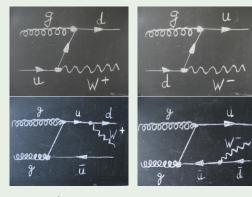
Interprétation des résultats

Yann Coadou

CPPM Marseille

Summer Camp


Structure du proton

ullet Proton \oplus \Rightarrow on produit + de W^+ \Rightarrow $\frac{W^+}{W^-} > 1$

Structure du proton

• Proton \oplus \Rightarrow on produit + de W^+ \Rightarrow $\frac{W^+}{W^-}$ > 1

- $gg \Rightarrow$ autant de W^+ que de W^-
- Proton $\sim uud \Rightarrow$ plus souvent gu (et W^+) que gd (et W^-)
- On devrait donc observer $\frac{W^+}{W^-} > 1$
- Le rapport dépend, entre autres, de la proportion de collisions gg

	W ⁺ (%)	W- (%)	Théorie (%)
Mesure	XX	YY	100

	W+ (%)	W- (%)	Théorie (%)
Mesure	XX	YY	100
gluon-gluon	32000	3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	34
			3 4
quark-gluon	00055369 ±	d W-	66

• Théorie : 34% gluon-gluon, 66% quark-gluon

	W ⁺ (%)	W- (%)	Théorie (%)
Mesure	XX	YY	100
gluon-gluon	17	9 17	34
quark-gluon	1 2 1 W	1 W-	66

- Théorie : 34% gluon-gluon, 66% quark-gluon
- gluon-gluon \Rightarrow autant de W^+ que de W^-

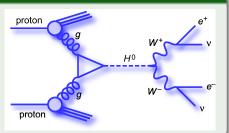
	W ⁺ (%)	W ⁻ (%)	Théorie (%)
Mesure	XX	YY	100
gluon-gluon	17	300000000 Win wood of it is	34
quark-gluon	XX-17	9 4 W- YY-17	66

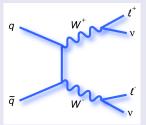
- Théorie : 34% gluon-gluon, 66% quark-gluon
- gluon-gluon \Rightarrow autant de W^+ que de W^-
- ullet Déduction : % de W^+ et W^- pour les interactions quark-gluon

	W ⁺ (%)	W ⁻ (%)	Théorie (%)
Mesure	XX	YY	100
gluon-gluon	17	300000000 W-n 17	34
quark-gluon	xx-17	9 4 4 W- YY-17	66

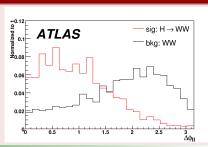
- Théorie : 34% gluon-gluon, 66% quark-gluon
- gluon-gluon \Rightarrow autant de W^+ que de W^-
- ullet Déduction : % de W^+ et W^- pour les interactions quark-gluon
- Rapport $R^{\pm} = W_{qg}^{+}/W_{qg}^{-} = rac{XX-17}{YY-17} = N(u)/N(d)$

	W ⁺ (%)	W- (%)	Théorie (%)
Mesure	XX	YY	100
gluon-gluon	**************************************	300000000 Win i i i	34
quark-gluon	XX-17	9 1 1 W- YY-17	66


- Théorie : 34% gluon-gluon, 66% quark-gluon
- gluon-gluon \Rightarrow autant de W^+ que de W^-
- ullet Déduction : % de W^+ et W^- pour les interactions quark-gluon
- Rapport $R^{\pm} = W_{qg}^{+}/W_{qg}^{-} = \frac{XX-17}{YY-17} = N(u)/N(d)$
- Proton $\sim uud \Rightarrow R^{\pm} = \frac{u+u}{d} = \frac{2}{1} = 2$, d'où $\frac{W^+}{W^-} = \frac{XX}{YY} \approx 1.5$

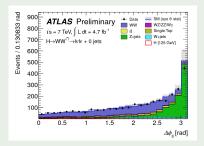

A la recherche du boson de Higgs

Production de $H \rightarrow W^+W^-$

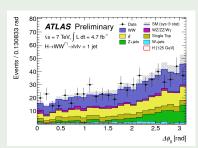


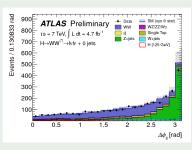
Bruit de fond W+W-

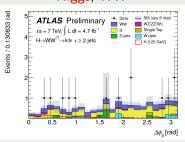
$\Delta\phi(\ell\ell)$


- L'angle $\Delta\phi(\ell\ell)$ entre les deux leptons $(ee, \, \mu\mu \, {\rm ou} \, e\mu)$ n'est pas le même dans les deux cas
- Des détails ? C'est dû aux corrélations de spin entre les W venant de la désintégration du Higgs

- Analyse plus complexe, mais principe similaire
- Présence d'autres bruits de fond




Higgs, WW



- Analyse plus complexe, mais principe similaire
- Présence d'autres bruits de fond
- ⇒ Par exemple, événements séparés en événements avec 0, 1 ou 2 jets pour augmenter la sensibilité

Higgs, WW

