DC1

Photoz with LePhare Buzzard & Galacticus

Status on FORS2 SEDs

DC1 Dataset

> NERSC : /project/projectdirs/lsst/PhotoZDC1/simulation_catalogs/

NB: Getting an account at NERSC:

https://confluence.slac.stanford.edu/display/LSSTDESC/Getting+a+NERSC+Computing+Account

Plans for Paper Writing:

https://docs.google.com/document/d/15qEDUTTvjTwZRp9K-_xfulJ8939OpUBwNcQyYGtk98M/edit

Near-term Tasks in the Science Roadmap:

https://confluence.slac.stanford.edu/display/LSSTDESC/Nearterm+Tasks+in+the+Science+Roadmap

- 2 DC1 datasets : Buzzard (S.Schmidt) with 111173 objects,
 Galacticus (A.Abate) with 317477 objects,
 - with corresponding set of filters (!)
 - training dataset + full DC1 dataset
- Bug found and fixed in magnitude errors for Buzzard and Galacticus → SCATERERRS directory

DC1-Buzzard Photoz with LePhare

- > 100 Buzzard SEDs
- Cut on lambda < 370 000 A needed (max ~ 8000 points for SEDs in LePhare)</p>
- Le Phare, Arnouts S. & Ilbert O. http://www.cfht.hawaii.edu/~arnouts/LEPHARE/lephare.html
- NB: SkyNet NN run on Buzzard coming soon : stay tuned, and perhaps as a teaser showing either or both images in cc, from Sanchez et al 2014 1406.4407

Buzzard training

DC1 – Buzzard training : z-spec & z_phot distributions

LePhare on Golden sample

DC1 – Buzzard training : z-spec/z_phot

LePhare versus BPZ on Golden sample

Seems many checks might be performed to compare both codes ...

DC1 – Buzzard training : Try to understand z-spec/z_phot catastrophics

Does it comes from larger errors on U band ? Try to isolate one of the catastrophic population:

Not very conclusive ... ongoing work.

DC1 – Buzzard training : z-spec / z_phot

LePhare versus BPZ at high magnitude

BPZ (S.Schmidt 16/11)

Even at high magnitudes ...

DC1 – Buzzard – training : r-i / g-r color plots

DC1 – Buzzard – training : g-r / u-g color plots

DC1 – Buzzard – training : i-z / r-i color plots

Full Buzzard (golden) 391106 objects

DC1 – Buzzard : z_phot distribution

DC1 – Buzzard : Comparison with other SEDs templates

LePhare

Change of SEDs template set leads to almost the same results

Galacticus training

NB: I did not find any other analysis on this dataset

DC1 – Galacticus training : z-spec & z_phot distributions

LePhare on Golden sample

Fraction of Catastrophics clearly increase with redshift

DC1 – Galacticus training : z-spec/z_phot

LePhare versus BPZ on Golden sample (i_mag<25.3)

Similar results for Lephare and BPZ ...

z_spec-z_phot distribution comparison

Buzzard

Galacticus

Status on FORS2 SEDs

FORS2 data

Giraud et al atlas (arXiv:1011.1947) :

Redshift and flux distribution of 654 galaxies obtained with the FORS2 instrument (VLT UT1)

Redshifts : 0.275 < z < 1.05 own to R=23 Rest frame window : 3000 Å < λ < 6000 Å Averaged spectra divided in 4 classes : - blue or red SEDs; - absorption or emission lines and redshift bins from z=0.3 to z=1 $(z \sim 0.3, 0.4, 0.6, 0.8, 0.9, 1)$ **67 averaged spectra** over ~600 raw spectra

A new SED Atlas using FORS2 physical spectra. Comparing SED library performances with Le Phare

SED library performance comparison. Gaussian fit

Questions : Does extrapolation of SEDs used to compute the averaged spectra follows the extrapolation of the averaged spectra ?

Ongoing work : We decided to work on the full FORS2 dataset instead on averaged spectra → 654 potential SEDs instead of 64

BACKUP

DC1 – Buzzard : r-i / g-r color plots

DC1 – Buzzard : g-r / u-g color plots

DC1 – Buzzard : I-z / r-i color plots

DC1 Buzzard training

Comparison with other SEDs templates

LePhare - CWW

i_mag<25.3

i_mag>25.3

LePhare - Brown

i_mag<25.3

i_mag>25.3

LePhare - Fors2

i_mag<25.3

i_mag>25.3

LePhare – 100 Buzzard SEDs

i_mag<25.3

i_mag>25.3

DC1 – Buzzard – training : r-i / g-r color plots

DC1 – Buzzard – training : r-i / g-r color plots

DC1 – Buzzard – training : g-r / u-g color plots

DC1 – Buzzard – training : g-r / u-g color plots

DC1 – Buzzard – training : I-z / r-i color plots

DC1 – Buzzard – training : I-z / r-i color plots

DC1 Buzzard training

39

0.10

u_mag g_mag r_mag

i_mag

z_mag y mag

32

34

u_mag g_mag r_mag i_mag z_mag y mag

100 Buzzard SEDs

Cut on lambda < 370 000 A needed (max ~ 8000 points for SEDs in LePhare)

DC1 – Buzzard training : z-spec / z_phot 100 Buzzard SEDs

DC1 – Buzzard training : z-spec / z_phot 100 Buzzard SEDs

LePhare

DC1 Buzzard

