

Searching for New Physics with the NA62 Experiment Seminar at CPPM, Marseille, France

Mathieu PERRIN-TERRIN

Université Catholique de Louvain, Belgium.

February 27, 2017

Outline

Physics Case ~10min

- Exploring NP with $K^+ \rightarrow \pi^+ \nu \bar{\nu}$
- And with many more channels (axion, dark photon etc...)

The NA62 Experiment ~20min

- General Description
- A close up on the GigaTracker

Analysis of the 2015 Data ~15min

• Performances for the $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ analysis

Conclusions and Prospects

$K^+ \rightarrow \pi^+ \nu \bar{\nu}$: a rare and clean decay

Flavour Changing Neutral Current: no tree diagrams, hard GIM suppression

Very rare SM process [Buras, 1503.02693]

$$\mathcal{B}(K^+ o \pi^+
u ar{
u}) = (8.4 \pm 1.0) imes 10^{-11}$$

- Diagrams with new particles could modify decay properties
- Resulting deviations easily detectable as theory is very clean...

Theoretical Interlude...

Must describe the hadronic initial and final states

Use EFT to separate short and long range physics: [Buras 9806471]

$$\mathcal{A}(M \to F) = \frac{G_F}{2} \sum_i V^i_{CKM} C_i(\mu) \langle F | Q_i(\mu) | M \rangle$$

 $\langle F|Q_i(\mu)|M\rangle$ long range, matrix elements, **large uncertainties** $C_i(\mu)$ short range, Wilson coefficients

Theoretical Uncertainties

Matrix Elements: $\langle F|Q_i(\mu)|M\rangle$

- Normally large uncertainties
- Derived from $K^+ \rightarrow \pi^0 e^+ \nu$ using isospin symmetry:

$$\langle \pi^+ | (\bar{s}d)_{V-A} | K^+ \rangle = \sqrt{2} \langle \pi^0 | (\bar{s}u)_{V-A} | K^+ \rangle$$

Wilson Coefficients: $C_i(\mu)$

- NLO QCD correction for top, NNLO for charm
- NLO EW correction for top & charm

SM Predictions [Buras 1503.02693]

$${\cal B}({\cal K}^+ o \pi^+
u ar
u) = (8.4{\pm}0.3{\pm}1.0_{\it CKM}){ imes}10^{-11}$$

Dominant uncertainty from CKM inputs (V_{cb}, γ)

Physics Case

Testing the SM and the Physics Beyond (1/2)

- Deviation from B_{SM} would signal new particles (e.g. vector boson) contributions
- One example: Simplified Z-Z' models [Buras 1408.0728]

Physics Case

Testing the SM and the Physics Beyond (2/2)

- Enhanced NP sensitivity (MFV) when using correlations with B(K_L → π⁰νν̄), B(B⁰_s → μ⁺μ⁻), γ, B → K(K^{*})μμ, ε'/ε
- A key observable for the LHC era

State of the Searches

E949 Measurements - 2008

Stopping kaon technique

 $\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu}) = (1.73^{+1.15}_{-1.05}) \times 10^{-10}$

[Phys. Rev. D 77, 052003 (2008)] [Phys. Rev. D 79, 092004 (2009)]

Related Decay $K_L \rightarrow \pi^0 \nu \bar{\nu}$

 KOTO at JPARC: single SM event sensitivity by 2020

•
$$\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu}) = (3.0 \pm 0.3) \times 10^{-11}$$

[Buras 1503.02693]

State of the Searches

E949 Measurements - 2008

Stopping kaon technique

 $\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu}) = (1.73^{+1.15}_{-1.05}) \times 10^{-10}$

[Phys. Rev. D 77, 052003 (2008)] [Phys. Rev. D 79, 092004 (2009)]

Related Decay $K_L \rightarrow \pi^0 \nu \bar{\nu}$

 KOTO at JPARC: single SM event sensitivity by 2020

•
$$\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu}) = (3.0 \pm 0.3) \times 10^{-11}$$

[Buras 1503.02693]

NA62 Main Goal

- Measuring $\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu})$ with 10% uncertainty in 2 years
 - O(100) signal events
 - Sig/Bkg O(10)
- ▶ With a signal efficiency of ~10%, it implies:
 - 10¹³ kaons in 2 years
 - ► Background rejection of 10^{12} Main background $K^+ \rightarrow \pi^+ \pi^0$, $\mathcal{B}= 20\%$
- Use SPS for decay in flight technique experiment
 - Large integrated kaon flux achievable
 - ► 400 GeV/c SPS proton beam favorable to K production

A Broad Physics Program(1/2)

NA62 Potential

- High beam intensity: $10^{13} K^+$ and $10^{11} \pi^0$ by 2018
- Excellent PID and hermetic photon coverage
- Long O(100m) decay region

Rare K^+ and π^0 Decay, improve present SES by $O(10^{-2})$

- ▶ LFV and LNV e.g. $K^+ \to \pi^- \mu^+ \mu^+$ or $K^+ \to \pi^\pm e^\pm \mu^\mp$ etc
- Chiral perturbation theory e.g. $K^+ \rightarrow \pi^+ \gamma \gamma$
- π⁰ from factor [NA62 1612.08162]

A Broad Physics Program (2/2)

Dark Sector

- Search axion, dark photon, inflaton, HNL with K⁺ and π⁰ decays e.g. K⁺ → π⁺X or K⁺ → ℓ⁺X or π⁰ → γX
- Search new particles in beam dump mode

Post $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ Phase

- Untill 2018 limited trigger bandwidth ($K^+ \rightarrow \pi^+ \nu \bar{\nu}$ priority)
- Physics Beyond Collider Workshop see T. Spadaro's Talk

NA62 Collaboration

NA62 Time Line

Reference Documents

2005 Proposal

[CERN-SPSC-2005-013]

2010 Technical Design

[NA62-10-07]

2015 Analysis Sensitivity

[G. Ruggiero, KAON 2016]

[Detector Paper, To Be Submitted]

2021 PBC Wokshop

Mathieu Perrin-Terrin (UCL)

The NA62 Experiment

February 27, 2017

Secondary Beam from SPS

- 5s spill at 750 MHz (not bunched)
- Composition: $\begin{array}{c} p & \pi^+ & K^+ \\ 70 & 24 & 6\% \end{array}$
- 75 GeV/c with $\delta p/p = 1\%$

Beam Instrumentation

- ► Kaon Tagging (KTAG, Differential Cerenkov N₂ or H₂)
- Kinematics (GigaTracker, Silicon hybrid pixels)
- Beam particle scattering detection (Guard Ring CHANTI)
- Arrival time measurement

Decay Region

- > 120m long, in vacuum (500 m³ at 10^{-6} mbar)
- ▶ 10% of K^+ decay in the first 65m:

5MHz of K^+ decay, 4.5×10¹²/year

Decay Products Instrumentation

- Kinematics (STRAW Spectrometer, in vacuum!)
- Photon Detection (LAV, IRC, LKr, SAC)
- π and μ identification (RICH, Hadronic Calo MUV's)
- Arrival time measurement (all + CHOD for charged particles)

A Special Detector: The GigaTracker

Beam 4D Tracker Principle

3 time resolved pixel arrays installed in the beam

A Special Detector: The GigaTracker

Demanding Specifications

- ► 10⁹ particles / s over 3×6 cm², peak intensity 1.5 MHits/s/mm²
- Fluence 2×10¹⁴ 1MeVn_{eq} per 100 days of run
- $\delta p/p = 0.2\%$ and $\delta \theta_x = \delta \theta_y = 16 \mu rad$
- Track time resolution required: < 150 ps</p>
- Material budget required: < 0.5% X₀ per station

The GigaTracker Design

Technical Challenge 1: Particle Rate

- Kinematics needs 300×300 μm² pixels i.e. 54,000 pixels to be read with TDC!!
- Dedicated chips (TDCPix):
 -720 TDCs per 7×12mm²
 -4 serialisers running at 3.2 GBit/s
 -10 chips per station
- Station replaced after 100 days in the beam

Std VME 128 Channels Chip HPTDC 28 Channels

The GigaTracker Design

Technical Challenge 1: Particle Rate

- Kinematics needs 300×300 μm² pixels i.e. 54,000 pixels to be read with TDC!!
- Dedicated chips (TDCPix):
 -720 TDCs per 7×12mm²
 -4 serialisers running at 3.2 GBit/s
 -10 chips per station
- Station replaced after 100 days in the beam

Hybrid Pixels, chip compliant with both p-in-n and n-in-p sensors

The GigaTracker Design

Technical Challenge 2: Material Budget

- Detector operated in vacuum (10⁻⁶ mbar)
- Cool TDCPix's (3.5W each) with less than 0.2% X₀ of material
- Develop (HEP first) micro-channel cooling (liquid C₆F₁₄, 3g/s)

Cooling Plate (glassed closed)

Cooling Plate (crossed view)

The NA62 Experiment

GigaTracker Sensor Side

The NA62 Experiment

GigaTracker Cooling Plate Side

GigaTracker being installed

The NA62 Experiment

GigaTracker Performance

Fully commissioned in 2016

- ► Time Resolution (~ 100ps) better than specifications (150ps)!
- Dose accumulated in 2016: 6% of a nominal year (6 MRad)
- Kinematics performance (see 2015 data analysis)

4D Tracking: One Typical Event

Beam Intensity: 35% of nominal

4D Tracking: One Typical Event

Beam Intensity: 35% of nominal

4D Tracking: One Typical Event

Beam Intensity: 35% of nominal

$K^+ \rightarrow \pi^+ \nu \bar{\nu}$ Analysis Principles

Backgrounds

 Dominantly mis-reconstructed K⁺decays

$$\begin{array}{ccc} & & & \mathcal{B}[\%] \\ K^+ \to \mu^+ \nu & & 63 \\ K^+ \to \pi^+ \pi^0 & & 21 \\ K^+ \to \pi^+ \pi^+ \pi^- & & 5.6 \\ K^+ \to \pi^0 \mu^+ \nu & & 3.3 \\ K^+ \to \pi^+ \pi^0 \pi^0 & & 1.7 \end{array}$$

 Early decays or inelastic scatterings

${\cal K}^+ ightarrow \pi^+ \nu \bar{\nu}$ Analysis Principles

Key Detector Performance

- ▶ **PID**: K and π, μ, e
- Hermetic Photon detection
- Sub ns timing
- Precise kinematics

Key Analysis Elements

- two $m_m^2 = |\mathbf{p}_K \mathbf{p}_\pi|^2$ regions
- ▶ $15 < p_{\pi} < 75 \text{ GeV/c}$
- 65m fiducial decay region

Analysis Sensitivity (MC)

Expected Bkg Rejetion

► Kinematics O(10⁻⁴-10⁻⁵)

- Charged PID O(10⁻⁷)
- Photon Detection O(10⁻⁸)
- ► Timing *O*(10⁻²)

Expected Nb of Candidates

Decay	event/year
${\cal K}^+ o \pi^+ u ar u ({ m SM})$	45
Total Background	10
$K^+ o \pi^+ \pi^0$	5
$K^+ ightarrow \mu^+ u$	1
$K^+ ightarrow \pi^+ \pi^+ \pi^-$	< 1
3 track decays	< 1
$K^+ ightarrow \pi^+ \pi^0 \gamma'^{B}$	1.5
$K^+ ightarrow \mu^+ u \gamma'^{B}$	0.5
${\cal K}^+ o \pi^0 {e}^+ (\mu^+) u$ + others	negligible

Minimum bias data taken in 2015 to evaluate our bkg rejection (this talk)

Sensitivity Study - 2015 Minimum Bias Data

Data (control) Sample

- Isolated downstream track (DT)
- DT matching energy deposits in calorimeters
- DT matching a beam track (BT)
- BT tagged as Kaon
- Vertex in fiducial region

Timing

- ► Kaon ID ≤ 100 ps
- Beam Track ≤ 100 ps
- ▶ Downstream Track ≤ 200 ps
- Calorimeters ~ 1-2 ns

Sensitivity Study - 2015 Minimum Bias Data

Data (control) Sample

- Isolated downstream track (DT)
- DT matching energy deposits in calorimeters
- DT matching a beam track (BT)
- BT NOT tagged as Kaon
- Vertex in fiducial region

Timing

- ▶ Kaon ID ≤ 100 ps
- Beam Track ≤ 100 ps
- Downstream Track \leq 200 ps
- Calorimeters ~ 1-2 ns

Sensitivity Study - 2015 Minimum Bias Data

Data (control) Sample

- Isolated downstream track (DT)
- DT matching energy deposits in calorimeters
- DT matching a beam track (BT)
- BT tagged as Kaon
- Vertex in fiducial region

Timing

- ► Kaon ID ≤ 100 ps
- Beam Track ≤ 100 ps
- ▶ Downstream Track ≤ 200 ps
- Calorimeters ~ 1-2 ns

Kinematics in view of 2015 Data

- ▶ 15 \leq p_{π} \leq 35 GeV/c to suppress $K^+ \rightarrow \mu^+ \nu$
- $K^+ \rightarrow \pi^+ \pi^0$ selected using LKr
- Resolution close to design
- ▶ Background rejection aimed: 10⁴-10⁵, measured: 10³

Kinematics in view of 2015 Data

- ▶ 15 \leq p_{π} \leq 35 GeV/c to suppress $K^+ \rightarrow \mu^+ \nu$
- $K^+ \rightarrow \pi^+ \pi^0$ selected using LKr
- Resolution close to design
- ▶ Background rejection aimed: 10⁴-10⁵, measured: 10³

PID in view of 2015 Data

- Goal: 10⁷ muon rejection to reduce $K^+ \rightarrow \mu^+ \nu$
- ▶ 15 $\leq p_{\pi} \leq$ 35 GeV/c: best RICH performance
- Pure sample of pion and muon selected using kinematics
- ▶ RICH: $10^2 \mu^+$ rejection for 80 (90) % π^+ efficiency in 2015 (2016)
- ► Calorimeter: $10^4 10^6 \mu^+$ rejection for 90-40% π^+ efficiency (cut)

Photon rejection in view of 2015 Data

- Goal: 10⁸ rejection on π^0 from $K^+ \to \pi^+ \pi^0$
- As 15 $\leq p_{\pi} \leq$ 35 GeV/c we have $E_{\pi^0} >$ 40GeV
- Hermetic to photon from 50 mard to 0 ($\eta \in [3.7, \infty]$)

Photon rejection in view of 2015 Data

- Goal: 10⁸ rejection on π^0 from $K^+ \to \pi^+ \pi^0$
- As 15 $\leq p_{\pi} \leq$ 35 GeV/c we have $E_{\pi^0} >$ 40GeV
- Hermetic to photon from 50 mard to 0 ($\eta \in [3.7, \infty]$)

Photon rejection in view of 2015 Data

- ▶ π^0 rejection measured selecting $K^+ \rightarrow \pi^+ \pi^0$ using kinematics
- Results limited by statistics

Performances Summary

- Time Reso > All detectors reach design specs
- Kinematics
 Performance close to design specs
 - Improved in 2016
 - $\pi \mu$ ID RICH reaches design specs
 - Calorimeter first results are promising, refined studies (MVA) on going
- Photon Veto > 10⁻⁶ rejection achieved, results limited by statistics
 More news in 2016.

Glimpse at 2016 and Beyond

Data Collected

- Ran at 40% nominal intensity
- Limiting beam time structures (30Hz, 50Hz...)
- Triggers: PNN + EXOTICS
- Full GTK from 15/09
- 8×10¹¹ usable K decays

Prospects for $K^+ \rightarrow \pi^+ \nu \bar{\nu}$

2016 Reach SM SES

- 2017 Improved on BNL results
- 2018 Reach 10% precision on B

Conclusion and Prospects

- NA62 is tailored to look for new physics
 - flagship analysis: $K^+ \rightarrow \pi^+ \nu \bar{\nu}$
 - many other searches (rare decays, LNFV, dark sector)
- NA62 pioneered 4-D tracking and micro-channel cooling
- Experiment running in stable conditions
- 2015 data quality shows performances in line with design
- 2016 data analysis on going
- ▶ 10% precision measurement of $\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu})$ on its way...

Thanks you for your attention! Questions?

Extra Slides

- **6** Beyond $K^+ \rightarrow \pi^+ \nu \bar{\nu}$
- More on Detectors

Uncertainty budget

- $\delta P_{c,u}$ long range contribution to charm
- P_c^{SD} short range contribution to charm

$K^+ \rightarrow \pi^+ \nu \bar{\nu}$

Unitarity Triangles

- $\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu})$ with 10% uncertainties allows to determine $|V_{td}|$ at 9% [Buras 0405132]
- ▶ With $\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu})$, $\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu})$ the CKM unitarity triangle can be built independently from B observables:

Beyond $K^+ \to \pi^+ \nu \bar{\nu}$

Decay	Physics	Present limit (90% C.L.) / Result NA62	
$\pi^+\mu^+e^-$	LFV	1.3×10^{-11} 0.7×10^{-12}	
$\pi^+\mu^-e^+$	LFV	5.2×10^{-10}	0.7×10^{-12}
$\pi^-\mu^+e^+$	LNV	5.0×10^{-10}	0.7×10^{-12}
$\pi^-e^+e^+$	LNV	6.4×10^{-10}	2×10^{-12}
$\pi^-\mu^+\mu^+$	LNV	1.1×10^{-9}	0.4×10^{-12}
$\mu^- \nu e^+ e^+$	LNV/LFV	2.0×10^{-8}	4×10^{-12}
$e^- \nu \mu^+ \mu^+$	LNV	No data	10 ⁻¹²
$\pi^+ X^0$	New Particle	$5.9 \times 10^{-11} m_{\chi^0} = 0$	10 ⁻¹²
$\pi^+\chi\chi$	New Particle	-	10^{-12}
$\pi^+\pi^+e^-\nu$	$\Delta S \neq \Delta Q$	1.2×10^{-8}	10 ⁻¹¹
$\pi^+\pi^+\mu^-\nu$	$\Delta S \neq \Delta Q$	3.0×10^{-6} 10 ⁻¹¹	
$\pi^+\gamma$	Angular Mom.	2.3×10^{-9} 10 ⁻¹²	
$\mu^+\nu_h,\nu_h\to\nu\gamma$	Heavy neutrino	Limits up to $m_{\nu_h} = 350 MeV$	
R _K	LU	$(2.488 \pm 0.010) \times 10^{-5}$	>×2 better
$\pi^+\gamma\gamma$	χPT	< 500 events	10 ⁵ events
$\pi^0\pi^0e^+\nu$	χPT	66000 events	O(10 ⁶)
$\pi^0\pi^0\mu^+\nu$	χPT	-	O(10 ⁵)

Beyond $K^+ \rightarrow \pi^+ \nu \bar{\nu}$

A glance to the on-going 2016 run

- Stable data taking since beginning of August at 20 30 % of nominal intensity
- L0 πνν trigger: hits in RICH & CHOD, !muons, E(LKr) < 20 GeV
- L1 πνν trigger: KTAG, LAV, Straw (P < 50 GeV/c)

1A62 /

- Data type (simultaneously): πνν (no downscaling), di-lepton, minimum bias
- Average rate at L0 (25% of nominal beam intensity): 500 KHz
- Average rate after L1 (25% of nominal beam intensity): 60 KHz
- On line $\pi^+\pi^0$ reduction factor ($\pi\nu\nu$ trigger): 6 (room for improvements ×2 at least)
- On line muon reduction factor (πνν trigger): O(100)
- Data collected so far: $\pi v v$ sensitivity below 10^{-9} (assuming O(10%) signal acceptance)

15/09/2016	Giuseppe Ruggiero		19
Mathieu Perrin-Terrin (UCL)	The NA62 Experiment	February 27, 2017	3

/33

KTAG - Kaon Identification and Timing

Differential Cerenkov Detector

KTAG - Performance

More on Detectors

Guard Ring - GTK3 Scattered Particle Detection

Five first Guard Ring stations during installation

CHANTI - Design and Performance

- 6 stations of scintillator+WLS fibres read with SiPMs
- Signal processed with TDC

CHOD - Charged Decay Product Timing

Time Resolution, $\sigma(t) \simeq 300 \text{ ps}$

- 2 layers (X-Y) of scintillator read each by 64 PMT
- Used for time reference

More on Detectors

Spectrometer - Decay Products Kinematics

The NA62 Experiment

Spectrometer - Design and Status

Specific	ations	x,y	
Rate	15 MHz		
Momentum Reso	1%	34	
Angular Reso	20-60 µrad		
Material	4×0.5%X ₀		
Size	2.1 m diameter		
-			
		${\longleftrightarrow}$	
		2.1m	THE STATE OF THE S

- 2.1m long straw filled wilt Ar+CO₂ at 1 atm ran in vacuum
- 7168 straws arranged in 4 chambers of 4 views (x,y,u,v)
- Readout up to 700kHz per straw with TDCs
- See performance in First Data

Photon Detection ($K^+ \rightarrow \pi^+ \pi^0$)

 $8.5 \rightarrow 50 \text{ mrad}$

 $1 \rightarrow 8.5 \text{ mrad}$

IRC (+ SAC) Shashlik type

< 1 mrad: angular coverage

LAV: 8.5 \rightarrow 50 mrad

12 stations of 4-5 rinos of staddered lead glass blocks

LKr: $1 \rightarrow 8.5 \text{ mrad}$

- Quasi homogenous liquid Kripton calorimeter from NA48
- Inefficiency measured in 2004 at 10⁻⁵ for E > 10 GeV
- Major RO upgrade: full LKr sampled at 40MHz with 14bits FADC

LKr - Performance

- $K^+ \rightarrow \pi^+ \pi^0$ event reconstructed with LKr only
- *p_K* set to it nominal value
- π^0 reconstructed from two EM clusters, constrained to m_{π^0}

RICH - π , μ Identification

RICH - Design

Specifications		
$\pi \rightarrow \mu$	< 1% for <i>p</i> ∈ [15, 35] GeV	
Angular Reso	< 100µrad	
Time Reso	< 100 ps RMS	
Rate	10 MHz	

- Neon at 1 atm: $p_{Th}^{\pi} = 13 GeV/c$
- 17m long vessel:
 ~20 hits per ring
- Light reflected on two 1000 PM arrays read with TDC

More on Detectors

HCAL and MUV - π , μ Identification

MUV - Design and Performance

 MUV made of scintillator 22x22 cm² tiles read with 2 PMs and CFDs

HCAL 1 and 2 - Design and Performance

Recent Results: π^0_D Transition Form Factor - NA62

More details on M. Koval Talk at La Thuile

- NA62-*R_K* had 5×10⁹ π⁰ from K⁺ → π⁺π⁰ to study π⁰ → e⁺e⁻γ
- ▶ Diff decay rate wrt $x = (m_{ee}/m_{\pi^0})$, depends on a TFF(x): \sum_{γ}

$$\frac{1}{\Gamma(\pi_{2\gamma}^{0})}\frac{d\Gamma(\pi_{D}^{0})}{dx} = \frac{2\alpha}{3\pi}\frac{(1-x)^{3}}{x}\left(1+\frac{r^{2}}{2x}\right)\sqrt{1-\frac{r^{2}}{x}} (1+\delta(x)) (1+ax)^{2}$$

► TFF used for hadronic light by light scattering contribution to (g-2)_µ

Extract a by comparing x spectrum to MC:

$$a = (3.70 \pm 0.53_{stat} \pm 0.36_{syst}) \times 10^{-2}$$

 π^0

Recent Results: NP searches with $K^{\pm} \rightarrow \pi \mu \mu$ -NA48/2 More details in Talk by K.Massri at La Thuile

More details in K. Massri Talk at La Thuile

Same Sign Muon Pair

- World Best Limit: $\mathcal{B}(K^{\pm} \rightarrow \pi^{\mp}\mu^{\pm}\mu^{\pm}) < 8.6 \times 10^{-11}$ at 90% C.L. (LNV)
- ▶ Resonances search $K^{\pm} \rightarrow \mu^{\pm} N(\pi^{\mp} \mu^{\pm})$ with N a majorana neutrino

