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Inverse	Problems
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Direct Problem

Inverse Problem

MODEL DATA

With an inverse problem one attempts to obtain information about a physical system from 
observed measurements.



Inverse	Problems

y = Ax

y 2 Rm
x 2 RnA 2 Rm⇥n

Linear Inverse Problem

Data Vector Model VectorOperation Matrix
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Linear	Regression

Straight Line : Direct Problem

y = mx+ b

x =
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Operation Matrix

y = Ax

Data Vector
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Linear	Regression

Polynomial Line : Inverse Problem

y = a0 + a1x+ a2x
2 + ...+ akx

k
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Ill-Posed	Problem

Well-Posed Problem

1. A solution exists 
2. The solution is unique 
3. The solution's behaviour changes continuously with the 

initial conditions
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Ill-Posed Problem

1. No solution exists 
2. The solution is not unique 
3. The problem is ill-conditioned



Ill-Posed	Problem

Well-Conditioned Problem
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Regularisation
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argmin
x

1

2
ky �Axk22 + �R(x)

1. Find x such that y-Ax is small 
2. We have some prior knowledge about 

the properties of x given by R(x)



Regularisation
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rF (x) = A

T (y �Ax)

F (x) =
1

2
ky �Axk22

x0

x1

x2
x3



Regularisation
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rF (x) = A

T (y �Ax)

F (x) =
1

2
ky �Axk22

R(x)



Convexity
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In general we want to preserve convexity



Sparsity
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A sparse signal is one that is comprised mostly of 
zeros when expressed in the appropriate basis.

Direct Space Sparse Space
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   is the dictionary that converts the signal to a sparse 
representation. (e.g. Fourier transform, wavelet 
transform, etc.)

Sparsity

x = �↵ =
nX

i=1

�i↵i

�

k↵k0 k↵k1 =
nX

i=1

|↵i|

Measuring Sparsity

Not convex
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Sparsity

This theorem demonstrates that, under certain conditions 
regarding the signal and the operation matrix, a perfect 
reconstruction can be achieved through l1 minimisation. 

No such theorem exists for any other regularisation 
technique.

Compressive Sensing Theorem
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Sparsity

argmin
↵

1

2
ky �A�↵k22 + �k↵k1

Sparse Minimisation

‣ Denoising   

‣ Deconvolution 
‣ Component Separation 

‣ Inpainting

Applications

‣ Blind Source Separation   

‣ Minimisation algorithms  

‣ Compressed Sensing  
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Sparsity

↵n

↵n+1 = ST�(↵n �rF (↵n))

↵n+1

Implementation



ST�(xi) =

(
xi � �sign(xi) if |xi| � �

0 otherwise

Soft Threshold
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Sparsity

Soft Thresholding of Sparse Coefficients
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Low-Rank	Approximation

The rank of a matrix can be defined in the following ways: 

1. the maximum number of linearly independent column vectors 
in a given matrix 

2. the maximum number of linearly independent row vectors in a 
given matrix 

Both of these definitions are equivalent.

rank(M) = 2M =

2

4
1 0 1
�2 �3 1
3 3 0

3

5

Rank of a Matrix
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Low-Rank	Approximation

Singular Value Decomposition

M = U⌃V T

Measuring Rank

⌃ =

2

6664

�0 0 · · · 0
0 �1 · · · 0
...

...
. . .

...
0 0 · · · �n

3

7775

Not convex



Regularisation techniques for solving inverse problems -  S.Farrens

Low-Rank	Approximation

Low-Rank Minimisation

argmin
x

1

2
ky �Axk22 + �kxk⇤

The nuclear norm term can be implemented by 
preforming a hard thresholding on the singular values 
of x.



HT�(xi) =

(
xi if |xi| � �

0 otherwise

Hard Threshold
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Low-Rank	Approximation

Hard Thresholding of Singular Values
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Background

Point Spread Function
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Background

Point Spread Function
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Background

stars

galaxies
PSF
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Super-Resolution 

Background
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Interpolation

Background
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Background

Deconvolution
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Problem

y = Hx+ n

= ⇤ +

Observation PSF True Image Gaussian Noise

The problem is ill-posed
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Problem

= ⇤ +

Observation PSF True Image Gaussian Noise

Y = H(X) +N

Regularisation techniques for solving inverse problems -  S.Farrens



Problem

Y = H(X) +N

H(X) = [H0x0,H1x1, . . . ,Hnxn]

Y = [y0,y1, . . . ,yn]

X = [x0,x1, . . . ,xn]

N = [n0,n1, . . . ,nn]
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Regularisation

argmin
X

1

2
kY �H(X)k22

s.t. X � 0,

Positivity Constraint

+ kW(k) � �(X)k1

Sparsity

+ �kXk⇤

Low-Rank
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Sparsity

argmin
X

1

2
kY �H(X)k22 + kW(k) � �(X)k1 s.t. X � 0

W(0)
:,i = [ti1T , · · · , tiJT ]T ,

tijm = j�ik�j
m,:H

iT k2.

Weights

� - Starlet transform (without the coarse scale)

W(k+1)
i,j = W(k)

i,j

1

1 + |�(X̂(k))i,j |
W(0)

i,j

,

Re-Weighting

Candès et al. (2008)
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Low-Rank

argmin
X

1

2
kY �H(X)k22 + �kXk⇤ s.t. X � 0

� = ↵�est

p
max(n+ 1, p)⇢(H),

Threshold
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MAD((xi)1il) = median((|xi �median((xi)1il)|)1il)

Noise

Median Absolute Deviation

� = 1.4826⇥MAD(Y)
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Optimisation

1 :

˜Xk+1 = prox⌧G(Xk � ⌧rF (Xk)� ⌧L⇤
(Yk))

2 :

˜Yk+1 = Yk + &L(2 ˜Xk+1 �Xk)� &proxK/&

⇣Yk

&
+ L(2 ˜Xk+1 �Xk)

⌘

Condat (2013) primal-dual splitting

L - Linear operator (wavelet transform or identity)

• Primal proximity operator is always the positivity constraint 
• Dual proximity operator is either a soft thresholding in Starlet space or a 

hard thresholding of the singular values

3 : (Xk+1,Yk+1) := ⇠(X̃k+1, Ỹk+1) + (1� ⇠)(Xk,Yk)
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Data

• 10,000 (space-based) galaxy images obtained from GREAT3 
• 0.05 arcsec pixel scale (2× Euclid resolution, hence no aliasing issues) 
• Each image is a 41×41 postage stamp 
• The data set is well suited for studying Euclid like images as: 

• The ACS PSF can be neglected, 
• the intrinsic noise can easily be removed 
• and it is derived from high-resolution space-based images.

Galaxy Images

Euclid-like PSFs

• 600 unique PSFs corresponding to different positions across the four 
CCD chips of the Euclid VIS instrument  

• Each PSF has 12× Euclid resolution 
• Down-sampled to match galaxy images
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The PSF of the Euclid VIS instrument will be a combination of  

• the instrument optics, which will introduce additional ellipticity to the 
galaxy shape measurements owing to aberrations and imperfections 
in the optical set-up,  

• jitter in the spacecraft pointing, which will differ from exposure to 
exposure,  

• the charge spread of the instrument detector, which will also add 
ellipticity to the galaxy shape measurements that are aligned with the 
pixel grid. 

Euclid PSF

Data
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Results

Perr = median

✓
kxi � x̂

ik22
kxik22

◆

1in

Pixel	Error
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Results
Ellipticity	Error

"err = median
�
k"(xi)� "(x̂i)k2

�
1in
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https://sfarrens.github.io/

Website
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Code

https://github.com/sfarrens/sf_deconvolve
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Code

http://sfarrens.github.io/sf_deconvolve/index.html
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Summary

• Farrens et al., A&A, 2017 (arXiv:1703.02305) 
• New Python code for deconvolution  

๏ can handle data with constant or space-variant PSF 
๏ implements sparse and/or low-rank regularisation 

• Results from Euclid-like images show better shape measurements with 
low-rank regularisation (when sample is sufficiently large) 

• For future work we aim to add additional constraints on the 
deconvolution such as the galaxy shape 

• We are also investigating ways to simultaneously estimate the PSF 
and deconvolve the galaxy images
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