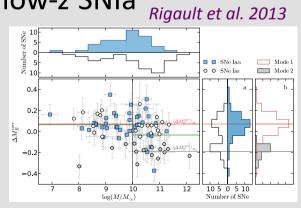
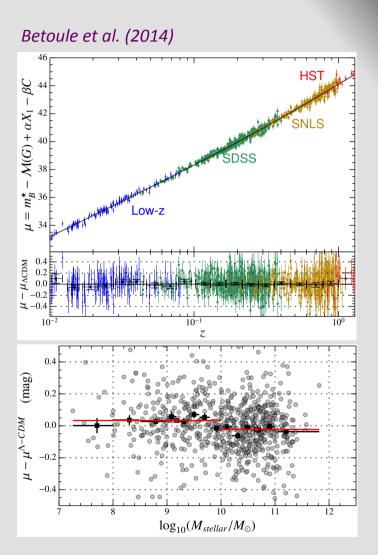

# Environmental dependence of supernova brightness in the SNLS-5 years sample

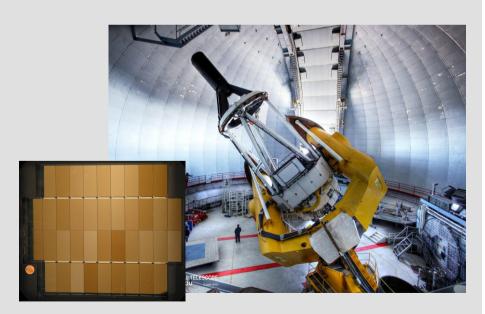

Matthieu Roman,
Delphine Hardin, Marc Betoule


### Context

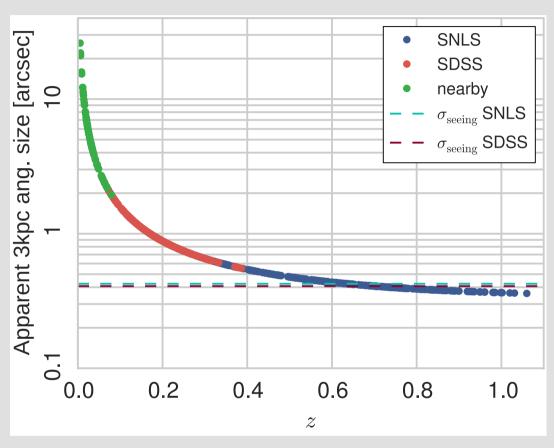
- Joint Light-Curve Analysis (JLA):
  - improved calibration accuracy
  - 0.15 mag remaining dispersion
- Correlations between supernova brightness and environment:
  - host stellar mass (JLA)

– local H $\alpha$  for low-z SNIa









## The SNLS-5 years sample

|        | SN  | Host photometry | Reference                     | Filters/Instrument     |
|--------|-----|-----------------|-------------------------------|------------------------|
| CSP    | 19  | 7               | SDSS footprint, SIMBAD        | ugriz/SDSS & JHK/2MASS |
| CfAIII | 84  | 55              | SDSS footprint, SIMBAD        | ugriz/SDSS & JHK/2MASS |
| CfAIV  | 53  | 34              | SDSS footprint, SIMBAD        | ugriz/SDSS & JHK/2MASS |
| SDSS   | 441 | 389             | Sako et al. 2014              | $ugriz/\mathrm{SDSS}$  |
| SNLS   | 397 | 397             | Hardin et al. 2017 (in prep.) | $ugriz/{ m MegaCam}$   |
| Total  | 994 | 882             | _                             | _                      |





### Local environment at ALL redshifts

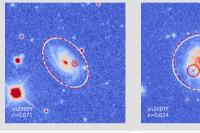


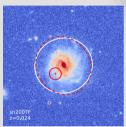
- Local and global photometry of 882 host galaxies of SNIa at ALL redshifts
- 3 kpc local radius
- rest-frame U-V colors by interpolating fluxes

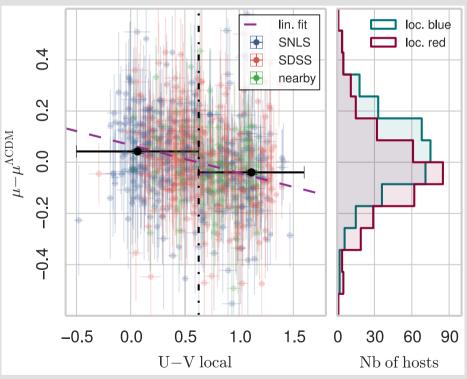
U-V global-local 0.2 0.8 0.0 0.4 0.6

LSST-France 20/03/17

### Local environment at ALL redshifts


- Local color as a third standardization parameter
- 7σ significance of the magnitude step
  - more significant than
     other variables (host stellar mass, galaxy color)
  - valid for different redshift ranges





Roman et al. (2017, in prep.)

### Conclusions

- First analysis of local environment of Type Ia supernovae at all redshifts and for a large sample
- Local color correlates more to Hubble diagram residuals than host stellar mass, host color
- Strong hint that luminosity variations can be reduced
- Type la supernovæ can become a major cosmological probe again: dark energy, expansion rate





