Regularisation techniques for solving inverse problems

Samuel Farrens CEA

Regularisation techniques for solving inverse problems - S.Farrens

Regularisation techniques for solving inverse problems - S.Farrens

CosmoStat

http://www.cosmostat.com

Outline

• Inverse Problems

- Linear Regression
- III-posed Problems
- Regularisation
 - Sparsity
 - Low-Rank Approximation
- Deconvolution of Galaxy Images
- Summary

Inverse Problems

With an inverse problem one attempts to obtain information about a physical system from observed measurements.

Inverse Problems

Linear Inverse Problem

Straight Line: Direct Problem

$$y = mx + b$$

$$x = \begin{bmatrix} 8 & 2 & 11 & 6 & 5 & 4 & 12 & 9 & 6 & 11 \end{bmatrix}$$

Model

$$m = -1.1$$
$$b = 14$$

$$\mathbf{x} = \begin{bmatrix} 14.0 & 1.1 \end{bmatrix}$$

Model Vector Operation Matrix

$$\mathbf{A} = \begin{bmatrix} 1 & 8 \\ 1 & 2 \\ 1 & 11 \\ 1 & 6 \\ 1 & 5 \\ 1 & 4 \\ 1 & 12 \\ 1 & 9 \\ 1 & 6 \\ 1 & 11 \end{bmatrix}$$

Data Vector

$$y = Ax$$

Regularisation techniques for solving inverse problems - S.Farrens

Straight Line: Inverse Problem

$$y = mx + b$$

$$x = \begin{bmatrix} 8 & 2 & 11 & 6 & 5 & 4 & 12 & 9 & 6 & 11 \end{bmatrix}$$

$$y = \begin{bmatrix} 3 & 10 & 3 & 6 & 8 & 12 & 1 & 4 & 9 & 14 \end{bmatrix}$$

Data Vector

Operation Matrix Model Vector

$$\mathbf{x} = \left(\mathbf{A}^{\mathbf{T}}\mathbf{A}\right)^{-1}\mathbf{A}^{\mathbf{T}}\mathbf{y}$$

(Normal Equation)

Regularisation techniques for solving inverse problems - S.Farrens

Polynomial Line: Inverse Problem

$$y = a_0 + a_1 x + a_2 x^2 + \dots + a_k x^k$$

Regularisation techniques for solving inverse problems - S.Farrens

Ill-Posed Problem

Well-Posed Problem

- 1. A solution exists
- 2. The solution is unique
- 3. The solution's behaviour changes continuously with the initial conditions

III-Posed Problem

- 1. No solution exists
- 2. The solution is not unique
- 3. The problem is ill-conditioned

Ill-Posed Problem

Well-Conditioned Problem

$$\mathbf{y} \qquad \mathbf{A} \qquad \mathbf{x}$$

$$\begin{bmatrix} 4 \\ 7 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \qquad \longrightarrow \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 4 \\ 7 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2.01 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \qquad \longrightarrow \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1.96 \\ 1.02 \end{bmatrix}$$

III-Conditioned Problem

$$\begin{bmatrix} 3 \\ 1.47 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 0.48 & 0.99 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \longrightarrow \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
$$\begin{bmatrix} 3 \\ 1.47 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 0.49 & 0.99 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \longrightarrow \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 0 \end{bmatrix}$$

Outline

• Inverse Problems

- Linear Regression
- III-posed Problems

- Regularisation
 - Sparsity
 - Low-Rank Approximation
- Deconvolution of Galaxy Images
- Summary

Regularisation

$$\underset{\mathbf{x}}{\operatorname{argmin}} \quad \frac{1}{2} \|\mathbf{y} - A\mathbf{x}\|_{2}^{2} + \lambda R(\mathbf{x})$$

- 1. Find **x** such that **y-Ax** is small
- 2. We have some prior knowledge about the properties of \mathbf{x} given by $R(\mathbf{x})$

Regularisation

$$F(\mathbf{x}) = \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2}^{2}$$
$$\nabla F(\mathbf{x}) = \mathbf{A}^{T} (\mathbf{y} - \mathbf{A}\mathbf{x})$$

Regularisation

$$F(\mathbf{x}) = \frac{1}{2} ||\mathbf{y} - \mathbf{A}\mathbf{x}||_2^2$$
$$\nabla F(\mathbf{x}) = \mathbf{A}^T (\mathbf{y} - \mathbf{A}\mathbf{x})$$

Convexity

In general we want to preserve convexity

A sparse signal is one that is comprised mostly of zeros when expressed in the appropriate basis.

Regularisation techniques for solving inverse problems - S.Farrens

$$\mathbf{x} = \phi \alpha = \sum_{i=1}^{n} \phi_i \alpha_i$$

 ϕ is the dictionary that converts the signal to a sparse representation. (e.g. Fourier transform, wavelet transform, etc.)

Measuring Sparsity

$$\|\alpha\|_0 \qquad \longrightarrow \qquad \|\alpha\|_1 = \sum_{i=1}^n |\alpha_i|$$
 Not convex

Compressive Sensing Theorem

This theorem demonstrates that, under certain conditions regarding the signal and the operation matrix, a perfect reconstruction can be achieved through l_1 minimisation.

No such theorem exists for any other regularisation technique.

Sparse Minimisation

$$\underset{\alpha}{\operatorname{argmin}} \quad \frac{1}{2} \|\mathbf{y} - A\phi\alpha\|_{2}^{2} + \lambda \|\alpha\|_{1}$$

Applications

- Denoising
- Deconvolution
- Component Separation
- Inpainting

- Blind Source Separation
- Minimisation algorithms
- Compressed Sensing

Implementation

$$\alpha_{n+1} = \operatorname{ST}_{\lambda}(\alpha_n - \nabla F(\alpha_n))$$

Soft Threshold

$$ST_{\lambda}(\mathbf{x}_i) = \begin{cases} \mathbf{x}_i - \lambda \operatorname{sign}(\mathbf{x}_i) & \text{if } |\mathbf{x}_i| \ge \lambda \\ 0 & \text{otherwise} \end{cases}$$

Soft Thresholding of Sparse Coefficients

$$\alpha = \begin{bmatrix} 3 & 0 & 8 \\ 7 & 7 & 1 \\ 2 & 5 & 3 \end{bmatrix} \longrightarrow ST_4(\alpha) = \begin{bmatrix} 0 & 0 & 4 \\ 3 & 3 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

Rank of a Matrix

The rank of a matrix can be defined in the following ways:

- 1. the maximum number of linearly independent column vectors in a given matrix
- 2. the maximum number of linearly independent row vectors in a given matrix

Both of these definitions are equivalent.

$$M = \begin{bmatrix} 1 & 0 & 1 \\ -2 & -3 & 1 \\ 3 & 3 & 0 \end{bmatrix}$$

$$\operatorname{rank}(M) = 2$$

Singular Value Decomposition

$$M = U\Sigma V^T$$

$$\Sigma = \begin{bmatrix} \sigma_0 & 0 & \cdots & 0 \\ 0 & \sigma_1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_n \end{bmatrix}$$

Measuring Rank

$$\operatorname{rank}(M) = \|\Sigma\|_0$$

$$\|M\|_* = \sum_{k=1}^{\infty} \sigma_k(M)$$

Not convex

Low-Rank Minimisation

$$\underset{\mathbf{x}}{\operatorname{argmin}} \quad \frac{1}{2} \|\mathbf{y} - A\mathbf{x}\|_{2}^{2} + \lambda \|\mathbf{x}\|_{*}$$

The nuclear norm term can be implemented by preforming a hard thresholding on the singular values of \mathbf{x} .

Hard Threshold

$$HT_{\lambda}(\mathbf{x}_i) = \begin{cases} \mathbf{x}_i & \text{if } |\mathbf{x}_i| \ge \lambda \\ 0 & \text{otherwise} \end{cases}$$

Hard Thresholding of Singular Values

$$\Sigma = \begin{bmatrix} 12 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & 3 \end{bmatrix} \longrightarrow HT_4(\Sigma) = \begin{bmatrix} 12 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Outline

• Inverse Problems

- Linear Regression
- III-posed Problems
- Regularisation
 - Sparsity
 - Low-Rank Approximation

- Deconvolution of Galaxy Images
- Summary

Point Spread Function

Regularisation techniques for solving inverse problems - S.Farrens

Point Spread Function

Point Spread Function

Regularisation techniques for solving inverse problems - S.Farrens

Background

Problem

$$\mathbf{y} = \mathbf{H}\mathbf{x} + \mathbf{n}$$

The problem is ill-posed

Problem

$$\mathbf{Y} = \mathcal{H}(\mathbf{X}) + \mathbf{N}$$

Regularisation techniques for solving inverse problems - S.Farrens

Problem

$$\mathbf{Y} = \mathcal{H}(\mathbf{X}) + \mathbf{N}$$

$$egin{aligned} \mathbf{Y} &= [\mathbf{y}^0, \mathbf{y}^1, \dots, \mathbf{y}^n] \ \mathbf{X} &= [\mathbf{x}^0, \mathbf{x}^1, \dots, \mathbf{x}^n] \ \mathbf{N} &= [\mathbf{n}^0, \mathbf{n}^1, \dots, \mathbf{n}^n] \ \mathcal{H}(\mathbf{X}) &= [\mathbf{H}^0 \mathbf{x}^0, \mathbf{H}^1 \mathbf{x}^1, \dots, \mathbf{H}^n \mathbf{x}^n] \end{aligned}$$

Regularisation

Sparsity

$$\underset{\mathbf{X}}{\operatorname{argmin}} \quad \frac{1}{2} \|\mathbf{Y} - \mathcal{H}(\mathbf{X})\|_{2}^{2} + \|\mathbf{W}^{(k)} \odot \Phi(\mathbf{X})\|_{1} \quad \text{s.t.} \quad \mathbf{X} \ge 0$$

Weights

Re-Weighting

$$\mathbf{W}_{:,i}^{(0)} = [\mathbf{t}^{i1T}, \cdots, \mathbf{t}^{iJT}]^T,$$

$$\mathbf{t}_m^{ij} = \kappa_j \boldsymbol{\sigma_i} \|\boldsymbol{\Phi}_{m,:}^j \mathbf{H}^{iT}\|_2.$$

$$\mathbf{W}_{i,j}^{(k+1)} = \mathbf{W}_{i,j}^{(k)} \frac{1}{1 + \frac{|\Phi(\hat{\mathbf{X}}^{(k)})_{i,j}|}{\mathbf{W}_{i,j}^{(0)}}},$$

Candès et al. (2008)

 Φ - Starlet transform (without the coarse scale)

Low-Rank

$$\underset{\mathbf{X}}{\operatorname{argmin}} \quad \frac{1}{2} \|\mathbf{Y} - \mathcal{H}(\mathbf{X})\|_{2}^{2} + \lambda \|\mathbf{X}\|_{*} \quad \text{s.t.} \quad \mathbf{X} \ge 0$$

Threshold

$$\lambda = \alpha \sigma_{est} \sqrt{\max(n+1,p)} \rho(\mathcal{H}),$$

Noise

$$\sigma = 1.4826 \times \text{MAD}(\mathbf{Y})$$

Median Absolute Deviation

$$MAD((\mathbf{x}_i)_{1 \le i \le l}) = median((|\mathbf{x}_i - median((\mathbf{x}_i)_{1 \le i \le l})|)_{1 \le i \le l})$$

Optimisation

Condat (2013) primal-dual splitting

$$1: \tilde{\mathbf{X}}_{k+1} = \operatorname{prox}_{\tau G}(\mathbf{X}_k - \tau \nabla F(\mathbf{X}_k) - \tau \mathcal{L}^*(\mathbf{Y}_k))$$

$$2: \tilde{\mathbf{Y}}_{k+1} = \mathbf{Y}_k + \varsigma \mathcal{L}(2\tilde{\mathbf{X}}_{k+1} - \mathbf{X}_k) - \varsigma \operatorname{prox}_{K/\varsigma} \left(\frac{\mathbf{Y}_k}{\varsigma} + \mathcal{L}(2\tilde{\mathbf{X}}_{k+1} - \mathbf{X}_k)\right)$$

$$3: (\mathbf{X}_{k+1}, \mathbf{Y}_{k+1}) := \xi(\tilde{\mathbf{X}}_{k+1}, \tilde{\mathbf{Y}}_{k+1}) + (1 - \xi)(\mathbf{X}_k, \mathbf{Y}_k)$$

- Primal proximity operator is always the positivity constraint
- Dual proximity operator is either a soft thresholding in Starlet space or a hard thresholding of the singular values

 \mathcal{L} - Linear operator (wavelet transform or identity)

Galaxy Images

- 10,000 (space-based) galaxy images obtained from GREAT3
- 0.05 arcsec pixel scale (2× Euclid resolution, hence no aliasing issues)
- Each image is a 41×41 postage stamp
- The data set is well suited for studying Euclid like images as:
 - The ACS PSF can be neglected,
 - the intrinsic noise can easily be removed
 - and it is derived from high-resolution space-based images.

Euclid-like PSFs

- 600 unique PSFs corresponding to different positions across the four CCD chips of the Euclid VIS instrument
- Each PSF has 12× Euclid resolution
- Down-sampled to match galaxy images

Euclid PSF

The PSF of the Euclid VIS instrument will be a combination of

- the instrument optics, which will introduce additional ellipticity to the galaxy shape measurements owing to aberrations and imperfections in the optical set-up,
- **jitter in the spacecraft pointing**, which will differ from exposure to exposure,
- the charge spread of the instrument detector, which will also add ellipticity to the galaxy shape measurements that are aligned with the pixel grid.

Pixel Error

Regularisation techniques for solving inverse problems - S.Farrens

Ellipticity Error

Regularisation techniques for solving inverse problems - S.Farrens

Regularisation techniques for solving inverse problems - S.Farrens

Regularisation techniques for solving inverse problems - S.Farrens

Regularisation techniques for solving inverse problems - S.Farrens

Outline

• Inverse Problems

- Linear Regression
- III-posed Problems
- Regularisation
 - Sparsity
 - Low-Rank Approximation
- Deconvolution of Galaxy Images

Summary

Website

https://sfarrens.github.io/

Regularisation techniques for solving inverse problems - S.Farrens

https://github.com/sfarrens/sf_deconvolve

http://sfarrens.github.io/sf_deconvolve/index.html

Docs * sf_deconvolve * lib package * lib.optimisation module

View page source

lib.optimisation module

OPTIMISATION CLASSES

This module contains classes for optimisation algoritms

Author: Samuel Farrens <samuel.farrens@gmail.com>

Version: 1.2

05/01/2017 Dates

References

1) Condat, A Primal-Dual Splitting Method for Convex Optimization Involving Lipschitzian, Proximable and Linear Composite Terms, 2013, Journal of Optimization Theory and Applications, 158, 2, 460. (C2013) 2) Bauschke et al., Fixed-Point Algorithms for Inverse Problems in Science and Engineering, 2011, Chapter 10. (B2010) 3) Raguet et al., Generalized Forward-Backward Splitting, 2012, , (R2012)

- x_old is used in place of x_{n}.
- x_new is used in place of x_{n+1}.
- x_prox is used in place of ~{x} {n+1}.
- x_temp is used for intermediate operations.

Summary

- Farrens et al., A&A, 2017 (arXiv:1703.02305)
- New Python code for deconvolution
 - can handle data with constant or space-variant PSF
 - implements sparse and/or low-rank regularisation
- Results from Euclid-like images show better shape measurements with low-rank regularisation (when sample is sufficiently large)
- For future work we aim to add additional constraints on the deconvolution such as the galaxy shape
- We are also investigating ways to simultaneously estimate the PSF and deconvolve the galaxy images