES, we use two sets of simulation catalogues in
addition to the data itself. The first are based on N-body
simulations and are the same set of simulation galaxy cat-
alogues described in Becker et al. (2015), consisting of 126
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Figure 2. 

CMB

�

E

correlation measured in harmonic space with
Polspice. Projected angular power spectra, C(`), are shown for
DES ⇥ SPT (blue boxes) and DES ⇥ Planck (orange boxes).
Sources come from the ngmixshape catalogue and span the red-
shift range 0.3 < z < 1.3. The height of the bars represents 68%
error limits. The theoretical predication for the cross-correlation,
with amplitude A = 1, is also shown (black solid line).

the maps produced from the 100 randomised realisations of
our shape catalogue, described in Section 3.3.

We also tested a number of alternative techniques to
estimate the cross-correlation signal, covariance and noise as
consistency checks on our main analysis. These are detailed
in Section 5 below.

4.2 Cross-correlation Measurement

Figure 2 shows our results using PolSpice to correlate

CMB

�
E

in harmonic space. The measurement is averaged
into 16 linearly spaced bins over the multipole range 64 <
` < 1600. We then use our forecast cross-correlation power
spectrum to fit a single free parameter, the cross-correlation
amplitude, A, by a simple �2 minimisation:

�2 =
X

`

�
Cobs



CMB

�

E

(`)�A⇥ Ctheory



CMB

�

E

(`)
�
2

�2



CMB

�E

, (10)

where the error, �


CMB

�E , is calculated according to Equa-
tion (9). The fits to the cross-correlation amplitude are de-
tailed in Table 1.

Our measurement shows E-mode cross-correlations with
best-fit amplitudes of A

SPT

= 0.88±0.30 for DES⇥SPT and
A

Planck

= 0.86± 0.39 for DES⇥Planck, giving a signifigance
of 2.9� and 2.2� respectively. We estimate the goodness of
fit by calculating �2 per degree of freedom, finding good
fits in both cases, with �2/d.o.f. = 0.93 for DES⇥SPT and
�2/d.o.f. = 1.52 for DES⇥Planck. The measurements with
SPT and Planck are consistent with eachother and with the

Redshift Range 0.3 < z < 1.3



CMB

�

E

A �

2

/d.o.f.

ngmix ⇥ SPT 0.88+0.30

�0.30

0.93

ngmix ⇥ Planck 0.86+0.39

�0.39

1.52

Table 1. Summary of constraints on the cross-correlation,


CMB

�

E

, showing best-fit cross-correlation amplitude, A, with
1� errors and minimum �

2

/dof . Results are shown for cross-
correlations between DES GWL from the ngmix catalogue and
CMBWL from both SPT and Planck.

theoreitcal expectation within 1�. These measurements of
A fix all other cosmological parameters at the Planck 2015
best-fit cosmology and ignore IAs.

5 CONSISTENCY AND SYSTEMATICS TESTS

In this section we summarise a number of checks carried out
to ensure that our analysis is accurate and robust to im-
portant observational and astrophysical systematic e↵ects.
A substantial amount of work has been done quantifying
the systematics contributions to our data sets (Jarvis et al.
2015; Bonnett et al. 2015; Becker et al. 2015; Vikram et al.
2015; Leistedt et al. 2015). In particular, Giannantonio et al.
(2015) dealt with a number of systematics that could po-
tentially manifest as spurious signal in the cross-correlation
of DES SV galaxy number desnity with CMBWL; all were
found to be of negligible importance. In this paper we
will concentrate on those of particular relevance to the
GWL⇥CMBWL cross-correlation.

5.1 Shape Measurement Pipelines

As mentioned in Section 3.1.2, the DES collaboration has
produced two independent shape measurement catalogues:
ngmix (Sheldon 2014), which we use for our main analysis,
and im3shape (Zuntz et al. 2013).

We have repeated our cross-correlation measurement
using the im3shape shape catalogue. The results are in good
agreement with those from ngmix and our forecasts but the
errors are larger due to the lower e↵ective source number
density in im3shape (3.7/arcmin2 compared to 5.7/arcmin2

for ngmix). With im3shape, we measure a cross-correlation
amplitude of A = 0.76 ± 0.38 for DES⇥SPT and A =
0.76 ± 0.53 for DES⇥Planck. Like our main results, the
im3shape measurements are slightly low but consistent with
the expected signal within 1� errors.

5.2 Alternate Estimators

In addition to the aforementioned PolSpice pipeline, we also
test a flat-sky implementation of the same calculation, also
known as the Kaiser-Squires method (KS, Kaiser & Squires
1993). The KS method was used in both Hand et al. (2013)
and Liu & Hill (2015) and shown to perform well. With
an eye on the larger sky coverages in future data sets, we
have performed our main calculations based on a curved
sky analysis but we also checked whether our results are
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DES ⇥ SPT (blue boxes) and DES ⇥ Planck (orange boxes).
Sources come from the ngmixshape catalogue and span the red-
shift range 0.3 < z < 1.3. The height of the bars represents 68%
error limits. The theoretical predication for the cross-correlation,
with amplitude A = 1, is also shown (black solid line).

the maps produced from the 100 randomised realisations of
our shape catalogue, described in Section 3.3.

We also tested a number of alternative techniques to
estimate the cross-correlation signal, covariance and noise as
consistency checks on our main analysis. These are detailed
in Section 5 below.

4.2 Cross-correlation Measurement

Figure 2 shows our results using PolSpice to correlate

CMB

�
E

in harmonic space. The measurement is averaged
into 16 linearly spaced bins over the multipole range 64 <
` < 1600. We then use our forecast cross-correlation power
spectrum to fit a single free parameter, the cross-correlation
amplitude, A, by a simple �2 minimisation:
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X
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where the error, �


CMB

�E , is calculated according to Equa-
tion (9). The fits to the cross-correlation amplitude are de-
tailed in Table 1.

Our measurement shows E-mode cross-correlations with
best-fit amplitudes of A

SPT

= 0.88±0.30 for DES⇥SPT and
A

Planck

= 0.86± 0.39 for DES⇥Planck, giving a signifigance
of 2.9� and 2.2� respectively. We estimate the goodness of
fit by calculating �2 per degree of freedom, finding good
fits in both cases, with �2/d.o.f. = 0.93 for DES⇥SPT and
�2/d.o.f. = 1.52 for DES⇥Planck. The measurements with
SPT and Planck are consistent with eachother and with the
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A �
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/d.o.f.

ngmix ⇥ SPT 0.88+0.30

�0.30

0.93

ngmix ⇥ Planck 0.86+0.39

�0.39

1.52

Table 1. Summary of constraints on the cross-correlation,


CMB

�

E

, showing best-fit cross-correlation amplitude, A, with
1� errors and minimum �

2

/dof . Results are shown for cross-
correlations between DES GWL from the ngmix catalogue and
CMBWL from both SPT and Planck.

theoreitcal expectation within 1�. These measurements of
A fix all other cosmological parameters at the Planck 2015
best-fit cosmology and ignore IAs.

5 CONSISTENCY AND SYSTEMATICS TESTS

In this section we summarise a number of checks carried out
to ensure that our analysis is accurate and robust to im-
portant observational and astrophysical systematic e↵ects.
A substantial amount of work has been done quantifying
the systematics contributions to our data sets (Jarvis et al.
2015; Bonnett et al. 2015; Becker et al. 2015; Vikram et al.
2015; Leistedt et al. 2015). In particular, Giannantonio et al.
(2015) dealt with a number of systematics that could po-
tentially manifest as spurious signal in the cross-correlation
of DES SV galaxy number desnity with CMBWL; all were
found to be of negligible importance. In this paper we
will concentrate on those of particular relevance to the
GWL⇥CMBWL cross-correlation.

5.1 Shape Measurement Pipelines

As mentioned in Section 3.1.2, the DES collaboration has
produced two independent shape measurement catalogues:
ngmix (Sheldon 2014), which we use for our main analysis,
and im3shape (Zuntz et al. 2013).

We have repeated our cross-correlation measurement
using the im3shape shape catalogue. The results are in good
agreement with those from ngmix and our forecasts but the
errors are larger due to the lower e↵ective source number
density in im3shape (3.7/arcmin2 compared to 5.7/arcmin2

for ngmix). With im3shape, we measure a cross-correlation
amplitude of A = 0.76 ± 0.38 for DES⇥SPT and A =
0.76 ± 0.53 for DES⇥Planck. Like our main results, the
im3shape measurements are slightly low but consistent with
the expected signal within 1� errors.

5.2 Alternate Estimators

In addition to the aforementioned PolSpice pipeline, we also
test a flat-sky implementation of the same calculation, also
known as the Kaiser-Squires method (KS, Kaiser & Squires
1993). The KS method was used in both Hand et al. (2013)
and Liu & Hill (2015) and shown to perform well. With
an eye on the larger sky coverages in future data sets, we
have performed our main calculations based on a curved
sky analysis but we also checked whether our results are
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Figure 1. Blue region: Redshift distribution of the source
galaxies from the DES ngmix shape catalogue over our chosen red-
shift range, 0.3 < z < 1.3, normalised such that the total area un-
der the curve equals 1. The solid and dashed black lines show the
lensing kernels for GWL and CMBWL respectively. Each weight
function has been normalised for visual comparison with the n(z).

cosmology analysis (The Dark Energy Survey Collaboration
et al. 2015). We repeat our analysis using the im3shape cat-
alogue as a consistency check. The results, as well as more
details on both shape measurement pipelines, can be found
in Section 5.1. Both catalogues have demonstrated that they
can provide shear measurement with systematic uncertain-
ties subdominant to the statistical uncertainty in the SV
data for di↵erent cosmological probes including two-point
statistics in real and harmonic space, galaxy-galaxy lensing
and mass-mapping (Jarvis et al. 2015; Chang et al. 2015;
Vikram et al. 2015; Becker et al. 2015; Clampitt et al. 2015).

We produce maps of our shear catalogues, described in
more detail in Section 4.1, using the HEALPix pixelisation
scheme at N

side

= 2048 (Górski et al. 2005). This corre-
sponds to a pixel area of 2.95 arcmin2 or a pixel scale of
⇠ 600kpc at z = 0.44, our redshift of maximal sensitivity.

Shape estimates from both pipelines were “blinded”
during our analysis to avoid experimenter bias. This meant
that a constant scaling factor (between 0.9 and 1) was ap-
plied to all ellipticities. This would slightly alter the ampli-
tude of the cross-correlation, preventing over-fitting to re-
sults from other papers or to any given cosmology. Our anal-
ysis procedure was finalised and fixed before de-blinding.

3.2 CMBWL Maps

3.2.1 SPT Lensing Maps

The 
CMB

maps are based on temperature measurements
made by the South Pole Telescope (Carlstrom et al. 2011),
which is a 10 m diameter telescope located at South Pole
station in Antarctica. During 2008-2011, this telescope was

used to conduct a tri-band (90, 150, 220 GHz) wide-field
survey covering ⇠ 2540 deg2 (Story et al. 2013). The survey
area is composed of 19 subfields, all of which were scanned
in an similar fashion, reaching depths down to 40 µK-arcmin
(90 GHz), 18 µK-arcmin (150 GHz) and 70 µK-arcmin (220
GHz) with roughly arcminute resolution.

The 
CMB

maps are then produced by applying
quadratic estimators (Okamoto & Hu 2003) as outlined in
van Engelen et al. (2012) on a 25� ⇥ 25� region extracted
from the full survey area centred on the DES SPT-E field.
Due to the limitations from noise, only the 150 GHz chan-
nel is used. Bright positive sources and galaxy clusters were
masked as well as fainter sources down to 10 mJy, and the
masked regions were filled using Wiener filter interpolation.
The maps are produced on a HEALPix grid of N

side

= 2048.
The SPT  map is mostly noise dominated above

`
max

= 2000. Scales smaller than this ` get additional con-
taminations from sources such as clusters and point-sources
due to e↵ects such as the thermal Sunyaev-Zel’dovich (tSZ)
e↵ect, which could lead to biased measurements (van En-
gelen et al. 2012). The noise in our cross-correlation is
significant at high `, so we impose a conservative cut of
`
max

= 1600 without loss of significance in our measurement.
We have tested this choice and found our result robust to
`
max

between 1200 and 2000.

3.2.2 Planck

We also use the Planck lensing maps from the second data
release, which were made public in 2015. These 

CMB

maps
are produced by using filtered temperature and polarisa-
tion measurements from the Planck satellite (Planck Col-
laboration et al. 2015a). The temperature and polarisa-
tion maps are both constructed by taking linear combina-
tions of multi-frequency data (30 GHz-857 GHz for tem-
perature and 30 GHz-353 GHz for polarisation) with scale-
dependent coe�cients using the SMICA method to produce
foreground cleaned minimum variance maps (Planck Collab-
oration et al. 2015b).

Similar to the SPT 
CMB

map, the CMBWL potential
is estimated by using quadratic estimators in Okamoto &
Hu (2003). The main di↵erence here is the availability of E
and B-mode polarisation, which allows for additional esti-
mators (�TE , �EE , �EB , �TB) in addition to �TT . These
estimators are combined to form a minimum-variance esti-
mate of the lensing potential �, which is provided in the form
of spherical harmonic coe�cients of the lensing convergence

CMB

filtered to 8 6 ` < 2048, along with the analysis mask.
The map is in HEALPix format with resolution N

side

= 2048.
For consistency we apply the same `

max

= 1600 cut to the
Planck analysis as to the SPT.

3.3

We test our estimators using dedicated simulation data sets,
constructed specifically to mimic the noise and other statis-
tical properties of each of our data sets: GWL for DES and
CMBWL for SPT and Planck.

For DES, we use two sets of simulation catalogues in
addition to the data itself. The first are based on N-body
simulations and are the same set of simulation galaxy cat-
alogues described in Becker et al. (2015), consisting of 126
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Figure 2. 

CMB
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correlation measured in harmonic space with
Polspice. Projected angular power spectra, C(`), are shown for
DES ⇥ SPT (blue boxes) and DES ⇥ Planck (orange boxes).
Sources come from the ngmixshape catalogue and span the red-
shift range 0.3 < z < 1.3. The height of the bars represents 68%
error limits. The theoretical predication for the cross-correlation,
with amplitude A = 1, is also shown (black solid line).

the maps produced from the 100 randomised realisations of
our shape catalogue, described in Section 3.3.

We also tested a number of alternative techniques to
estimate the cross-correlation signal, covariance and noise as
consistency checks on our main analysis. These are detailed
in Section 5 below.

4.2 Cross-correlation Measurement

Figure 2 shows our results using PolSpice to correlate

CMB

�
E

in harmonic space. The measurement is averaged
into 16 linearly spaced bins over the multipole range 64 <
` < 1600. We then use our forecast cross-correlation power
spectrum to fit a single free parameter, the cross-correlation
amplitude, A, by a simple �2 minimisation:
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where the error, �


CMB

�E , is calculated according to Equa-
tion (9). The fits to the cross-correlation amplitude are de-
tailed in Table 1.

Our measurement shows E-mode cross-correlations with
best-fit amplitudes of A

SPT

= 0.88±0.30 for DES⇥SPT and
A

Planck

= 0.86± 0.39 for DES⇥Planck, giving a signifigance
of 2.9� and 2.2� respectively. We estimate the goodness of
fit by calculating �2 per degree of freedom, finding good
fits in both cases, with �2/d.o.f. = 0.93 for DES⇥SPT and
�2/d.o.f. = 1.52 for DES⇥Planck. The measurements with
SPT and Planck are consistent with eachother and with the
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Table 1. Summary of constraints on the cross-correlation,


CMB
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E

, showing best-fit cross-correlation amplitude, A, with
1� errors and minimum �

2

/dof . Results are shown for cross-
correlations between DES GWL from the ngmix catalogue and
CMBWL from both SPT and Planck.

theoreitcal expectation within 1�. These measurements of
A fix all other cosmological parameters at the Planck 2015
best-fit cosmology and ignore IAs.

5 CONSISTENCY AND SYSTEMATICS TESTS

In this section we summarise a number of checks carried out
to ensure that our analysis is accurate and robust to im-
portant observational and astrophysical systematic e↵ects.
A substantial amount of work has been done quantifying
the systematics contributions to our data sets (Jarvis et al.
2015; Bonnett et al. 2015; Becker et al. 2015; Vikram et al.
2015; Leistedt et al. 2015). In particular, Giannantonio et al.
(2015) dealt with a number of systematics that could po-
tentially manifest as spurious signal in the cross-correlation
of DES SV galaxy number desnity with CMBWL; all were
found to be of negligible importance. In this paper we
will concentrate on those of particular relevance to the
GWL⇥CMBWL cross-correlation.

5.1 Shape Measurement Pipelines

As mentioned in Section 3.1.2, the DES collaboration has
produced two independent shape measurement catalogues:
ngmix (Sheldon 2014), which we use for our main analysis,
and im3shape (Zuntz et al. 2013).

We have repeated our cross-correlation measurement
using the im3shape shape catalogue. The results are in good
agreement with those from ngmix and our forecasts but the
errors are larger due to the lower e↵ective source number
density in im3shape (3.7/arcmin2 compared to 5.7/arcmin2

for ngmix). With im3shape, we measure a cross-correlation
amplitude of A = 0.76 ± 0.38 for DES⇥SPT and A =
0.76 ± 0.53 for DES⇥Planck. Like our main results, the
im3shape measurements are slightly low but consistent with
the expected signal within 1� errors.

5.2 Alternate Estimators

In addition to the aforementioned PolSpice pipeline, we also
test a flat-sky implementation of the same calculation, also
known as the Kaiser-Squires method (KS, Kaiser & Squires
1993). The KS method was used in both Hand et al. (2013)
and Liu & Hill (2015) and shown to perform well. With
an eye on the larger sky coverages in future data sets, we
have performed our main calculations based on a curved
sky analysis but we also checked whether our results are
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Figure 2. 
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E

correlation measured in harmonic space with
Polspice. Projected angular power spectra, C(`), are shown for
DES ⇥ SPT (blue boxes) and DES ⇥ Planck (orange boxes).
Sources come from the ngmixshape catalogue and span the red-
shift range 0.3 < z < 1.3. The height of the bars represents 68%
error limits. The theoretical predication for the cross-correlation,
with amplitude A = 1, is also shown (black solid line).

the maps produced from the 100 randomised realisations of
our shape catalogue, described in Section 3.3.

We also tested a number of alternative techniques to
estimate the cross-correlation signal, covariance and noise as
consistency checks on our main analysis. These are detailed
in Section 5 below.

4.2 Cross-correlation Measurement
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in harmonic space. The measurement is averaged
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�E , is calculated according to Equa-
tion (9). The fits to the cross-correlation amplitude are de-
tailed in Table 1.

Our measurement shows E-mode cross-correlations with
best-fit amplitudes of A
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= 0.88±0.30 for DES⇥SPT and
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Planck

= 0.86± 0.39 for DES⇥Planck, giving a signifigance
of 2.9� and 2.2� respectively. We estimate the goodness of
fit by calculating �2 per degree of freedom, finding good
fits in both cases, with �2/d.o.f. = 0.93 for DES⇥SPT and
�2/d.o.f. = 1.52 for DES⇥Planck. The measurements with
SPT and Planck are consistent with eachother and with the
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best-fit cosmology and ignore IAs.

5 CONSISTENCY AND SYSTEMATICS TESTS

In this section we summarise a number of checks carried out
to ensure that our analysis is accurate and robust to im-
portant observational and astrophysical systematic e↵ects.
A substantial amount of work has been done quantifying
the systematics contributions to our data sets (Jarvis et al.
2015; Bonnett et al. 2015; Becker et al. 2015; Vikram et al.
2015; Leistedt et al. 2015). In particular, Giannantonio et al.
(2015) dealt with a number of systematics that could po-
tentially manifest as spurious signal in the cross-correlation
of DES SV galaxy number desnity with CMBWL; all were
found to be of negligible importance. In this paper we
will concentrate on those of particular relevance to the
GWL⇥CMBWL cross-correlation.

5.1 Shape Measurement Pipelines

As mentioned in Section 3.1.2, the DES collaboration has
produced two independent shape measurement catalogues:
ngmix (Sheldon 2014), which we use for our main analysis,
and im3shape (Zuntz et al. 2013).

We have repeated our cross-correlation measurement
using the im3shape shape catalogue. The results are in good
agreement with those from ngmix and our forecasts but the
errors are larger due to the lower e↵ective source number
density in im3shape (3.7/arcmin2 compared to 5.7/arcmin2

for ngmix). With im3shape, we measure a cross-correlation
amplitude of A = 0.76 ± 0.38 for DES⇥SPT and A =
0.76 ± 0.53 for DES⇥Planck. Like our main results, the
im3shape measurements are slightly low but consistent with
the expected signal within 1� errors.

5.2 Alternate Estimators

In addition to the aforementioned PolSpice pipeline, we also
test a flat-sky implementation of the same calculation, also
known as the Kaiser-Squires method (KS, Kaiser & Squires
1993). The KS method was used in both Hand et al. (2013)
and Liu & Hill (2015) and shown to perform well. With
an eye on the larger sky coverages in future data sets, we
have performed our main calculations based on a curved
sky analysis but we also checked whether our results are
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Figure 7. Constraints obtained on the three model parameters when we fix the bias parameters ai = ci = 0, but allow b0 to vary;
contours show where ∆χ2 = 1 relative to the minimum χ2. Orange contour shows the constraint obtained from analysis of wκg(θ) alone;
blue contour shows the constraint obtained from analysis of wγT g(θ) alone; green contour shows the constraint obtained from the joint
analysis of wκg(θ) and wγT g(θ). In all cases, the joint measurement of wκg(θ) and wγT g(θ) helps to break degeneracies between the
model parameters of interest and the bias parameter b0. We have restricted the analysis here to angular scales θ > 10′ to ensure that
linear bias remains valid.

6.2 Bias degeneracies

To gain intuition for how the joint wκg(θ) and wγT g(θ)
measurement breaks degeneracies with tracer bias, we now
present constraints in the two dimensional plane defined by
b0 and each of the three model parameters defined in §5.2.1,
§5.2.2, and §5.2.3. For this analysis, we fix the bias parame-
ters ai = ci = 0, which corresponds to a constant bias model
described by b0 alone; doing so considerably simplifies the
interpretation and visualization of the results. However, as
noted previously, we expect that constant bias may not ac-
curately describe the data at small angular separations. We
therefore restrict the analysis presented in this section to
angular scales θ > 10′, which should be safely in the linear
bias regime (Crocce et al. 2016). Imposing this restriction
on the data will weaken our constraints, but we remind the
reader that our intent in this section is only to gain intuition
for degeneracies with b0. In §6.3 we will present results that
use data at small angular scales and for which we allow the
bias parameters ai and ci to vary.

The left panel of Fig. 7 presents the constraints obtained
from the analysis of wκg(θ) and wγT g(θ) in the ΩM–b0 plane.
Each shaded region corresponds to a contour of the poste-
rior probability such that the ∆χ2 relative to the minimum
is ∆χ2 = 1 (this value of ∆χ2 was chosen to improve the
visualization since the constraints obtained in this analy-
sis are fairly weak owing to the exclusion of the small angle
measurements). The orange region shows the constraints ob-
tained from analysis of wκg(θ) alone; the blue region shows
the constraints obtained from analysis of wγT g(θ) alone; the
green region shows the constraints obtained from the joint
analysis of wκg(θ) and wγT g(θ). Since there is little covari-
ance between wκg(θ) and wγT g(θ), the joint constraints are
roughly the product of the individual constraints. From the
figure it is clear that there is a strong degeneracy between
ΩM and b0 for both wκg(θ) and wγT g(θ). The joint mea-
surement of both wκg(θ) and wγT g(θ) helps to break this
degeneracy.

The middle panel of Fig. 7 shows the constraints ob-
tained in the m–b0 plane. Since wκg(θ) does not depend at

all on m, we obtain no constraint on m from the analysis of
wκg(θ) alone (orange region). wγT g(θ) depends on m, but in
a way that is completely degenerate with b0 (blue region);
we therefore also obtain no constraint on m from wγT g(θ)
alone. The joint measurement of wκg(θ) and wγT g(θ), how-
ever, breaks this degeneracy with the bias as shown by green
region.

The right panel of Fig. 7 shows the constraints obtained
in the ∆z–b0 plane. Changing ∆z does not have a very
large impact on wκg(θ) because the CMB source plane is
at much higher redshift than the tracer galaxies. This fact
combined with the low signal-to-noise of the wκg(θ) mea-
surement means that we do not obtain a constraint on ∆z

from wκg(θ) alone (orange region). Furthermore, because
the constraint obtained from wγT g(θ) alone is highly de-
generate with b0, we also do not obtain a constraint on ∆z

from wγT g(θ) alone (blue region). The joint measurement
of wκg(θ) and wγT g(θ), however, breaks the degeneracy be-
tween ∆z and b0 (green region).

6.3 Bias-marginalized parameter constraints

The results in §6.2 were restricted to constant bias (i.e.
ai = ci = 0) and for this reason required using only large
angular scale data (θ > 10′). As we have argued in §5.1.1,
by allowing additional freedom in our bias model, we can
use measurements at smaller angular scales and thereby in-
crease our signal-to-noise without worrying about biasing
our results. We now present the constraints obtained when
we allow ai and ci to vary in our model fits (we refer to this
as the evolving bias analysis). For these results, we marginal-
ize over all the bias parameters (b0, ai and ci), showing only
the posterior on the model parameter of interest. The pos-
teriors for the three analyses of §5.2.1, §5.2.2, and §5.2.3 are
shown as the solid (red) curves in Fig. 8. For comparison,
we also show (dashed blue curves) the posteriors on model
parameters when we fix ai = ci = 0 (we refer to this as the
constant bias analysis). Both the evolving bias and the con-
stant bias curves shown in Fig. 8 were obtained using the
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Figure 6. Forecast for the DES Y5 GWL data cross-correlated with SPT-
3G CMBWL (reconstructed from temperature plus polarisation). Shown
for comparison is an analytic estimate of DES SV GWL cross-correlated
with SPT SZ CMBWL. The Y5/SPT-3G (SV/SPT SZ) forecast assumes
a sky fraction of 2500 deg2 (139 deg2), GWL source number density
10.0 arcmin�2 (5.7 arcmin�2) and GWL shape noise of 0.30 (0.37).

6.7 Systematic uncertainties in the  map

We have also tested for the degree of contamination in the SPT -
map due to point-sources and the tSZ effect by applying a more
stringent mask than the one used for lensing reconstruction. The
more stringent mask removes point sources detected between 5�
(corresponding to approximately 6 mJy) and 15� using a 2

0 radius
circular aperture in addition to the 160⇥16

0 mask applied to sources
detected above 15� using the main mask. Clusters catalogued in
Bleem et al. (2015) with detections between 4.5� and 6� are also
masked with a 5

0 radius disk in addition to the 16

0 ⇥ 16

0 mask
applied to clusters detected above 6�. We obtain an amplitude of
A = 0.88 ± 0.3 with �2/dof = 0.98 when applying this mask,
which is entirely consistent with our main result, suggesting that
our kappa maps are minimally contaminated by these sources.

7 FORECASTS

The volume of GWL surveys will greatly increase over the coming
years. Dark Energy Survey3 (DES) will deliver an unprecedented
5000 deg

2 of lensing data by 2018, with projects including Hy-
per Suprime Cam (HSC)4, Kilo-Degree Survey (KiDS)5, Euclid

6

and Large Synoptic Survey Telescope (LSST)7 also producing data
over the next decade. These surveys will push deeper than previ-
ous efforts, increasing the overlap with the CMB lensing kernel,
which is broad and peaks at z⇠2 (Lewis & Challinor 2006). On

3 http://www.darkenergysurvey.org/
4 http://www.naoj.org/Projects/HSC/
5 http://kids.strw.leidenuniv.nl/
6 http://www.euclid-ec.org/
7 http://www.lsst.org/

the CMB side, Planck

8 has set a new standard for all-sky CMB
surveys from space but it will also be important to maximise the
overlap of galaxy surveys with high-resolution CMB surveys us-
ing the upgraded cameras on the South Pole Telescope (SPT)9 and
the Atacama Cosmology Telescope (ACT)10, as well as the next-
generation PolarBear11 instrument.

This paper represents an important test of the WL measure-
ment pipelines in both the DES and SPT collaborations, and allows
us to look forward with confidence to more scientifically ambitious
analyses in the future when these more powerful data sets become
available, particularly the full DES survey and the SPT third gen-
eration camera (SPT-3G) (Benson et al. 2014). The principal gain
will be increased sky coverage, with 2500 deg

2 of overlapping area
expected from the full DES five year survey (Y5) and SPT-3G. This
represents an ⇠18-fold increase over the data used in this work. In
addition, the SPT-3G upgrade will significantly decrease the noise
level compared to current SPT measurements (SPT SZ). Estimates
from the SPT collaboration foresee a factor of ⇠30 decrease in ef-
fective noise between SPT SZ and SPT-3G when temperature mea-
surements alone are used to reconstruct the CMBWL convergence
map, and a factor of ⇠150 between SPT SZ and SPT-3G when the
SPT-3G reconstruction also uses CMB polarisation measurements.

Figure 6 shows the expected signal-to-noise (S/N) from DES
Y5 and SPT-3G, compared to that from the DES SV and SPT SZ
data used in this paper. We have restricted this forecast to the ex-
pected 2500 deg

2 overlapping area available by DES Y5 and as-
sumed moderate improvements in number density and GWL shape
noise for DES (see figure caption for details). We can confidently
expect a detection of GWL⇥CMBWL from DES Y5 ⇥ SPT-3G
with a S/N of > 50�. This huge increase in measurement power
over the coming years will allow us to move beyond detection of
the cross-correlation and to exploit this measurement to answer
a number of science questions. Note that there is a turnover in
the cross-correlation power spectrum at low ell. We have excluded
this turnover from these forecasts by retaining a minimum scale of
` > 40. Increased coverage of this feature would further improve
the power of this particular cross-correlation.

The very different observational properties of the two surveys
means that the cross-correlation is an extremely useful discrimi-
nant of measurement systematics. Both CMBWL and GWL are af-
fected by multiplicative biases in the measurement of the lensing
signal. For example, uncertainties in measuring galaxy shapes leads
to a shear measurement bias in DES GWL, currently marginalised
over in the cosmology analysis (Dark Energy Survey Collaboration
2015). As both probes are estimated from different types of data
using very different techniques, there is considerable scope for cal-
ibration of these bias terms through cross-correlation of the GWL
and CMBWL signals.

As the precision of our cross-correlation increases, the sys-
tematic effects will become more significant. In this work we es-
timated the order of magnitude effect of galaxy IAs, finding that
the presence of IAs could shift our best-fit measurement of A by
a significant fraction of the 1� errors. However, this did not alter
our level of agreement with theory, given the size of our error bars.
The much higher S/N measurement we can expect from future data
means that the impact of IAs will be much more significant. On
the one hand this means that we need to improve our modelling of
IAs, paying particular attention to the impact of galaxy type and

8 http://www.cosmos.esa.int/web/planck
9 https://pole.uchicago.edu/
10 http://www.princeton.edu/act/
11 http://bolo.berkeley.edu/polarbear/
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Figure 22. The red circles and blue squares show our growth function mea-
surements with the DG estimator, compared with the fiducial Planck best fit
⇤CDM prediction (thick black line), di↵erent choices of the ⇤CDM pa-
rameters (top panel), and a selection of dark energy and modified gravity
models (bottom panel). Top panel: The green dashed line shows the pre-
diction for the MICE cosmology, while the orange dot-dashed line refers to
the best-fit ⇤CDM model to the CFHTLenS +WMAP 7 data by Heymans
et al. (2013). Bottom panel: The coloured lines display in the order: a Lin-
der � model (Linder & Cahn 2007), a dark energy model parameterised by
w0,wa (Chevallier & Polarski 2001), and two models of modified gravity
at the perturbative level: entropy perturbation (w�) and anisotropic stress
models (w⇧), as described by Battye & Pearson (2013).

Soergel et al. (2015), in which the dark fluid is described by an
entropy perturbation (w� model) or anisotropic stress (w⇧ model).
For all models i, their growth function D is normalised to recover
the ⇤CDM behaviour at early times; in addition, DG is rescaled
by the factor (!m�8)i / (!m�8)Planck. We can see that some of these
models succeed in explaining the low-growth behaviour at low red-
shifts, although clearly the current data are not accurate enough for
a solid model selection, which we defer to future DES data releases.

7.4 Stochasticity

Crocce et al. (2015) demonstrate that bias non-linearities can be ex-
cluded for the DES-SV ‘Benchmark’ galaxy sample on the scales
we consider. In this case, as discussed in Section 2 above, it is pos-
sible to interpret our results by assuming that any tension between
auto- and cross-correlations is due to stochasticity. If we do so and
assume cosmology is fixed to our fiducial model, we can directly
interpret our constraint on DG as a constraint on r, as this quan-
tity defined in Eq. (14) can be simply estimated as r = bcross/bauto.
Thus, under the assumption of the Planck fiducial cosmology, our

measurement at face value translates to r = 0.73±0.16. Such result
would indicate a 1.7� preference for non-negligible stochasticity
in our sample; this appears to be close to the early results by Hoek-
stra et al. (2002), but in disagreement with the more recent work by
Jullo et al. (2012).

Nonetheless, an analysis of stochasticity from the galaxy-
matter correlation function of the MICE-GC simulations, which
were shown to reproduce most aspects of the DES-SV data cor-
rectly, find r = 1 to 1% precision on all scales of interest (Crocce
et al. 2015), which strongly suggests that the mismatch between
auto- and cross-correlation amplitudes can not be entirely due to
stochasticity.

8 CONCLUSIONS

We have detected the cross-correlation between the matter over-
densities in the Universe as traced by the DES-SV galaxies and the
CMB lensing maps reconstructed by the SPT and Planck collabo-
rations. The total significance of the detections is 6� for the SPT
case and 4� for Planck when using the DES main galaxies in the
SPT-E field over 130 square degrees.

Given the su�cient signal to noise available, and the well-
tested photometric redshifts for our galaxy sample, we have stud-
ied the redshift evolution of the cross-correlation signal. Ours is
the first study to examine this evolution from a single survey. We
divided the DES main galaxies into five photometric redshift bins
of width �z = 0.2. We found that the auto- and cross-correlations
evolve in redshift as expected, recovering a significant detection at
> 2� in all bins. We have finally applied these tomographic mea-
surements of auto- and cross-correlations to reconstruct the evolu-
tion of galaxy bias and the linear growth of structure in our redshift
range.

While the results are overall consistent with the ⇤CDM ex-
pectations, we do find a ⇠ 2� tension (including statistical er-
rors only) between the observed amplitudes of the auto- and cross-
correlations when using the full galaxy sample at 0.2 < zphot < 1.2,
which we confirm with two fully independent analyses in real and
harmonic space. This tension is observed when using either the
DES-SPT or DES-Planck cross-correlations. When dividing the
galaxy sample into five redshift bins, we also found the amplitude
of the DES-SPT cross-correlations is consistently lower than ex-
pected from the DES auto-correlations.

We then introduced a new linear growth estimator, DG(z),
which combines auto- and cross-correlations, so that it is indepen-
dent of galaxy bias on linear scales. Using this new estimator, we
measured the evolution of the linear growth function in five redshift
bins. We then compared the DG(z) measurements with a template,
based on the fiducial ⇤CDM cosmology with a free constant am-
plitude AD, obtaining AD = 0.73 ± 0.16, which is the final result of
this work. This result shows a weak (1.7�) tension with the fiducial
⇤CDM cosmology based on Planck.

We have quantified the impact of photo-zs on our results by
repeating the analysis with two photo-z estimators: TPZ and BPZ.
We have found that using either method leaves the significance of
the cross-correlation detections una↵ected. If assuming BPZ, the
inferred tension between auto- and cross-correlations of the full
galaxy sample is reduced by ⇠ 50%, but the results are nearly un-
changed in the tomography. In particular, our final result on the
growth function estimator DG is una↵ected by the choice of BPZ,
as in this case we find AD = 0.70 ± 0.16. Further work with the
upcoming DES and SPT data of extended coverage and sensitivity
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Figure 22. The red circles and blue squares show our growth function mea-
surements with the DG estimator, compared with the fiducial Planck best fit
⇤CDM prediction (thick black line), di↵erent choices of the ⇤CDM pa-
rameters (top panel), and a selection of dark energy and modified gravity
models (bottom panel). Top panel: The green dashed line shows the pre-
diction for the MICE cosmology, while the orange dot-dashed line refers to
the best-fit ⇤CDM model to the CFHTLenS +WMAP 7 data by Heymans
et al. (2013). Bottom panel: The coloured lines display in the order: a Lin-
der � model (Linder & Cahn 2007), a dark energy model parameterised by
w0,wa (Chevallier & Polarski 2001), and two models of modified gravity
at the perturbative level: entropy perturbation (w�) and anisotropic stress
models (w⇧), as described by Battye & Pearson (2013).

Soergel et al. (2015), in which the dark fluid is described by an
entropy perturbation (w� model) or anisotropic stress (w⇧ model).
For all models i, their growth function D is normalised to recover
the ⇤CDM behaviour at early times; in addition, DG is rescaled
by the factor (!m�8)i / (!m�8)Planck. We can see that some of these
models succeed in explaining the low-growth behaviour at low red-
shifts, although clearly the current data are not accurate enough for
a solid model selection, which we defer to future DES data releases.

7.4 Stochasticity

Crocce et al. (2015) demonstrate that bias non-linearities can be ex-
cluded for the DES-SV ‘Benchmark’ galaxy sample on the scales
we consider. In this case, as discussed in Section 2 above, it is pos-
sible to interpret our results by assuming that any tension between
auto- and cross-correlations is due to stochasticity. If we do so and
assume cosmology is fixed to our fiducial model, we can directly
interpret our constraint on DG as a constraint on r, as this quan-
tity defined in Eq. (14) can be simply estimated as r = bcross/bauto.
Thus, under the assumption of the Planck fiducial cosmology, our

measurement at face value translates to r = 0.73±0.16. Such result
would indicate a 1.7� preference for non-negligible stochasticity
in our sample; this appears to be close to the early results by Hoek-
stra et al. (2002), but in disagreement with the more recent work by
Jullo et al. (2012).

Nonetheless, an analysis of stochasticity from the galaxy-
matter correlation function of the MICE-GC simulations, which
were shown to reproduce most aspects of the DES-SV data cor-
rectly, find r = 1 to 1% precision on all scales of interest (Crocce
et al. 2015), which strongly suggests that the mismatch between
auto- and cross-correlation amplitudes can not be entirely due to
stochasticity.

8 CONCLUSIONS

We have detected the cross-correlation between the matter over-
densities in the Universe as traced by the DES-SV galaxies and the
CMB lensing maps reconstructed by the SPT and Planck collabo-
rations. The total significance of the detections is 6� for the SPT
case and 4� for Planck when using the DES main galaxies in the
SPT-E field over 130 square degrees.

Given the su�cient signal to noise available, and the well-
tested photometric redshifts for our galaxy sample, we have stud-
ied the redshift evolution of the cross-correlation signal. Ours is
the first study to examine this evolution from a single survey. We
divided the DES main galaxies into five photometric redshift bins
of width �z = 0.2. We found that the auto- and cross-correlations
evolve in redshift as expected, recovering a significant detection at
> 2� in all bins. We have finally applied these tomographic mea-
surements of auto- and cross-correlations to reconstruct the evolu-
tion of galaxy bias and the linear growth of structure in our redshift
range.

While the results are overall consistent with the ⇤CDM ex-
pectations, we do find a ⇠ 2� tension (including statistical er-
rors only) between the observed amplitudes of the auto- and cross-
correlations when using the full galaxy sample at 0.2 < zphot < 1.2,
which we confirm with two fully independent analyses in real and
harmonic space. This tension is observed when using either the
DES-SPT or DES-Planck cross-correlations. When dividing the
galaxy sample into five redshift bins, we also found the amplitude
of the DES-SPT cross-correlations is consistently lower than ex-
pected from the DES auto-correlations.

We then introduced a new linear growth estimator, DG(z),
which combines auto- and cross-correlations, so that it is indepen-
dent of galaxy bias on linear scales. Using this new estimator, we
measured the evolution of the linear growth function in five redshift
bins. We then compared the DG(z) measurements with a template,
based on the fiducial ⇤CDM cosmology with a free constant am-
plitude AD, obtaining AD = 0.73 ± 0.16, which is the final result of
this work. This result shows a weak (1.7�) tension with the fiducial
⇤CDM cosmology based on Planck.

We have quantified the impact of photo-zs on our results by
repeating the analysis with two photo-z estimators: TPZ and BPZ.
We have found that using either method leaves the significance of
the cross-correlation detections una↵ected. If assuming BPZ, the
inferred tension between auto- and cross-correlations of the full
galaxy sample is reduced by ⇠ 50%, but the results are nearly un-
changed in the tomography. In particular, our final result on the
growth function estimator DG is una↵ected by the choice of BPZ,
as in this case we find AD = 0.70 ± 0.16. Further work with the
upcoming DES and SPT data of extended coverage and sensitivity
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Conclusion

SV analysis is finished, now public:  
http://des.ncsa.illinois.edu/releases/sva1 
Y1 reduced images are now public:   
http://data.darkenergysurvey.org/aux/releasenotes/DESDMrelease.html 
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Collaboration is working on Y1 
and Y1-3 data (>1500 sq.deg.)

First results from Y1. More in the 
coming months
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