Status and prospects of charm physics at BESIII

Hailong Ma (IHEP, CAS, China) For BESIII Collaboration

Current Trends in Flavor Physics, 29-31 March 2017, Institute Henri Poincare, Paris, France

Main goals of charm physics at **BESIII**

Leptonic and hadronic decays of charmed hadrons (D^0 , D^+ , D_s^+ and Λ_c^+) provide an ideal window to explore weak and strong effects

> D leptonic decays

 $f_{D(s)+},\,f^{K(\pi)}_{+}(0)$: better calibrate LQCD $|V_{cs(d)}|\text{: better test on CKM unitarity}$

> D hadronic decays

 $D^0 \overline{D}^0$ mixing parameters and CP voilation

Strong phase in D⁰ decays: Constrain on the measurement of γ/ϕ_3 in B decay, which is the worst one of 3 CKM angles

- > Rare D decays \rightarrow New physics
- > Absolute BFs of Λ_c^+

Before BESIII, no absolute BF measurements of Λ_c^+ using near $\Lambda_c^+\bar{\Lambda}_c^-$ production threshold data, in the past 38 years

$$U = \begin{bmatrix} V_{ud} \ V_{us} \ V_{ub} \\ V_{cd} \ V_{cs} \ V_{cb} \\ V_{td} \ V_{ts} \ V_{tb} \end{bmatrix}$$

Contents

- **BESIII** samples of $D_{(s)}^+$ and Λ_c^+
- $\blacksquare \mathbf{D}_{(s)}^{+} \rightarrow \mathbf{l}^{+} \mathbf{v} \ (\mathbf{l} = \boldsymbol{\mu}, \tau)$
- **D**⁰⁽⁺⁾ \rightarrow Kl⁺v and π l⁺v (l=e, μ)
- Search for $D^{0(+)} \rightarrow a_0(980)^{-(0)}e^+v$, $D^+ \rightarrow hee$, γe^+v and D^0e^+v
- **Hadronic decays of** Λ_c **and D**

Summary

BEPCII: high luminosity double-ring collider

Satellite view of BEPCII /BESIII

South

BESIII detector Beam energy:1.Design Luminosity:1.Optimum energy:1.Achieved Luminosity:1.Data taken from:20

LINAC

1.0-2.3 GeV 1.00×10³³ cm⁻²s⁻¹ 1.89 GeV 1.00×10³³ cm⁻²s⁻¹ 2009

BESIII detector

$D^{0(+)}$, D_{s}^{+} , Λ_{c}^{+} samples at BESIII

> D⁰⁽⁺⁾ samples at 3.773 GeV $\sigma_{D^0\overline{D}^0(D^+D^-)} \sim 3.6(2.9) \text{ nb}$

> $D_{s}^{+}/D_{s}^{+}/\Lambda_{c}^{+}$ samples at 4.009/4.18/4.6 GeV

D_(s)⁺ **leptonic decays**

In the SM:
$$\Gamma(D_{(s)}^+ \to \ell^+ \nu_\ell) = \frac{G_F^2 f_{D_{(s)}^+}^2}{8\pi} |V_{cd(s)}|^2 m_\ell^2 m_{D_{(s)}^+} \left(1 - \frac{m_\ell^2}{m_{D_{(s)}^+}^2}\right)^2$$

Bridge to precisely measure

- Decay constant f_{D(s)+} with input |V_{cd(s)}|^{CKMfitter}
- CKM matrix element |V_{cd(s)}| with input f^{LQCD}_{D(s)+}

Improved B[D⁺ \rightarrow μ^+ v], f_{D+} and |V_{cd}|

Comparison of f_{D+} and prospect at BESIII

Better input f_{D+} from LQCD

Taking from Aida X. El-Khadra's talk at Beauty2014

errors (in %) comparison: FLAG-2 averages vs. new results

review by C. Bouchard @ Lattice 2014

Better input benefit the systematic uncertainty

Evidence for $D^+ \rightarrow \tau^+(\pi^+ v)v$ (4 σ)

With 6 dominant D⁻ single tag Fitting to DATA

$$B[D^+ \rightarrow \tau^+ \nu] = (1.20 \pm 0.24_{stat.}) \times 10^{-3}$$

$$R \equiv \frac{\Gamma(D^+ \to \tau^+ \nu)}{\Gamma(D^+ \to \mu^+ \nu)} = \frac{m_{\tau^+}^2 \left(1 - \frac{m_{\tau^+}^2}{M_{D^+}^2}\right)^2}{m_{\mu^+}^2 \left(1 - \frac{m_{\mu^+}^2}{M_{D^+}^2}\right)^2}$$

SM prediction: 2.66±0.01

BESIII: 3.21±0.64

f_{Ds+} at 4.009 GeV

Comparison of f_{Ds+} and prospect at BESIII

 $|V_{cs}^{D_s^+ \to l^+ \nu_l}| = 1.012 \pm 0.015 \pm 0.009$

 $|V_{cs}^{CKM \ fitter}| = 0.97343 \pm 0.00015$ EPJC75(2015)10

μ counter of BESIII may help to suppress background in D_s⁺→μ⁺v

Roughly estimated with CLEO-c results

If systematic is the same as CLEO-c measurement

Result at 4.009 GeV is not included due to large error

 $D_s^+ \rightarrow \tau^+ v$ will further improve measurements

~2σ difference can be better understood by ~3 fb⁻¹ data@4.18 GeV

 $|V_{cs}^{D_s^+ \to K l^+ \nu_l}| = 0.962 \pm 0.005 \pm 0.014$

Semi-leptonic decay $D \rightarrow K(\pi) l^+ v$

Differential rates:

Bridge to precisely measure:

- Form factors $f_{+}^{D \rightarrow K(\pi)}(0)$ with input $|V_{cd(s)}|^{CKMfitter}$
 - $\text{Single pole form} \\ f_{+}(q^{2}) = \frac{f_{+}(0)}{1 \frac{q^{2}}{M_{\text{pole}}^{2}}} \\ \text{ISGW2 model} \\ f_{+}(q^{2}) = f_{+}(q_{\text{max}}^{2}) \left(1 + \frac{r_{\text{ISGW2}}^{2}}{12}(q_{\text{max}}^{2} q^{2})\right)^{-2} \\ \frac{1}{P(t)\Phi(t, t_{0})}a_{0}(t_{0}) \left(1 + \sum_{k=1}^{\infty} r_{k}(t_{0})[z(t, t_{0})]^{k}\right) \\ \frac{1}{P(t)\Phi(t, t_{0})}a_{0}(t_{0}) \left(1 + \sum_{k=1}^{\infty} r_{k}(t_{0})[z(t, t_{0})]^{k}\right)$
- CKM matrix element $|V_{cs(d)}|$ with input $f_{+}^{LQCD,D \rightarrow K(\pi)}(0)$

$D^0 \rightarrow K(\pi) e^+ v \rightarrow f^{D \rightarrow K(\pi)}(q^2) |V_{cs(d)}|$

Calibration of LQCD

Comparison of $|V_{cs}|$

Analysis of $D^+ \rightarrow K_L e^+ v$

> Regardless of long flight distance, K_L interact with EMC and deposit part of energy, thus giving position information

> After reconstructing all other particles, K_L can be inferred with position information and constraint $U_{miss} \rightarrow 0$

$\overline{B}(D^+ \rightarrow K_L e^+ v) = (4.482 \pm 0.027 \pm 0.103)\%$

$$A_{CP} \equiv \frac{\mathcal{B}(D^+ \to K_L^0 e^+ \nu_e) - \mathcal{B}(D^- \to K_L^0 e^- \bar{\nu}_e)}{\mathcal{B}(D^+ \to K_L^0 e^+ \nu_e) + \mathcal{B}(D^- \to K_L^0 e^- \bar{\nu}_e)}$$
$$\mathbf{A_{CP}}^{\mathbf{D}+\mathbf{\mathcal{F}}\mathbf{KLe}+\mathbf{v}} = (-0.59 \pm 0.60 \pm 1.50)\%$$

Simultaneous fit to event density I(q²) with 2-par. series Form Factor

 $f_{+}^{K}(0)|V_{cs}| = 0.728 \pm 0.006 \pm 0.011$

 $r_1 = a_1/a_0 = -1.91 \pm 0.33 \pm 0.24$

Absolute BF for $D^+ \rightarrow \overline{K}^0 e^+ v$ via $\overline{K}^0 \rightarrow \pi^0 \pi^0$

 $\frac{\Gamma[D^0 \to K^- e^+ v]}{\overline{\Gamma}[D^+ \to \overline{K}^0 e^+ v]} = 0.969 \pm 0.025$

Agrees with isospin conservation within 1.2σ

Analysis of $D^+ \rightarrow \overline{K}^0(\pi^0) e^+ v$

Comparisons of FFs by $D^+ \rightarrow \overline{K}^0(\pi^0)e^+v$

HPOCD 0.747±0.011±0.015 BESII 0.78±0.04±0.03 D°→Ketv. 0.695±0.007±0.022 Belle $D^0 \rightarrow K e^+ v_{e_1} D^0 \rightarrow K \mu^+ v_{\mu}$ BABAR 0.727±0.007±0.009 D°→Ketv. CLEO-c 0.739±0.007±0.005 $D^0 \rightarrow K e^+ v_a, D^+ \rightarrow \overline{K}^0 e^+ v_a$ BESIII 0.7368±0.0026±0.0036 D°→Ke'v_ BESIII 0.748±0.007±0.012 D⁺→ K⁰e⁺v This work 0.7246±0.0041±0.0115 D⁺→ K_e⁰e⁺v_e 0.65 0.7 0.75 0.8 0.55 0.6 $f_{+}^{K}(0)$

Improved BF for D^+ \rightarrow \overline{K}^0 \mu^+ v

Taking B[D⁰→K⁻μ⁺v] and B[D⁺→K⁰e⁺v] from the PDG as input

$$\frac{\Gamma[D^0 \to K^- \mu^+ \nu]}{\overline{\Gamma}[D^+ \to \overline{K}^0 \mu^+ \nu]} = 0.963 \pm 0.044$$
$$\frac{\Gamma[D^+ \to \overline{K}^0 \mu^+ \nu]}{\Gamma[D^+ \to \overline{K}^0 e^+ \nu]} = 0.988 \pm 0.033$$

Support isospin conservation in these two decays within errors

Consistent with theory prediction 0.97 within error ²²

Lepton universality in $D^{0(+)} \rightarrow \pi^{-(0)} l^+ v$

Expectations based on ZPC46 (1990)93, PRD69 (2004)074025, PLB633(2006)61 and PDG16

BFs on PDG16:

 $R_{\rm LU}^0 = 0.82 \pm 0.08 \ (\sim 2.0\sigma)$

 $B(D^0 \rightarrow \pi^- \mu^+ \nu) = (0.237 \pm 0.024)$ %

Large error in B[D⁰ $\rightarrow \pi^-\mu^+\nu$] and no B[D⁺ $\rightarrow \pi^0\mu^+\nu$] measurement. Improved measurements are desired

agrees with PDG and with better precision

 $B(D^+ \to \pi^0 \mu^+ \nu) = (0.342 \pm 0.011 \pm 0.010)\%$

Isospin symmetry (IS)

 $R_{\rm IS}^{\ell} = \frac{\Gamma(D^0 \to \pi^- \ell^+ \nu)}{2\Gamma(D^+ \to \pi^0 \ell^+ \nu)} \simeq 1$

PDG16: $R_{IS}^{e} = 0.911 \pm 0.043$ (2.1 σ) BESIII: $R_{IS}^{e} = 1.03 \pm 0.03 \pm 0.02$

measured for the first time

LU: $R_{LU}^{0}=0.918\pm0.036$ $R_{LU}^{+}=0.921\pm0.045$ agree with expectation in 1.5(1.1) σ IS: $R_{IS}^{\mu}=0.990\pm0.054$

agrees with IS prediction within uncertainty

Search for $D^{0(+)} \rightarrow a_0(980)^{-(0)}e^+v$

Explore the nontrivial internal structure of light hadron mesons, traditional qq states, tetra quark system.

With chiral unitarity approach in the coupled channels, BF is predicted to be order of 5(6)×10⁻⁵ for D⁰⁽⁺⁾ decays

 3.0σ

Improve understanding of classification of light scalar mesons

$$R \equiv \frac{B(D^+ \to f_0 l^+ \nu) + B(D^+ \to \sigma l^+ \nu)}{B(D^+ \to a_0 l^+ \nu)}$$

R=1(3) if traditional qq (tetra quark) system

• $B(D^0 \to a_0(980)^- e^+ v_e) \times B(a_0(980)^- \to \eta \pi^-)$ = $(1.12^{+0.31}_{-0.28}(stat) \pm 0.10(syst)) \times 10^{-4}$ • $B(D^+ \to a_0(980)^0 e^+ v_e) \times B(a_0(980)^0 \to \eta \pi^0)$ = $(1.47^{+0.73}_{-0.59}(stat) \pm 0.14(syst)) \times 10^{-4}$ With 3(6) dominant D⁰⁽⁻⁾ single tag

24

Search for $D^+ \rightarrow hee$

In SM, $D^0\overline{D}^0$ mixing, CP violation and rare decay of charm are small $D^0\overline{D}^0$ mixing $x \approx y \approx 10^{-3} \Rightarrow r_D = [x^2 + y^2]/2 \approx 10^{-6}$ *CP* violation asymmetries ~ 10^{-3} Rare decays $\leq 10^{-6}$ With single tag method

M.G. Zhao (BESIII) arXiv: 1605.08952, prepared proceeding of Charm2015

Search for $D^+ \rightarrow D^0 e^+ v$

Applying the SU(3) symmetry for the light quarks, this rare decay branching fraction can be predicted by theoretical calculation and its theoretical value is 2.78×10^{-13} [EPJC, 59:841-845(2009)].

With 6 dominant D⁻ single tag

Search for $D^+ \rightarrow \gamma e^+ v$

J.C. Yang and M.Z. Yang, NPB889,778(2014)

Tree level amplitudes

With 6 dominant D⁻ single tag

FIG. 2. (color online) The $U_{\rm miss}$ distribution. Dots with error bars are data, the red solid-line histogram shows the overall fit curve, the blue dash-line histogram shows the background $D^+ \to \pi^0 e^+ \nu_e$, and the green shaded histogram includes all other background. The black dotted line shows the signal MC simulation normalized to the branching fraction $\mathcal{B}(D^+ \to \gamma e^+ \nu_e) = 100 \times 10^{-5}$.

Various theory models predict BFs in 10⁻⁶–10⁻⁴

Figure 1: Feynman diagrams of short-distance contribution at tree level (taken from Ref. [1]). The double line represents the heavy quark propagator. Fig.(a) and (b) are structure-dependent radiative decays, Fig.(c) is the Bremsstrahlung radiative decay. Fig.(d) is suppressed by a factor of $1/m_W^2$.

arXiv: 1702.05837[hep-ex], accepted by PRD(RC)

Λ_{c}^{+} decays

> Λ_c^+ was observed in 1979

► Before 2014, all decays of Λ_c^+ are measured relative to Λ_c^+ \rightarrow pK⁻ π^+ , which suffer large error of 25%, with high energy data. No absolute measurement using data produced at Λ_c^+ pair threshold

> Sum of BFs of known decays Λ_c^+ is only about 60%

> In 2014, Belle reported improved measurement of B[$\Lambda_c^+ \rightarrow pK^-\pi^+$], with a precision of ~5%

AT DECAY MODES		Exaction	(F.)		Sc	ale factor/	p
AC DECAT MODES		Fraction	i (i <i>i</i> /	.,	Conn	dence level	(wev/c)
Hadronic modes w	rith	a p: S	· — —	-1 final	al stat	es	972
$pK^{-}\pi^{+}$	[-]	(2.3	± 0	3) %			873
$pK = \frac{\pi}{K^*}(892)^0$		(16	± 1	.5)%			625
$\Delta(1232)^{++}K^{-}$	[2]	(8.6	+ 3	$(0) \times$	10^{-3}		710
$\Lambda(1520)\pi^+$	[<i>b</i>]	(1.8	± 0	0.6) %			627
$pK^{-}\pi^{+}$ nonresonant		(2.8	± 0	.8)%			823
$p\overline{K}^0\pi^0$		(3.3	± 1	0)%			823
$p\overline{K}^0\eta$		(1.2	± 0).4)%			568
Hadronic modes with	a hy	yperon	: s =	= -1	final s	states	
$\Lambda \pi^+$		(1.07	7± 0	.28) %			864
$\Lambda \pi^+ \pi^0$		(3.6	± 1	.3)%			844
Λa^+		< 5		%		CI =95%	636
$\Lambda \pi^+ \pi^+ \pi^-$		(26	+ 0	7)%			807
$\Sigma(1385)^+\pi^+\pi^-, \Sigma^{*+} \rightarrow$		(7	± 4) ×	10-3		688
$\Lambda \pi^+$							
$\Sigma(1385)^-\pi^+\pi^+$, $\Sigma^{*-} ightarrow$		(5.5	± 1	.7)×	10^{-3}		688
$\Lambda \pi^{-}$							
$\Lambda \pi^+ \rho^0$		(1.1	± 0	.5)%	2		524
$\Sigma(1385)^+ ho^0$, $\Sigma^{*+} ightarrow \Lambda\pi^+$		(3.7	± 3	.1)×	10-3		363
$\Lambda \pi^+ \pi^+ \pi^-$ nonresonant		< 8		×	10^{-3}	CL=90%	807
$\Lambda \pi^+ \pi^+ \pi^- \pi^0$ total		(1.8	± 0	.8)%			757
$\Lambda \pi^+ \eta$	[<i>b</i>]	(1.8	± 0	.6)%			691
$\Sigma(1385)^{+}\eta$	[<i>b</i>]	(8.5	± 3	.3)×	10^{-3}		570
$\Lambda \pi^+ \omega$	[<i>b</i>]	(1.2	± 0	.5)%			517
$\Lambda \pi^+ \pi^+ \pi^- \pi^0$, no η or ω		< 7		×	10-3	CL=90%	757
$\Lambda K^+ \overline{K}^0$		(4.7	± 1	.5)×	10^{-3}	S=1.2	443
$\Xi(1690)^0 K^+, \Xi^{*0} \rightarrow \Lambda \overline{K}^0$		(1.3	+ 0	.5)×	10^{-3}		286
$\Sigma^{0}\pi^{+}$		(1.05	5 + 0	28) %			825
$\sum_{r=1}^{n} \frac{1}{r}$		(1.00	$\rightarrow 0$	34) %			827
Σ^+		(1.00	- 0	2)	10-3		712
$\Sigma^{+} - +$		(5.5	± 2	$(3) \times$	10		/15
$\Sigma + 0$		(3.0	± 1	.0)%		CI 050/	804
$\sum_{r=++++}^{r} \rho^{r}$		< 1.4		- > %		CL=95%	575
$\Sigma \pi' \pi'$		(1.7	± 0	.5)%			799
$\Sigma^{\circ}\pi^{+}\pi^{\circ}$		(1.8	± 0	.8)%	2		803
$\Sigma^{\circ}\pi^{+}\pi^{+}\pi^{-}$		(8.3	± 3	.1)×	10-3		763
$\Sigma^+ \pi^+ \pi^- \pi^0$			_				767
$\Sigma^+ \omega$	[<i>b</i>]	(2.7	± 1	.0)%			569
Semi	lept	onic m	odes				
$\Lambda \ell^+ \nu_\ell$	[c]	(2.0	± 0	.6)%			871
$\Lambda e^+ \nu_e$		(2.1	± 0	.6)%			871
$\Lambda \mu^+ u_{\mu}$		(2.0	± 0	.7)%			867
Inclusive modes							
e ⁺ anything		(4.5	± 1	.7)%			_
pe ⁺ anything		(1.8	± 0	.9)%			-
p anything		(50	+16)%			_

Systematic studies of Λ_c^+ , search for new decays, absolute BF measurements are important to fully explore the Λ_c^+ decay mechanisms

First absolute BFs of $\Lambda_c^+ \rightarrow \Lambda l^+ v$

PRL115(2015)221805

Ο

 $U_{\rm miss}~({\rm GeV})$

0.1

0.2

Events/0.010 GeV

10

0⁻¹

-0.2

-0.1

Theory: (1.4-9.2)%

Theoretical Models	predicated branching fraction for $\Lambda_c^+ \rightarrow \Lambda e^+ \nu_e$
MBM [1]	1.9%
NRQM [1]	2.6%
SU(4)-symmetry limit [2]	9.2%
RSQM [3]	4.4%
QCM [4]	5.62%
SQM [5]	1.96%
NRQM2 [6]	2.15%
NRQM3 [7]	1.42%
QCD SR1 [8]	$(3.0 \pm 0.9)\%$
QCD SR2 [9]	$(2.6 \pm 0.4)\%$
QCD SR3 [9]	$(5.8 \pm 1.5)\%$
STSR [10]	2.22% for $\Lambda_c^+ \to \Lambda l^+ \nu_l$
STNR [10]	1.58% for $\Lambda_c^+ \longrightarrow \Lambda l^+ \nu_l$
HOSR [10]	4.72% for $\Lambda_o^+ \longrightarrow \Lambda l^+ \nu_l$
HONR [10]	4.2% for $\Lambda_c^+ \rightarrow \Lambda l^+ \nu_l$
LCSRs [11]	$(3.0 \pm 0.3)\%$ for $\Lambda_o^+ \rightarrow \Lambda l^+ \nu_l$ (CZ-type)
PDG 2014 [14]	$(2.1 \pm 0.6)\%$
BESIII	$(3.63 \pm 0.38 \pm 0.20)\%$

3 fb⁻¹ help to explore FF studies

29

 $B[\Lambda_{c}^{+} \rightarrow \Lambda e^{+}\nu] = (3.63 \pm 0.38 \pm 0.20)\% \qquad B[\Lambda_{c}^{+} \rightarrow \Lambda \mu^{+}\nu_{\mu}] = (3.49 \pm 0.46 \pm 0.26)\%$ $\Gamma[\Lambda_{c}^{+} \rightarrow \Lambda \mu^{+}\nu_{\mu}]/\Gamma[\Lambda_{c}^{+} \rightarrow \Lambda e^{+}\nu_{e}] = 0.96 \pm 0.16 \pm 0.04$

Significantly improved BFs of $\Lambda_c^+ \rightarrow$ decays

SCS decays $\Lambda_c^+ \rightarrow pK^+K^-$ and $p\pi^+\pi^-$

 $\Lambda_{c}^{+} \rightarrow pK^{-}K^{+}$

These help to distinguish predictions from different theoretical models and understand contributions from factorizable effects

Decay modes	$\mathcal{B}_{ extsf{mode}}/\mathcal{B}_{ extsf{ref}}$.	\mathcal{B}_{mode}	$\mathcal{B}(PDG)$
$\Lambda_c^+ \to p \pi^+ \pi^-$	$(6.70\pm0.48\pm0.25) imes10^{-2}$ ($3.91 \pm 0.28 \pm 0.15 \pm 0.24) imes 10^{-3}$	$(3.5\pm2.0) imes10^{-3}$
$\Lambda_c^+ o p \phi$	$(1.81\pm 0.33\pm 0.13) imes 10^{-2}$ ($1.06 \pm 0.19 \pm 0.08 \pm 0.06) imes 10^{-3}$.	$(8.2 \pm 2.7) imes 10^{-4}$
$\Lambda_c^+ \to p K^+ K^-$ (n	$(9.36 \pm 2.22 \pm 0.71) imes 10^{-3}$ ($5.47 \pm 1.30 \pm 0.41 \pm 0.33) imes 10^{-4}$.	$(3.5 \pm 1.7) imes 10^{-4}$

Observation of $\Lambda_c^+ \rightarrow nK_S\pi^+$

PRL118(2017)112001

Help to understand SU(3) and isospin symmetry and determine strong phase Cai-Dian Lv et al, PRD93(2016)056008

 $\cos\delta$

$$=\frac{\mathcal{B}(n\bar{K}^{0}\pi^{+})-\mathcal{B}(pK^{-}\pi^{+})}{2\sqrt{\mathcal{B}(p\bar{K}^{0}\pi^{0})(\mathcal{B}(pK^{-}\pi^{+})+\mathcal{B}(n\bar{K}^{0}\pi^{+})-\mathcal{B}(p\bar{K}^{0}\pi^{0}))}}$$

$$R_p = \frac{\mathcal{B}(\Lambda_c \to p \bar{K}^0 \pi^0)}{\mathcal{B}(\Lambda_c \to p \bar{K}^- \pi^+)}, \qquad R_n = \frac{\mathcal{B}(\Lambda_c \to n \bar{K}^0 \pi^+)}{\mathcal{B}(\Lambda_c \to p \bar{K}^- \pi^+)}$$

$$\begin{split} \mathbf{B}[\Lambda_{c}^{+} \rightarrow \mathbf{n} \mathbf{K}_{S} \pi^{+}] &= (1.82 \pm 0.23 \pm 0.11)\% \\ \Gamma[\Lambda_{c}^{+} \rightarrow \mathbf{n} \overline{\mathbf{K}}^{0} \pi^{+}] / \Gamma[\Lambda_{c}^{+} \rightarrow \mathbf{p} \mathbf{K}^{-} \pi^{+}] &= 0.62 \pm 0.09 \\ \Gamma[\Lambda_{c}^{+} \rightarrow \mathbf{n} \overline{\mathbf{K}}^{0} \pi^{+}] / \Gamma[\Lambda_{c}^{+} \rightarrow \mathbf{p} \overline{\mathbf{K}}^{0} \pi^{+}] &= 0.97 \pm 0.16 \\ \overline{\mathbf{First measurement of BF of } \Lambda_{c}^{+} \mathbf{decay} \\ \mathbf{containing neutron} \\ \cos \delta &= -0.24 \pm 0.08 \\ \overline{|I^{(1)}|} / |I^{(0)}| \quad 1.14 \pm 0.11 \end{split}$$

involving a neutron. Under the isospin symmetry, its amplitude is related to those of the most favored proton modes $\Lambda_c^+ \rightarrow p K^- \pi^+$ and $\Lambda_c^+ \rightarrow p \bar{K}^0 \pi^0$ as $\mathcal{A}(n \bar{K}^0 \pi^+) + \mathcal{A}(p K^- \pi^+) + \sqrt{2} \mathcal{A}(p \bar{K}^0 \pi^0) = 0$. Hence, precise measure-

[2,3]. In the three-body Λ_c^+ decay to $N\bar{K}\pi$, the total decay amplitudes can be decomposed into two isospin amplitudes of the $N\bar{K}$ system as isosinglet ($I^{(0)}$) and isospin-one ($I^{(1)}$). In the factorization limit, the color-allowed tree diagram, in which the π^+ is emitted and the $N\bar{K}$ is an isosinglet, dominates $I^{(0)}$, and $I^{(1)}$ is expected to be small compared to $I^{(0)}$ as it can only proceed through the color-suppressed tree diagrams. Though the factorization scheme is spoiled in

Observation of $\Lambda_c^+ \rightarrow \Sigma^- \pi^+ \pi^+ \pi^0$

More studies of decays containing neutron

Preliminary results :

 $B[\Lambda_{c}^{+} \rightarrow \Sigma^{-} \pi^{+} \pi^{+}] = (1.81 \pm 0.17)\%$

B[$\Lambda_c^+ \rightarrow \Sigma^- \pi^+ \pi^+ \pi^0$]=(2.11 ±0.33)% [First observation]

where the errors are statistical only. The sources of the systematic errors arise mainly from the systematic uncertainties in PID, tracking, π^0 efficiency, fitting, MC statistics and number of $\overline{\Lambda}_c^-$ tags. The total systematic errors are estimated to be about 5%.

The measured branching fraction for $\Lambda_c^+ \rightarrow \Sigma^- \pi^+ \pi^+$ is consistent with and more precise than $B[\Lambda_c^+ \rightarrow \Sigma^- \pi^+ \pi^+] = (2.3 \pm 0.4)\%$ in PDG2015.

Inclusive decay $\Lambda_c^+ \rightarrow \Lambda X$

$$\mathcal{A}_{\rm CP} = \frac{\mathcal{B}(\Lambda_c^+ \to \Lambda + X) - \mathcal{B}(\bar{\Lambda}_c^- \to \bar{\Lambda} + X)}{\mathcal{B}(\Lambda_c^+ \to \Lambda + X) + \mathcal{B}(\bar{\Lambda}_c^- \to \bar{\Lambda} + X)}.$$

Help to explore the source of missing decays and search for new decay. Better input for charm baryon and B physics

$$N_{sig} = N_S - (N_A + N_B)/2 - r \cdot N_D + r \cdot (N_C + N_E)/2$$
$$B(\Lambda_C^+ \to \Lambda + X) = (36.98 \pm 2.18)\% \text{ stat. only}$$

Agrees with PDG2015 value (35±11)%,

Decay mode	Branching fraction(%)	$\mathcal{A}_{ ext{CP}}$
$\Lambda_c^+ \to \Lambda + X$	38.02 ± 3.24	0.02 ± 0.06
$\bar{\Lambda}_c^- ightarrow \bar{\Lambda} + X$	36.70 ± 3.04	0.02 ± 0.00

Observation/Evidence of $D \rightarrow \omega \pi$

Double tag method

PRL116(2016)082001

Decay mode	This work	Previous meausurements
$D^+ \to \omega \pi^+$	$(2.74\pm0.58\pm0.17)\times10^{-4}$	$< 3.4 \times 10^{-4}$ at 90% C.L.
$D^0\to\omega\pi^0$	$(1.05\pm0.41\pm0.09)\times10^{-4}$	$< 2.6 \times 10^{-4}$ at 90% C.L.
$D^+ \to \eta \pi^+$	$(3.13\pm 0.22\pm 0.19)\times 10^{-3}$	$(3.53\pm 0.21)\times 10^{-3}$
$D^0 \to \eta \pi^0$	$(0.67\pm 0.10\pm 0.05)\times 10^{-3}$	$(0.68\pm 0.07)\times 10^{-3}$

Studies of Singly Cabibbosuppressed decays is limited by data set and background

Benefit the understanding of SU(3) symmetry breaking and CP violation, improve theory calculation

Amplitude analysis of $D^0 \rightarrow K^- \pi^+ \pi^+ \pi^-$

Help to determine the absolute BF, strong phase, benefit γ/ϕ_3

Previous analyses only from MarkIII and E691

≥ [····································] ⁵ mbaardaa in 1	Amplitude	ϕ_i	Fit fraction $(\%)$
\sum_{200} (a) \sum_{a} (b)	1 [≥] 400 (c) =	$D^0[S] \to \bar{K}^* \rho^0$	$2.35 \pm 0.06 \pm 0.18$	$6.5\pm0.5\pm0.8$
ξ [Λιμμ ^{μητην} ω.] ξ ₄₀₀ [Λ		$D^0[P] \to \bar{K}^* \rho^0$	$-2.25 \pm 0.08 \pm 0.15$	$2.3\pm0.2\pm0.1$
≦tanka,/1447 "Nk, 1≦t /\		$D^0[D] \to \bar{K}^* \rho^0$	$2.49 \pm 0.06 \pm 0.11$	$7.9\pm0.4\pm0.7$
100 1 THANK 1 200 - MAL		$D^0 \to K^- a_1^+(1260), a_1^+(1260)[S] \to \rho^0 \pi^+$	0(fixed)	$53.2 \pm 2.8 \pm 4.0$
the similar when	1 100 - Martin Martin -	$D^0 \to K^- a_1^+(1260), a_1^+(1260)[D] \to \rho^0 \pi^+$	$-2.11 \pm 0.15 \pm 0.21$	$0.3\pm0.1\pm0.1$
		$D^0 \to K_1^-(1270)\pi^+, K_1^-(1270)[S] \to \bar{K}^{*0}\pi^-$	$1.48 \pm 0.21 \pm 0.24$	$0.1\pm0.1\pm0.1$
$m(K\pi^+_{\tau})$ (GeV/c ²) 0.8 1 1.2 1.4 $m(K\pi^+_{\tau})$ (GeV/c ²) 0.8 1 1.2 1.4 $m(K\pi^+_{\tau})$ (GeV/c ²)	$m(\pi_{1}^{\dagger}\pi^{-})$ (GeV/c ²)	$D^0 \to K_1^-(1270)\pi^+, K_1^-(1270)[D] \to \bar{K}^{*0}\pi^-$	$3.00 \pm 0.09 \pm 0.15$	$0.7\pm0.2\pm0.2$
		$D^0 \to K_1^-(1270)\pi^+, K_1^-(1270) \to K^- \rho^0$	$-2.46 \pm 0.06 \pm 0.21$	$3.4\pm0.3\pm0.5$
$\sum_{m} \left[(d) \right] \sum_{m} \left[(d) \right] $	2 (f)	$D^0 \to (\rho^0 K^-)_{\rm A} \pi^+, (\rho^0 K^-)_{\rm A} [D] \to K^- \rho^0$	$-0.43 \pm 0.09 \pm 0.12$	$1.1\pm0.2\pm0.3$
		$D^0 \to (K^- \rho^0)_{\rm P} \pi^+$	$-0.14 \pm 0.11 \pm 0.10$	$7.4\pm1.6\pm5.7$
		$D^0 \to (K^-\pi^+)_{\rm S} \rho^0$	$-2.45 \pm 0.19 \pm 0.47$	$2.0\pm0.7\pm1.9$
100-1/1	100- <u>//</u> 11 -	$D^0 \rightarrow (K^- \rho^0)_V \pi^+$	$-1.34 \pm 0.12 \pm 0.09$	$0.4\pm0.1\pm0.1$
		$D^0 \to (\bar{K}^{*0}\pi^-)_{\rm P}\pi^+$	$-2.09 \pm 0.12 \pm 0.22$	$2.4\pm0.5\pm0.5$
		$D^0 \to \bar{K}^{*0}(\pi^+\pi^-)_{\rm S}$	$-0.17 \pm 0.11 \pm 0.12$	$2.6\pm0.6\pm0.6$
$m(\pi;\pi)$ (GeV/c ²) $m(K;\pi;\pi)$ (GeV/c ²) $m(K;\pi;\pi)$ (GeV/c ²)) $m(K\pi_2^{1.5}\pi)$ (GeV/c ²)	$D^0 \to (\bar{K}^{*0}\pi^-)_{\rm V}\pi^+$	$-2.13 \pm 0.10 \pm 0.11$	$0.8\pm0.1\pm0.1$
§ [$D^0 \to ((K^- \pi^+)_{\rm S} \pi^-)_{\rm A} \pi^+$	$-1.36 \pm 0.08 \pm 0.37$	$5.6\pm0.9\pm2.7$
	= 5 60 mean = 0.02 ± 0.04 (1) = 1.08 ± 0.03 (1)	$D^0 \to K^-((\pi^+\pi^-)_{\rm S}\pi^+)_{\rm A}$	$-2.23 \pm 0.08 \pm 0.22$	$13.1 \pm 1.9 \pm 2.2$
ể [∭¹¹11 M , ∃ể₂∞[- ∭ 111 M, ·		$D^0 \to (K^- \pi^+)_{\rm S} (\pi^+ \pi^-)_{\rm S}$	$-1.40 \pm 0.04 \pm 0.22$	$16.3 \pm 0.5 \pm 0.6$
		$D^0[S] \to (K^- \pi^+)_V (\pi^+ \pi^-)_V$	$1.59 \pm 0.13 \pm 0.41$	$5.4\pm1.2\pm1.9$
		$D^0 \to (K^- \pi^+)_{\rm S} (\pi^+ \pi^-)_{\rm V}$	$-0.16 \pm 0.17 \pm 0.43$	$1.9\pm0.6\pm1.2$
The sub-		$D^0 \to (K^- \pi^+)_{\rm V} (\pi^+ \pi^-)_{\rm S}$	$2.58 \pm 0.08 \pm 0.25$	$2.9\pm0.5\pm1.7$
Lawrence with M.		$D^0 \to (K^- \pi^+)_{\rm T} (\pi^+ \pi^-)_{\rm S}$	$-2.92 \pm 0.14 \pm 0.12$	$0.3\pm0.1\pm0.1$
$\sim 0.6 \ 0.8 \ 1 \ 1.2 \ 1.4 \ 1.6 \ m(\pi^+\pi^+\pi) \ (GeV/c^2) \ m(K^-\pi^+\pi^+) \ (GeV/c^2)$	$\chi^{-4} - 2 = 0 = 2 = 4 = \chi$	$D^0 \to (K^- \pi^+)_{\rm S} (\pi^+ \pi^-)_{\rm T}$	$2.45 \pm 0.12 \pm 0.37$	$0.5\pm0.1\pm0.1$

arXiv: 1701.08591, submitted to PRD

Absolute BFs and y_{CP} of $D^0 \rightarrow K_{S/L} \pi^0(\pi^0)$

Two dimensional fits to M_{BC}(tag) versus M_{BC}(signal)
 Projections of DT evens on the M_{BC}(sig) vs. Kπ (for example)

Branching fractions and asymmetries

$$R(D \to K_{S,L} + \pi's) = \frac{Br(D \to K_S\pi's) - Br(D \to K_L\pi's)}{Br(D \to K_S\pi's) + Br(D \to K_L\pi's)}$$

Table 10: Deca	y rates and	the asymmetries	of $D \rightarrow$	$K^{0}_{SL}\pi^{0}$ a	and $D \rightarrow$	$K^{0}_{SL}\pi^{0}\pi^{0}$.
----------------	-------------	-----------------	--------------------	-----------------------	---------------------	------------------------------

$D o K^0_{S,L} \pi^0$				
	$Br_{K_S\pi^0}(\%)$	$Br_{K_L\pi^0}(\%)$	$R(D \to K_{S,L}\pi^0)$	
$K\pi$	$1.208 {\pm} 0.041$	$1.061 {\pm} 0.038$	$0.0646 {\pm} 0.0245$	
$K3\pi$	$1.212 {\pm} 0.037$	$0.985 {\pm} 0.036$	$0.1035 {\pm} 0.0237$	
$K\pi\pi^0$	1.251 ± 0.028	$0.953 {\pm} 0.029$	$0.1351 {\pm} 0.0186$	
All	$1.230 {\pm} 0.020$	$0.991{\pm}0.019$	$0.1077 {\pm} 0.0125$	
	D	$0 \to K^0_{S,L} \pi^0 \pi^0$		
	$Br_{K_{S}2\pi^{0}}(\%)$	$Br_{K_L 2\pi^0}(\%)$	$R(D \to K_{S,L} 2\pi^0)$	
$K\pi$	$1.024{\pm}0.049$	$1.299 {\pm} 0.080$	-0.1183 ± 0.0385	
$K3\pi$	0.887 ± 0.043	1.097 ± 0.073	-0.1060 ± 0.0409	
$K\pi\pi^0$	$1.010 {\pm} 0.036$	$1.158 {\pm} 0.060$	-0.0681 ± 0.0313	
All	$0.975 {\pm} 0.024$	$1.175 {\pm} 0.040$	-0.0929 ± 0.0209	

 y_{CP} ((K_Sπ⁰, K_Lπ⁰) vs. Kev) = (0.98±2.43)%

Absolute BFs and A_{CP} of $D^+ \rightarrow K_{S/L}K^+(\pi^0)$

BF measurements of some $D^{0(+)} \rightarrow PP$

For $D^0 \to K^0_S \eta$, $D^+ \to \pi^0 \pi^+$, $D^+ \to \eta \pi^+$, $D^+ \to \eta' \pi^+$, $D^+ \to K^0_S \pi^+$ and $D^+ \to K^0_S K^+$, it shows better precision than the present values.

- The study of the hadronic decays of charmed D mesons is of great significance in the study of the strong and weak interactions in D decays.
- ◆ The analysis on D → PP modes will provide materials for the study of SU(3) breaking effect¹. And the observation of CP violation in D decay is commonly believed to be indications of new physics.
- $D^0 \rightarrow K^- \pi^+$ is an important normalization mode.
- Most of the D decays have been studied by CLEO in 2010², other measurements come from Belle³, BaBar⁴ and CDF⁵, etc.
- Some of the branching fractions (BFs) are not well established. With the 2.93 fb⁻¹ data taken at 3.773 GeV within BESIII, the results will help to improve these measurements.

	Mode	N ^{net} signal	ε (%)	$\mathcal{B}\pm(stat)\pm(sys)$	\mathcal{B}_{PDG}
	$ \begin{array}{c} \pi^{+} \pi^{-} \\ \kappa^{-} \pi^{+} \\ \kappa^{0}_{S} \pi^{0} \\ \kappa^{0}_{S} \eta \\ \kappa^{0}_{S} \eta' \\ \end{array} $	$\begin{array}{c} 21105 \pm 249 \\ \textbf{2}43 $	$\begin{array}{c} 66.03 \pm 0.25 \\ 62.82 \pm 0.32 \\ 64.98 \pm 0.09 \\ 38.06 \pm 0.17 \\ 31.96 \pm 0.14 \\ 12.66 \pm 0.08 \end{array}$	$\begin{array}{c} (1.505\pm 0.018\pm 0.031)\times 10^{-3}\\ (4.229\pm 0.020\pm 0.087)\times 10^{-3}\\ (3.896\pm 0.006\pm 0.073)\%\\ (1.236\pm 0.006\pm 0.032)\%\\ (5.149\pm 0.068\pm 0.134)\times 10^{-3}\\ (9.562\pm 0.197\pm 0.379)\times 10^{-3} \end{array}$	$\begin{array}{c}(1.421\pm0.025)\times10^{-3}\\(4.01\pm0.07)\times10^{-3}\\(3.93\pm0.04)\%\\(1.20\pm0.04)\%\\(4.85\pm0.30)\times10^{-3}\\(9.5\pm0.5)\times10^{-3}\end{array}$
3	$ \pi^{0}\pi^{+} \\ \pi^{0}K^{+} \\ \eta\pi^{+} \\ \etaK^{+} \\ \eta'\pi^{+} \\ \eta'K^{+} \\ K^{0}_{S}\pi^{+} \\ K^{0}_{S}K^{+} $	$\begin{array}{c} 10108 \pm 267 \\ 1834 \pm 168 \\ 11636 \pm 215 \\ 439 \pm 72 \\ 3088 \pm 83 \\ 87 \pm 25 \\ 93884 \pm 352 \\ 17704 \pm 151 \end{array}$	$\begin{array}{c} 48.98 \pm 0.34 \\ 51.52 \pm 0.42 \\ 46.96 \pm 0.25 \\ 48.21 \pm 0.31 \\ 21.49 \pm 0.18 \\ 22.39 \pm 0.22 \\ 51.38 \pm 0.18 \\ 48.45 \pm 0.14 \end{array}$	$\begin{array}{c} (1.259\pm 0.033\pm 0.025)\times 10^{-3}\\ (2.171\pm 0.198\pm 0.060)\times 10^{-4}\\ (3.790\pm 0.070\pm 0.075)\times 10^{-3}\\ (1.393\pm 0.228\pm 0.124)\times 10^{-4}\\ (5.122\pm 0.140\pm 0.210)\times 10^{-3}\\ (1.377\pm 0.428\pm 0.202)\times 10^{-4}\\ (1.591\pm 0.006\pm 0.033)\times 10^{-2}\\ (3.183\pm 0.028\pm 0.065)\times 10^{-3} \end{array}$	$\begin{array}{c} (1.24\pm0.06)\times10^{-3}\\ (1.89\pm0.25)\times10^{-4}\\ (3.66\pm0.22)\times10^{-3}\\ (1.12\pm0.18)\times10^{-4}\\ (4.84\pm0.31)\times10^{-3}\\ (1.83\pm0.23)\times10^{-4}\\ (1.53\pm0.06)\times10^{-2}\\ (2.95\pm0.15)\times10^{-3} \end{array}$

BFs of D⁺ \rightarrow 2K_sK(π)⁺ and D⁰ \rightarrow 2(3)K_s

Comprehensive or improved measurements of 3-body decays benefit the understanding of the interplay between weak and strong interactions in multibody decays, where theory is poor than 2-body decays

PLB765(2017)231

BF of D⁰→K_SK_S will be helpful to explore the SU(3) symmetry breaking in D decays

Comparisons of the branching fractions (in 10⁻⁴) measured in this work with the PDG values

Decay modes	This work	PDG
$D^+ \rightarrow K^0_S K^0_S K^+$	$25.4 \pm 0.5 \pm 1.2$	45 ± 20
$D^+ \rightarrow K^0_S K^0_S \pi^+$	$27.0 \pm 0.5 \pm 1.2$	_
$D^0 \rightarrow K^0_S K^0_S$	$1.67 \pm 0.11 \pm 0.11$	1.7 ± 0.4
$D^0 \rightarrow K^0_S K^0_S K^0_S$	$7.21 \pm 0.33 \pm 0.44$	9.1 ± 1.3

40

$D^0 \rightarrow \bar{K}^0 \pi^+ \pi^- DPA \rightarrow (ci, si)$

Better input to constrain γ/ϕ_3

Constrain on γ/ϕ_3 measurement

Blow slide is taken from Liming Zhang's talk at FPCPV2016

Current one syst. ~2° from CLEO strong phase measurements

 15-20 fb⁻¹ ψ(3370) data from BESIII are desired to avoid syst. limitation for upgrade scenario

More $\psi(3770)$ data at BESIII will better constrain on $\gamma/\phi_{3^{12}}$

Prospects on f_{D(s)+}, $f^{K(\pi)}(0)$, $|V_{cs(d)}|$ and Λ_c^+

• Precision of the LQCD calculations of f_{D+} , f_{D+} , f_{D+} : f_{D+} is 0.5%, 0.5% and 0.3%. Measurements of $f_{D(s)+}$ and $|V_{cs(d)}|$ by $D_{(s)}^+ \rightarrow l^+ v$ are still statistics limited. More 10 fb⁻¹ data near 3.773/4.18 GeV will help to improve precision to 1% level

• Measurements of $|V_{cs(d)}|$ by D \rightarrow K(π)e⁺v is restricted by precision of LQCD calcualtion 2.4(4.4)%. Improved theoretical calculation will be very helpful

• Measurement of $f_{+}^{\pi}(0)$ by D $\rightarrow \pi e^+ v$ decay is still statistics limited. More 10 fb⁻¹ data at 3.773 GeV can improve precision to 1% level

■ In addition, with more 3 fb⁻¹ data in 4.6-4.65 GeV will help to improve B[$\Lambda_c^+ \rightarrow pK^-\pi^+$] to about 2% level and further explore FF in $\Lambda_c^+ \rightarrow \Lambda I^+ v$ decays

• With 2.93, 0.482, 0.567 fb⁻¹ data taken at 3.773, 4.009 and 4.6 GeV, BESIII have studied $D_{(s)}^+ \rightarrow I^+ v$ and $D^0 \rightarrow K(\pi)^- I^+ v$, searched for $D^{+(0)} \rightarrow a_0(980)^{0(-)}e^+ v$, hee, $\gamma e^+ v$ and $D^0 e^+ v$, measurements of D haronic decays, absolute Λ_c^+ BFs using near threshold data

• Improved measurements of decay constant f_{D+} and form factor $f_{+}^{D \rightarrow K(\pi)}(q^2)$ are important to calibrate LQCD calculations

Improved measurements of CKM matrix element |V_{cs(d)}| are important to test the CKM matrix unitarity

• ~80/80/60% of exclusive D⁰/D⁺/ Λ_c^+ decays are known, more studies and BFs of D⁰⁽⁺⁾ and Λ_c^+ are expected in the near future

■ ~3 fb⁻¹ data@4.18 GeV was accumulated in 2016, measurement of f_{Ds+} and $|V_{cs}|$ by $D_s^+ \rightarrow I^+ v$, first FF studies of $D_s^+ \rightarrow \eta^{(+)}e^+ v$, improved BFs of D_s^+ decays...are expected in the near future

More results with better precision are expected with more data

Thank you!

Study of $D \rightarrow Ve^+v$

•
$$m^2 = (p_{\pi^+} + p_{K^-})^2$$

• $cos(\theta_K) = \frac{\hat{\nu} \cdot K_{K^-}}{|K_{K^-}|}$
• $cos(\varphi) = \hat{c} \cdot \hat{d}$
• $sin(\chi) = \hat{c} \cdot \hat{d}$

•
$$q^2 = (p_{e^+} + p_{\nu_e})^2$$

• $\cos(\theta_e) = -\frac{\hat{\nu} \cdot K_{e^+}}{|K_{e^+}|}$
• $\sin(\chi) = (\hat{\boldsymbol{c}} \times \hat{\boldsymbol{\nu}}) \cdot \hat{\boldsymbol{d}}$

0

Decay rate depend on 5 variables and 3 form factors

$$d^{5}\Gamma = \frac{G_{F}^{2}|V_{cs}|^{2}}{(4\pi)^{6}m_{D}^{2}}X\beta\mathcal{I}(m^{2},q^{2},\theta_{K},\theta_{e},\chi)dm^{2}dq^{2}d\cos(\theta_{K})d\cos(\theta_{e})d\chi$$

•
$$X = p_{K\pi} m_D$$
, $p_{K\pi}$ is the momentum of the $K\pi$ system in the D rest frame

•
$$\beta = 2p^*/m$$
, p^* is the breakup momentum of the $K\pi$ system in its rest frame

•
$$\mathcal{I}$$
 can be expressed in terms of helicity amplitudes $H_{0,\pm}$:
 $H_0(q^2) = \frac{1}{2m_q} \left[(m_D^2 - m^2 - q^2)(m_D + m)A_1(q^2) - 4 \frac{m_D^2 p_{K\pi}^2}{m_D + m} A_2(q^2) \right]$
 $H_{\pm}(q^2) = (m_D + m)A_1(q^2) \mp \frac{2m_D p_{K\pi}}{m_D + m} V(q^2)$

• Vector form factor: $V(q^2) = \frac{V(0)}{1 - q^2/m_V^2}$; or: FF ratio $r_V = V(0)/A_1(0)$

• Axial-vector form factor:
$$A_1(q^2) = \frac{A_1(0)}{1-q^2/m_A^2}$$
, $A_2(q^2) = \frac{A_2(0)}{1-q^2/m_A^2}$; or: FF ratio $r_2 = A_2(0)/A_1(0)$

PWA analysis of $D^+ \rightarrow K^- \pi^+ e^+ v$

PRD94(2016)032001

Fractions with >5σ significance

 $f(D^+ \to (K^-\pi^+)_{K^{*0}(892)} e^+ \nu_e) = (93.93 \pm 0.22 \pm 0.18)\%$ $f(D^+ \to (K^-\pi^+)_{S-wave} e^+ \nu_e) = (6.05 \pm 0.22 \pm 0.18)\%$

Properties of different Kπ (non-) resonant amplitudes

$$m_{K^{*0}(892)} = (894.60 \pm 0.25 \pm 0.08) \text{ MeV}/c^{2}$$

$$\Gamma_{K^{*0}(892)} = (46.42 \pm 0.56 \pm 0.15) \text{ MeV}/c^{2}$$

$$r_{BW} = (3.07 \pm 0.26 \pm 0.11) (\text{GeV}/c)^{-1}$$

• q^2 dependent form factors in D⁺ $\rightarrow \overline{K}^{*0}(892)e^{+v}$

Model independent S-wave phase measurement

$$V(q^2) = \frac{V(0)}{1 - q^2/m_V^2}, \ A_{1,2}(q^2) = \frac{A_{1,2}(0)}{1 - q^2/m_A^2}$$

 $M_{V/A}$ is expected to $M_{D^*(1-/+)}$

- $m_V = (1.81^{+0.25}_{-0.17} \pm 0.02) \text{ GeV}/c^2$ $m_A = (2.61^{+0.22}_{-0.17} \pm 0.03) \text{ GeV}/c^2$
- $A_1(0) = 0.573 \pm 0.011 \pm 0.020$
- $r_V = V(0)/A_1(0) = 1.411 \pm 0.058 \pm 0.007$

 $r_2 = A_2(0)/A_1(0) = 0.788 \pm 0.042 \pm 0.008$

Model independent form factors

Measurements of BFs of $D_s^+ \rightarrow \eta$

Benefit the understanding of the source of difference of inclusive decay rates of D⁰⁽⁺⁾ and D_s⁺

Complementary information to understand η-η' mixing

PRD94(2016)112003