Nuclear, Particle and Astroparticle Physics

Contact: Isabelle Ripp-Baudot (ripp@in2p3.fr)

2017/01/20 – Faculté de Physique & Ingéniérie, Université de Strasbourg

Institut Pluridisciplinaire Hubert Curien

Identity of IPHC

- Two supporting institutions:
 - CNRS : National Center for Scientific Research
 - with IN2P3 = Institute of Nuclear Physics and Particle Physics in CNRS including nowadays also Cosmology and Astroparticles.
 - University of Strasbourg.
 - Workforce of IPHC: ~400 personnel.

Multidisciplinary research at IPHC:

- Present laboratory created in 2006 based on 3 former labs :
 Biology Chemistry Subatomic Physics.
- Cyclotron built at IPHC in 2012: also Medical Doctors joined IPHC to participate to research in Molecular Imaging, Hadrontherapy and Radiobiology.

DRS DEPE DSA DRHIM

The Department of Subatomic Research

Subatomic Physics in Strasbourg: very old laboratory created after WWII. ~200 personnel: 70 researchers + 100 engineers + 30 students.

Particle physics (1)

- Goal: understand the content (particles) and the fundamental symmetries of the early universe.
- Very precise description achieved with a field theory based on special relativity and quantum mechanics.

[&]quot;IS THAT IT? IS THAT THE GRAND UNIFIED THEORY?"

" who ordered that?" (by I. Rabbi according to [Phys.Rept. 532 (2013) 27-64])

Important concept: effective theory, valid in a given range (energy, distance, time).

Particle physics (2)

What theory describes nature at higher energies (younger universe)? Still many questions, e.g.:

- Why did antimatter disappear?
- Nature of Dark Energy?
- Nature of Dark Matter?

. . .

- Particles of matter: why 3 families?
- How to include Gravitation in the theory?

ÍPHC 10

Particle physics (3)

- Different approaches at IPHC to answer these questions:
 - Collisions at the energy frontier (LHC pp collisions at CERN):
 relativistic production of unknown particles.
 - Collisions at the intensity frontier (SuperKEKB e⁺e⁻ collisions in Japan): sensitive to quantum manifestations of unknown particles.

- Neutrino physics: very elusive particle, also used as a messenger of the universe.
- Study of the Quark and Gluon Plasma with Heavy Ion collisions at LHC: new state of matter resulting from Quantum Chromodynamics (strong interaction).

 R&D of new instruments to improve sensitivity to very rare processes and spatial and time precision.

Overall view of the LHC experiments.

Collider physics

LHC collider

CMS detector

Neutrino physics

Neutrino physics

Double-Chooz detector of neutrinos produced → by the Chooz nuclear plant.

 ✓ OPERA detector of neutrinos produced at CERN, after a 723 km travel in earth.

Neutrino physics

ANTARES and KM3NeT submarine telescopes to detect atmospheric neutrinos.

Nuclear physics (1)

Goal: why are nuclei stable? How were they created?

Nuclear physics (2)

- Main questions:
 - Limits of stability as a function of the nucleus shape, its mass (study of superheavy elements), the asymmetry between numbers of neutrons vs. protons.
 - How are the light nuclei produced in the early universe?
 - How are the heavy nuclei produced in stars?

Research activities:

- Developments of very intense beams of stable and radioactive beams.
- Design and construction of detectors.
- Data campaign and analysis.
- Theoretical developments.

Nuclear physics (3)

Development of new intense beams of
 ⁵⁰Ti to produce superheavy nuclei.

AGATA 4π gamma-ray spectrometer.

Andromède
 accelerator
 (Orsay).

ÍPHC21

Applications to Energy, Environment and Health

- Use of fundamental knowledge in subatomic physics and radiochemistry to answer societal issues:
 - Nuclear energy: nuclear data needed to simulate and design the next generation of nuclear reactors.
 - Dosimetry and metrology of ionising radiations: radioactive pollution, radiation worker safety, ionised food, dose monitoring during hadrontherapy.

 Radiochemistry: ground pollution, chemical modification and impact of ionising radiation on organic matter.

ĨPHC 22

The Master of Subatomic and Astroparticle Physics in Strasbourg

UNIVERSITY OF STRASBOURG

MASTER OF SCIENCE SUBATOMIC AND ASTROPARTICLE PHYSICS

2nd year of master programme in Physics

Prepare for PhD studies at world-class facilities, ike:

LHC collider at CERN in Switzerland,
SPIRAL at GANIL in France,
the large telescope HESS in South-Africa.
the Fermi satellite...

Particles

Nuclei

Cosmology

Astroparticle

Hosting laboratory: IPHC / DRS.

Content:

- Common and chosen lectures,
- Project in Physics: 1 month,
- Research internship: 4 months,
- Both theoretical and experimental points of view.

After the Master:

- PhD thesis (possible grants).
- Industry: nuclear power, Big Data, nuclear metrology, simulation, ...

Conditions for applications: successful Master 1 in physics or equivalent. **Contacts:** Prof. Jérôme BAUDOT (baudot@in2p3.fr)

Student with high academic achievements can apply for a grant of excellence.

Hubert Coken STRASBOURG

Thank you for your attention

Cosmology

DARK MATTER

NEVTRINO CA

PROTON DECAY

AXIONS