Current Trend in Flavor Physics 29 - 31 March 2017, Paris

Experimental Perspectives on Semileptonic B_s decays

Marcello Rotondo Frascati National Laboratory

M.Rotondo

Semileptonic B decays

- Many puzzles still unsolved
 - |V_{ub}| Exclusive Inclusive discrepancy
 - $\Lambda_b \rightarrow p \ \mu \nu$ consistent with $B \rightarrow \pi \ \ell \ \nu$
 - $|V_{cb}|$ Exclusive Inclusive discrepancy
 - Dominated by precise $B \to D^* \ \ell \ \nu$
 - $B \rightarrow D \ell \nu$ consistent with both!
 - BF(B \rightarrow (D + D* + D** + D(*) $\pi\pi$ + D_sK X) $\ell \nu$) < BF(B \rightarrow X $\ell \nu$)
 - Other excited D** states not measured? Missing modes with multipions or other mesons (η)?
 - 1 / 2 < 3 / 2: OPE predicts B \rightarrow D(1/2) ℓ v << B \rightarrow D(3/2) ℓ v
 - Direct measurements observe an enhancement of the B \rightarrow D(1/2) $\ell \nu$
 - Inconsistences between BaBar and Belle!
 - R(D)-R(D*) discrepancy with SM prediction at 4σ level
 - Combined measurements from BaBar, Belle and LHCb

M.Rotondo

Semileptonic B_s decays

- Much less is know on semileptonic B_s decays
 - Only difference with B^{0/+} is the spectator quark
- Expected corrections due to SU(3) breaking effects
- Inclusive decays
 - Bigi et al. JHEP09(2011) 012, solid prediction
 - $\Gamma(B_s) / \Gamma(B_d) \sim 0.99$

- Exclusive Form Factors for $B_s \rightarrow D_s(^*)\ell\nu$ expected similar to $B \rightarrow D(^*)\ell\nu$
 - P-QCD: differences < 10%, Xiao et al Chin.Sci.Bull (2014)
 - LatticeQCD in $B_s \rightarrow D_s \ell v$: very small SU(3) breaking
 - Steeper slope and larger curvature FNAL/MILC PRD85, 114502(2012)
 - Similarly HPQCD, arXiv:1611.09667v2; Atou at al. EPJC (2014) 74:2861
 - Not yet L-QCD calculations for $B_s \rightarrow D_s^* \ell \nu$

Lattice calculation possible only at large recoil, it would be crucial to test experimentally the SU(3) brwaking in the full kinematic range

M.Rotondo

Why semileptonic B_s decays ?

- Cross-check of the B SL decay: everything done on B semileptonic can be repeated on B_s
 - Important to measure magnitude of the SU(3) breaking
 - Measurements of the FF are crucial for predictions of hadronic B_s decays

Why semileptonic B_s decays ?

- Cross-check of the B SL decay: everything done on B semileptonic can be repeated on B_s
 - Important to measure magnitude of the SU(3) breaking
 - Measurements of the FF are crucial for predictions of hadronic B_s decays

Paris 2017

- Lattice more precise: calculations can be done at the s-quark physical mass
- True for both $b \rightarrow c$ and $b \rightarrow u$

$B_s \rightarrow K \mu v @ LHCb$

- Comparison with $\Lambda_b \to p \; \mu \; v$

S. Stefkova @ ICHEP

Decay	$\Lambda^0_b o p \mu^- \overline{ u}$	$B_s^0 \to K^- \mu^+ \nu$
Production fraction	20%	14%
Branching fraction	$4 imes 10^{-4}$	$1 imes 10^{-4}$
Source of backgrounds	Λ_c^+	Λ_c^+ , D^0 , D^+ , D_s
$\mathcal{B}(X_c)$ error HFAG16	±3.7%(biggest systematic!)	$\pm 3.9\%$
Theory error FF	5%	< 5%
Normalization channel	$\Lambda_b^0 ightarrow \Lambda_c^+ \mu^- u$	$B_s^0 \rightarrow D_s^- \mu^+ \nu$

Backgrounds in the normalization channel for the B_s: more difficult to fight

$$\frac{B(\Lambda_b \to \Lambda_c \mu \nu)}{B(\Lambda_b \to \Lambda_c \mu \nu X)} \approx \frac{6.2\%}{10.2\%}$$
$$\frac{B(B_s \to D_s \mu \nu)}{B(B_s \to D_s \mu \nu X)} \approx \frac{2.4\%}{8.1\%}$$

First excited D_s decays mainly in neutrals:

- standard isolation tools does not work
- rely on kinematics and the ECL
- Same trick used for $\Lambda_b \rightarrow p \ \mu \ v$ (both q^2 solutions > 15 GeV²) or a differential measurement?

Why semileptonic B_s decays ?

The excited D_s^{**} states have huge differences with corresponding D^{**}

Why semileptonic B_s decays ?

- The excited D_s^{**} states have huge differences with corresponding D^{**}
- J=1/2 states D_{s0}^* and $D_{s1}^{'}$ are narrow
 - Decay into D_s through neutrals (γ and π^0),
 - Have to rely on kinematics and the ECL (neutral reconstruction/veto)
 - Only D_{s1}' feed-down into D_s*
- The j=3/2 states D_{s0} and D_{s2}^* decay in DK and D*K
 - Those do not contribute to feed-down into D_s or D_s*

	J^P	${\rm Mass}~({\rm MeV})$	${\rm Width}~({\rm MeV})$	Observed decays	J^P	${\rm Mass}~({\rm MeV})$	$Width~({\rm MeV})$	Observed decays
D_0^*	0^+	2352 ± 50	261 ± 50	$D\pi$	$D_{s0}^* 0^+$	2317.8 ± 0.6	< 3.8	$D_s^+\pi^0$
D'_1	1^{+}	2427 ± 36	384^{+130}_{-105}	$D^*\pi$	$D'_{s1} \ 1^+$	2459.5 ± 0.6	< 3.5	$D_s^{*+}\pi^0, D_s^+\gamma, D_s^+\pi^+\pi^-$
D_1	1^{+}	2421.3 ± 0.6	27.1 ± 2.7	$D^*\pi, D^0\pi^+\pi^-$	$D_{s1} 1^+$	2535.28 ± 0.20	< 2.5	$D^{*+}K^0, D^{*0}K^+$
D_2^*	2^+	2462.6 ± 0.7	49.0 ± 1.4	$D^*\pi, D\pi$	$D_{s2}^{*} 2^{+}$	2572.6 ± 0.9	20 ± 5	D^0K^+

M.Rotondo

$\mathsf{B} \to \mathsf{D}^{**} \ell \nu . \Sigma \mathsf{Q} \mathsf{B}_{\mathsf{s}} \to \mathsf{D}_{\mathsf{s}}^{**} \ell \nu$

• $B \rightarrow D^{**} \ell \nu$ Decay into narrow resonances consistent with prediction

- D_s excited states are all narrow, so they offer a new path to understand these puzzle
 - Moreover SL decays into D_s(2317) and D_s(2460) can shed light on the nature of these states
- SL BF into 3/2 states have been measured by D0 and LHCb
 - Consistent with HQS predictions and B decays

Becirevich et al. PRD87(2013) 054007

Navarra et. al. PRD92(2015) 014031 Zhao et. al. EPJC51 (20017) 601-606

PLB 698 (2011) 14-20

$$\frac{\mathcal{B}(\overline{B}_{s}^{0} \to D_{s2}^{*+} X \mu^{-} \overline{\nu})}{\mathcal{B}(\overline{B}_{s}^{0} \to X \mu^{-} \overline{\nu})} = (3.3 \pm 1.0 \pm 0.4)\%$$

$$\frac{\mathcal{B}(\overline{B}_{s}^{0} \to D_{s1}^{+} X \mu^{-} \overline{\nu})}{\mathcal{B}(\overline{B}_{s}^{0} \to X \mu^{-} \overline{\nu})} = (5.4 \pm 1.2 \pm 0.5)\%$$

B_s at B-Factories

• At B-Factories B_s production requires special runs at the Y(5S)

Belle collected the largest sample at Y(5S) L = 121.4 fb⁻¹ corresponding to N(B_s) = 6.53 x 10⁶ σ (Y(10860) \rightarrow B_s(*) \overline{B}_{s} (*)) = (53.8 ±1.4 ± 4.0 ± 3.4) pb Compared with σ (Y(4S) \rightarrow B \overline{B}) = 1.06 nb

Semi-inclusive of Bs decays measurement

$$B_s \to D_s^{(*)} \ell \nu_\ell X$$

PRD92,072013 (2015)

M.Rotondo

B_s at B-Factories

• At B-Factories B_s production requires special runs at the Y(5S)

B_s at LHCb

- In the LHCb acceptance
 - σ_{7TeV} (bb) = 72 ± 0.3 ± 6.8 μ∩
 - − $\sigma_{13\text{TeV}}$ (bb) = 154 ± 1 ± 14 µ∩
- About 14% of the b-hadrons are B_s $f_s/(f_u + f_d) = 0.134 \pm 0.004^{+0.011}_{-0.010}$
- SL $B_s \rightarrow D_s(*)\ell\nu$ decays largely studied for production, mixing and lifetime studies
- SL decays as a function of the q² already studied with only first 3pb⁻¹ (high efficient trigger)
 - Crude assumptions on D_s*/D_s
 - Need further studies to translate in measurements of the Form Factors

Semileptonic B_s at LHCb: an example

- Preliminary results on flavor-specific lifetime with $B_s \rightarrow D_s(*)\ell\nu$, $D_s \rightarrow KK\pi$
- Based on 3fb⁻¹: super-clean sample

Semileptonic B_s at LHCb: an example

- Preliminary results on flavor-specific lifetime with $B_s \rightarrow D_s(*)\ell\nu$, $D_s \rightarrow KK\pi$
- Based on 3fb⁻¹: super-clean sample

• Study the q² distribution is needed for possible measurements of FF shape in $B_s \rightarrow D_s$

5000

5

6

 $m_{\rm corr} \, [{\rm GeV}/c^2]$

4

Analysis $\mathsf{B}_{\mathsf{s}} \to \mathsf{D}_{\mathsf{s}}^{*} \ell \nu$

- Requires the reconstruction of a soft photon from $D_s^* -> D_s^{\gamma}$ (BF~94%)
 - Already used for $B_s \rightarrow D_s^* \pi$ (JHEP06(2015)130)

- $B_s \rightarrow D_s^* \ell \nu$, expected very clean compared to $B \rightarrow D^* \ell \nu$,
 - only down-feed from $D_{s1}' \rightarrow D_s^* \pi^0$ (BF~50%) decays
- Possible (almost)full angular analysis and extraction of the FFs
 - How to proper normalize the signal and extract |V _{cb}|?
 - Most natural channel is B_s→D_s*π, but uncertainty is ~20%, we have to rely on external measurements from Belle(II)

M.Rotondo

Analysis $\mathsf{B}_{\mathsf{s}} \to \mathsf{D}_{\mathsf{s}}^{*} \ell \nu$

- Requires the reconstruction of a soft photon from $D_s^* -> D_s^{\gamma}$ (BF~94%)
 - Already used for $B_s \rightarrow D_s^* \pi$ (JHEP06(2015)130)

- $B_s \rightarrow D_s^* \ell \nu$, expected very clean compared to $B \rightarrow D^* \ell \nu$,
 - only down-feed from $D_{s1}' \rightarrow D_s^* \pi^0$ (BF~50%) decays
- Possible (almost)full angular analysis and extraction of the FFs
 - How to proper normalize the signal and extract |V _{cb}|?
 - Most natural channel is B_s→D_s*π, but uncertainty is ~20%, we have to rely on external measurements from Belle(II)

M.Rotondo

Summary and outlook

- Y(5S) useful for precise measurement of absolute Bfs
 - SL studied
 - For Belle-II, Good Physics Case for a run at Y(5S)
- Huge sample of B_s available at LHCb
 - It is going to be fully exploited to measure Form Factors, BF ratios
 - V_{cb} will require a proper normalization channel
 - Decays into D_s** can be studied
 - Access $R(D_s)$ and $R(D_s^*)$
 - $B_s^{} \to K \mu \nu :$ all tools successfully used for $\Lambda_b^{} \to p \mu \nu$ can be used also in this case

Backup

Improve kinematic resolution

 Can we get useful estimation of the b-momentum without using the momentum of the b-decay products?

Exploit the flight informations

- Study performed with Pythia: pp->beauty at 7, 13 and 100TeV
 - Case study: $B_s \rightarrow K^{(*)} \mu \nu / D^{(*)} \mu \nu$
 - Vertex quantities smeared with the LHCb VELO resolution

Unbiased momentum reconstruction

- How to exploit these features and some practical applications
 - Arxiv:1611.08522 G.Ciezarek, A.Lupato, MR, M.Vesterinen

M.Rotondo

Application to semileptonic events ArXiv:1611.08522

- 2-fold ambiguity in the neutrino momentum reconstruction
- Resolution of P_{inf} is enough to improve the chance to choose the right P_{+/-} solution over random choice $B_s \to K^{(*)} \mu \nu$

Pari

- Application in dΓ/dq² measurements
 - Bin purity as figure of merit: fraction of candidates for which the reco-q² falls in the same true-q² bin

Other usage: oscillation measurements

 Large impact on the oscillation measurements with SL decays B_s→D_sµv

$$\frac{\Gamma[D_{s}^{-}\mu^{+},t] - \Gamma[D_{s}^{+}\mu^{-},t]}{\Gamma[D_{s}^{-}\mu^{+},t] + \Gamma[D_{s}^{+}\mu^{-},t]} = \frac{\frac{a_{\rm sl}^{s}}{2} - \left[\frac{a_{\rm sl}^{s} + 2A_{P}}{2}\right] \left[\frac{\cos(\Delta M_{s}t)}{\cosh(\Delta\Gamma_{s}t/2)}\right]$$

M.Rotondo

Kinematics++ exploiting the resonances

• Additional constraints if the heavy meson comes from a narrow resonance

Paris 2017

Promising but we still need to fully exploit these techniques

M.Rotondo

 $B^+ \rightarrow KK \mu v$

Other SL decays... in our backgrounds!

- Large contribution from $\Lambda_{b} \rightarrow N^{*} \mu \nu$
- Reconstructing N \rightarrow p π π
 - Reduce uncertainty due to N* states in Λ_b → pµv now included with a Gaussian constraints
 - Could be crucial in the study of backgrounds in $\Lambda_b \to p \tau \nu$

- Study explicitly the contributions from $\Lambda_b \rightarrow \Lambda_c^* \mu \nu$
 - Adding 2 pions (BF($\Lambda_c^* \rightarrow \Lambda_c \pi^+ \pi^-$)=67%)
 - Crucial to understand these background in the study of $\Lambda_b \to \Lambda_c \tau \nu$

$B_s \rightarrow D_s^* \mu \nu$

- The D_s* got down feed only from D_{s1}', higher order resonances decay mainly through DK channels
- Excited D_s^* states are well separated \mathcal{Q}_s° 2.4
- The states below the DK threshold can be studied explicitly reconstructing the soft π^0 and γ
- To extract |V_{cb}| a proper normalization is required

	J^P	Mass (MeV)	$Width \ (MeV)$	Observed decays
D_{s0}^*	0+	2317.8 ± 0.6	< 3.8	$D_s^+\pi^0$
D'_{s1}	1^+	2459.5 ± 0.6	< 3.5	$D_s^{*+}\pi^0, D_s^+\gamma, D_s^+\pi^+\pi^-$
D_{s1}	1^+	2535.28 ± 0.20	< 2.5	$D^{*+}K^0, D^{*0}K^+$
D_{s2}^*	2^+	2572.6 ± 0.9	20 ± 5	D^0K^+
otondo			Paris 2017	

LS2 Upgrade

LHCC-I-018

40 MHz readout 5 x higher luminosity

	LHCb				
Run 1	3				
Run 2	10				
Run 3	25				
Run 4	50				
Run 5	300				

2021

LS2

Phase 1

$d\Gamma/dq^2$

Crucial to perform the measurements in bins of q²

- LHCb paper on Bs and Lb production
- SL decays as a function of the q2 already studied with only 3pb⁻¹ (high efficient trigger)
- Need further studies to translate in measurements of the Form Factors

D**

	J^P	${\rm Mass}~({\rm MeV})$	Width (MeV)	Observed decays
D_0^*	0^+	2352 ± 50	261 ± 50	$D\pi$
D_1'	1^+	2427 ± 36	384^{+130}_{-105}	$D^*\pi$
D_1	1^+	2421.3 ± 0.6	27.1 ± 2.7	$D^*\pi, D^0\pi^+\pi^-$
D_2^*	2^+	2462.6 ± 0.7	49.0 ± 1.4	$D^*\pi, D\pi$

Composition of SL decays

- Inclusive excited charm production
- Narrow states at higher masses
 - Predicted radial excitations
- He D* helicity angles allow to disentangle the various states

30

Paris 2017