[quick and biased] Overview of cluster cosmology [C. Combet]

Galaxy clusters analysis with the LSST stack outputs [N. Chotard]

Organisation of the work within DESC + topics of discussion [C. Combet, all :)]

Main properties of galaxy clusters

Abell 1689 – X-ray: NASA/CXC/MIT/E.-H Peng et al; Optical: NASA/STScI

- Largest gravitationally bound structures in the universe
- Total mass : $10^{14} 10^{15} M_{sun}$
- Composition
 - > Dark matter [~88%]
 - Diffuse hot gas [~10%]
 - Galaxies [~2%]
- Observations
 - Optical
 - X-rays
 - > mm (SZ effect)

Cluster cosmology with cluster counts

- Halo mass function = number density of haloes (clusters) as a function of mass and redshift n(M,z)
- *n*(*M*,*z*) depends on cosmology
 - Expansion history
 - > Growth of structures
- Cluster counts are at the core of cluster cosmology

In mass bin a and redshift bin i

$$N(M_{a}, z_{i}) = \frac{\Delta \Omega}{4\pi} \int_{z_{i}}^{z_{i+1}} dz \frac{dV}{dz} \int_{M_{a}}^{M_{a+1}} dM \ n(M, z)$$

- 1. predict mass function n(M,z) = f(cosmology)
- 2. build cluster catalog ('cluster observable' + redshift)
- 3. determine cluster masses
- 4. cosmological parameters from likelihood analysis

Cluster cosmology is currently limited by mass estimation

Cluster observable – mass proxies

- X-rays (XMM, Chandra): L_x , kT_x , Y_x [baryons]
- mm (Planck, SPT, etc.): Compton parameter Y_{sz} (SZ effect) [baryons]
- Optical (DES,LSST): richness (N_{200} , # of galaxies in cluster), [weak lensing (shear) $\rightarrow M_{tot}$]

 $M_{obs} \neq M_{true}$

• [If spectroscopy: velocity dispersion $\rightarrow M_{tot}$]

Scaling relations are necessary to go from cluster observable to cluster mass

Weak lensing is the best approach to determine the absolute mass calibration

- · Shear is sensitive to total mass
- Noisy and high scatter mass proxy for individual clusters
- But, precise and robust mean mass calibration for ensemble of clusters
- Requires calibration of the shear measurement

Images of background galaxies are

- coherently distorted (shear γ),
- magnified (convergence κ)

by the cluster gravitational potential. Lensing Jacobian:

$$A = (1-\kappa) egin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix} - \gamma egin{bmatrix} \cos 2\phi & \sin 2\phi \ \sin 2\phi & -\cos 2\phi \end{bmatrix}$$

Weak lensing limit: $\gamma = \langle e^{obs} \rangle$, $e^{obs} = observed$ ellipticity

Shape measurements, PSF deconvolution : KSB, HSM,...

Several methods already available in LSST DM stack

Simulations needed to calibrate the shear likelihood $P(\hat{g}|g(z,M))$

From C. Heymans

Intrinsic galaxy (shape unknown)

Gravitational lensing causes a shear (g)

Atmosphere and telescope cause a convolution

Detectors measure a pixelated image

Image also contains noise

WL cluster mass from shape measurements

Mass determination ("standard" approach):

- Assume spherical symmetry
- Assume DM radial profile (NFW) normalised w.r.t to mass (via concentration)
- Compute the expected shear and "compare" to observations, e.g. WtG "P(z) method"

- + contraints on dark energy, neutrinos, etc...
- distinguishing power between dark energy and modified gravity scenarios
- other cluster cosmological observables:
 - cluster clustering (using clusters, not galaxies, as tracers of LSS)
 - cluster gas fraction (f_{gas} proposal, P. Astier, D. Boutigny + WtG people)
 - > tomography: z-dependent lensing of background galaxies

Clusters are becoming/will become a competitive cosmological probe!

[quick and biased] Overview of cluster cosmology [C. Combet]

Galaxy clusters analysis with the LSST stack outputs [N. Chotard]

Organisation of the work within DESC + topics of discussion [C. Combet, all :)]

- WG coordinators : Anja von der Linden, Ian dell'Antonio (stepping down)
- Monthly telecon : ~ 15 20 people connected, 1 2 presentations/telecon
 - Any cluster-related work. A lot of expertise!
 - Not necessarily LSST-related work, discussion.
- **Bi-monthly cluster 'sub-telecon'** : linked to 'Clusters' pipeline development
 - N. Chotard, D. Boutigny, C. Combet (DM stack reprocessing + pipeline development)
 - Anja von der Linden, D. Applegate, A. Wright (WtG expertise)
 - > I. dell'Antonio, Robert Liu (DM stack users, cluster expertise)
 - Collaboration started at DESC hack week, November 2016... These are great opportunities!]

Work is organised around the Science Roadmap

DC1 Key Project CL1: Cluster finding and characterization via red-sequence methods	56
DC1 Key Project CL2: Absolute mass calibration I	59
DC2 Key Project CL3: Absolute mass calibration II	62
DC2 Key Project CL4: Relative Mass Calibration	65
DC1&DC2&DC3 Key Project CL5: Cosmology Likelihood Module (CLCOSMO)	67
DC3 Key Project CL6: Analysis of DC3 Mock Lightcone and pre-cursor data. CC/SV observing plan	68
Deliverable CX1.2CL (DC1 DP: Measure the impact of blends on cluster shear profiles)	111
Deliverable CX1.6CL (DC2 DP: Shear Deblending including galaxy colors and clustering)	113
Deliverable CX12.6CL (DC3 DP: On the use of the DDFs to reduce cluster mass systematics)	143

DC1 Key Project CL1: Cluster finding and characterization via red-sequence methods	56
DC1 Key Project CL2: Absolute mass calibration I	59
DC2 Key Project CL3: Absolute mass calibration II	62
DC2 Key Project CL4: Relative Mass Calibration	65
DC1&DC2&DC3 Key Project CL5: Cosmology Likelihood Module (CLCOSMO)	67
DC3 Key Project CL6: Analysis of DC3 Mock Lightcone and pre-cursor data. CC/SV observing plan	68
Deliverable CX1.2CL (DC1 DP: Measure the impact of blends on cluster shear profiles)	111
Deliverable CX1.6CL (DC2 DP: Shear Deblending including galaxy colors and clustering)	113
Deliverable CX12.6CL (DC3 DP: On the use of the DDFs to reduce cluster mass systematics)	143

Deliverable CL3.5 (09/18) – DC2 DP: Apply refined results to existing cluster lensing data (CLABSMASS)

Objective: We will use the results of CL3.1, CL3.2 and CL3.4 to further improve mass measurements from available "LSST-like" cluster weak-lensing datasets (both currently existing and gathered in CL2.6). On this timescale, we will also look towards converting our data processing pipelines to DM stack.

Prerequisite Deliverables: CL2.6, CL3.1, CL3.2, CL3.4

Key Task CL3.5.1 (ongoing): Obtain additional "LSST-like" cluster weak-lensing datasets

Key Task CL3.5.2 (12/17): Analyze data; adopt DM stack (where ready) for parts of pipeline processing

Key Task CL3.5.3 (03/18): Measure cluster masses

DC1 Key Project CL1: Cluster finding and characterization via red-sequence methods	56
DC1 Key Project CL2: Absolute mass calibration I	59
DC2 Key Project CL3: Absolute mass calibration II	62
DC2 Key Project CL4: Relative Mass Calibration	65
DC1&DC2&DC3 Key Project CL5: Cosmology Likelihood Module (CLCOSMO)	67
DC3 Key Project CL6: Analysis of DC3 Mock Lightcone and pre-cursor data. CC/SV observing plan	68
Deliverable CX1.2CL (DC1 DP: Measure the impact of blends on cluster shear profiles)	111
Deliverable CX1.6CL (DC2 DP: Shear Deblending including galaxy colors and clustering)	113
Deliverable CX12.6CL (DC3 DP: On the use of the DDFs to reduce cluster mass systematics)	143

Deliverable CL6.5 (03/20) - DC3 DP,VA: Cluster masses from Project re-processed survey data

Objective: We will use the DESC algorithms to process project reprocessed "LSST-like" survey data sets to extract cluster masses. Survey data sets that may be available at the time include CFHTLS, DES, and HSC.

Prerequisite Deliverables: CL2.6, CL3.5, CLMASSMOD, CLSHEAR, CLSMURFS, CLABS-MASS

Key Task CL6.5.1 (09/19): Analyze Project reprocessed data sets using DESC algorithms.

Key Task CL6.5.2 (12/19): Measure cluster masses.

Key Task CL6.5.3 (03/20): Provide feedback to DM and relevant DESC groups.

DC1 Key Project CL1: Cluster finding and characterization via red-sequence methods	56
DC1 Key Project CL2: Absolute mass calibration I	59
DC2 Key Project CL3: Absolute mass calibration II	62
DC2 Key Project CL4: Relative Mass Calibration	65
DC1&DC2&DC3 Key Project CL5: Cosmology Likelihood Module (CLCOSMO)	67
DC3 Key Project CL6: Analysis of DC3 Mock Lightcone and pre-cursor data. CC/SV observing plan	68
Deliverable CX1.2CL (DC1 DP: Measure the impact of blends on cluster shear profiles)	111
Deliverable CX1.6CL (DC2 DP: Shear Deblending including galaxy colors and clustering)	113
Deliverable CX12.6CL (DC3 DP: On the use of the DDFs to reduce cluster mass systematics)	143

- Cluster cosmology needs accurate p(z) : CL3.4 \rightarrow overlap with photoz-WG
- Improve shear measurement methods : see A. Guyonnet's talk, LSST-France 06/16

Magnification? CLABSMASS Provide accurate absolute mass calibration CL2 Iyze data s	Gather and ana- LSST-like cluster velop magnification sets	CL6 Test DM Stack and apply to existing cluster data ^{DM} ; develop CMB lensing
---	--	---

- Likelihood module, cosmological parameters CL5? (cluster cosmology with CAMEL?)
- Cluster finding methods CL1? Others?