Current Trend in Flavor Physics 29-31 March 2017, Paris

Experimental Perspectives on Semileptonic B_{s} decays

Marcello Rotondo
Frascati National Laboratory

Semileptonic B decays

- Many puzzles still unsolved
- $\left|\mathrm{V}_{\mathrm{ub}}\right|$ Exclusive - Inclusive discrepancy
- $\Lambda_{\mathrm{b}} \rightarrow \mathrm{p} \mu v$ consistent with $\mathrm{B} \rightarrow \pi \ell v$
- $\left|\mathrm{V}_{\mathrm{cb}}\right|$ Exclusive - Inclusive discrepancy
- Dominated by precise $\mathrm{B} \rightarrow \mathrm{D}^{*} \ell v$
- $\mathrm{B} \rightarrow \mathrm{D} \ell v$ consistent with both!
- $\mathrm{BF}\left(\mathrm{B} \rightarrow\left(\mathrm{D}+\mathrm{D}^{*}+\mathrm{D}^{* *}+\mathrm{D}^{(*)} \pi \pi+\mathrm{D}_{\mathrm{s}} \mathrm{KX}\right) \ell v\right)<\mathrm{BF}(\mathrm{B} \rightarrow \mathrm{X} \ell v)$
- Other excited $D^{* *}$ states not measured? Missing modes with multipions or other mesons (η)?
- $1 / 2<3 / 2$: OPE predicts $\mathrm{B} \rightarrow \mathrm{D}(1 / 2) \ell v \ll \mathrm{~B} \rightarrow \mathrm{D}(3 / 2) \ell v$
- Direct measurements observe an enhancement of the $\mathrm{B} \rightarrow \mathrm{D}(1 / 2) \ell v$
- Inconsistences between BaBar and Belle!
- $R(D)-R\left(D^{*}\right)$ discrepancy with SM prediction at 4σ level
- Combined measurements from BaBar, Belle and LHCb

Semileptonic B_{s} decays

- Much less is know on semileptonic B_{s} decays
- Only difference with $\mathrm{B}^{0 /+}$ is the spectator quark
- Expected corrections due to $\operatorname{SU}(3)$ breaking effects
- Inclusive decays
- Bigi et al. JHEP09(2011) 012, solid prediction
- $\Gamma\left(\mathrm{B}_{\mathrm{s}}\right) / \Gamma\left(\mathrm{B}_{\mathrm{d}}\right) \sim 0.99$

- Exclusive Form Factors for $\left.\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{D}_{\mathrm{s}}{ }^{*}\right)^{*}$) v expected similar to $\mathrm{B} \rightarrow \mathrm{D}\left(^{*}\right) \ell v$
- P-QCD: differences < 10\%, Xiao et al Chin.Sci.Bull (2014)
- LatticeQCD in $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{D}_{\mathrm{s}} \ell v$: very small $\mathrm{SU}(3)$ breaking
- Steeper slope and larger curvature FNAL/MILC PRD85, 114502(2012)
- Similarly HPQCD, arXiv:1611.09667v2; Atou at al. EPJC (2014) 74:2861
- Not yet L-QCD calculations for $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{D}_{\mathrm{s}}{ }^{*} \ell v$

Lattice calculation possible only at large recoil, it would be crucial to test experimentally the $\mathrm{SU}(3)$ brwaking in the full kinematic range

Why semileptonic B_{s} decays ?

- Cross-check of the B SL decay: everything done on B semileptonic can be repeated on B_{s}
- Important to measure magnitude of the $\mathrm{SU}(3)$ breaking
- Measurements of the FF are crucial for predictions of hadronic B_{s} decays

Why semileptonic B_{s} decays ?

- Cross-check of the B SL decay: everything done on B semileptonic can be repeated on B_{s}
- Important to measure magnitude of the $\mathrm{SU}(3)$ breaking
- Measurements of the FF are crucial for predictions of hadronic B_{s} decays
- Lattice more precise: calculations can be done at the s-quark physical mass
- True for both $\mathrm{b} \rightarrow \mathrm{c}$ and $\mathrm{b} \rightarrow \mathrm{u}$

$$
\begin{aligned}
& \text { Golden modes for }\left|\mathrm{V}_{\mathrm{cb}}\right| \text { and }\left|\mathrm{V}_{\mathrm{ub}}\right| \\
& \qquad B_{s} \rightarrow D_{s}^{(*)} \ell \nu_{\ell} \\
& B_{s} \rightarrow K \ell \nu_{\ell}
\end{aligned}
$$

$\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{K} \mu \mathrm{v} @ \mathrm{LHCb}$

- Comparison with $\Lambda_{b} \rightarrow p \mu v$
S. Stefkova @ ICHEP

Decay	$\Lambda_{b}^{0} \rightarrow p \mu^{-} \bar{\nu}$	$B_{s}^{0} \rightarrow K^{-} \mu^{+} \nu$
Production fraction	20%	14%
Branching fraction	4×10^{-4}	1×10^{-4}
Source of backgrounds	Λ_{c}^{+}	$\Lambda_{c}^{+}, D^{0}, D^{+}, D_{s}$
$\mathcal{B}\left(X_{c}\right)$ error HFAG16	$\pm 3.7 \%$ (biggest systematic!)	$\pm 3.9 \%$
Theory error FF	5%	$<5 \%$
Normalization channel	$\Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+} \mu^{-} \nu$	$B_{s}^{0} \rightarrow D_{s}^{-} \mu^{+} \nu$

Backgrounds in the normalization channel for the B_{s} : more difficult to fight

$$
\begin{aligned}
\frac{B\left(\Lambda_{b} \rightarrow \Lambda_{c} \mu \nu\right)}{B\left(\Lambda_{b} \rightarrow \Lambda_{c} \mu \nu X\right)} & \approx \frac{6.2 \%}{10.2 \%} \\
\frac{B\left(B_{s} \rightarrow D_{s} \mu \nu\right)}{B\left(B_{s} \rightarrow D_{s} \mu \nu X\right)} & \approx \frac{2.4 \%}{8.1 \%}
\end{aligned}
$$

First excited D_{s} decays mainly in neutrals:

- standard isolation tools does not work
- rely on kinematics and the ECL
- Same trick used for $\Lambda_{b} \rightarrow p \mu v$ (both q^{2} solutions > $15 \mathrm{GeV}^{2}$) or a differential measurement?

Why semileptonic B_{s} decays

- The excited $\mathrm{D}_{\mathrm{s}}^{* *}$ states have huge differences with corresponding $\mathrm{D}^{* *}$

J^{P} Mass (MeV) Width (MeV) Observed decays

D_{0}^{*}	0^{+}	2352 ± 50	261 ± 50	$D \pi$

$D_{1}^{\prime} 1^{+} \quad 2427 \pm 36 \quad 384_{-105}^{+130} \quad D^{*} \pi$
$D_{1} 1^{+} \quad 2421.3 \pm 0.6 \quad 27.1 \pm 2.7 \quad D^{*} \pi, D^{0} \pi^{+} \pi^{-}$
$D_{2}^{*} 2^{+} \quad 2462.6 \pm 0.7 \quad 49.0 \pm 1.4 \quad D^{*} \pi, D \pi$

	J^{P}	Mass (MeV)	Width (MeV)	Observed decays
$D_{s 0}^{*}$	0^{+}	2317.8 ± 0.6	<3.8	$D_{s}^{+} \pi^{0}$
$D_{s 1}^{\prime}$	1^{+}	2459.5 ± 0.6	<3.5	$D_{s}^{*+} \pi^{0}, D_{s}^{+} \gamma, D_{s}^{+} \pi^{+} \pi^{-}$
$D_{s 1}$	1^{+}	2535.28 ± 0.20	<2.5	$D^{*+} K^{0}, D^{* 0} K^{+}$
$D_{s 2}^{*}$	2^{+}	2572.6 ± 0.9	20 ± 5	$D^{0} K^{+}$

Why semileptonic B_{s} decays

- The excited $D_{s}^{* *}$ states have huge differences with corresponding $D^{* *}$
- $J=1 / 2$ states $D_{s 0}{ }^{*}$ and $D_{s 1}{ }^{\prime}$ are narrow
- Decay into D_{s} through neutrals (γ and π^{0}),
- Have to rely on kinematics and the ECL (neutral reconstruction/veto)
- Only $D_{s 1}$ ' feed-down into $D_{s}{ }^{*}$
- The $j=3 / 2$ states $D_{s 0}$ and $D_{s 2}{ }^{*}$ decay in DK and D*K
- Those do not contribute to feed-down into D_{s} or $D_{s}{ }^{*}$

| | J^{P} | Mass (MeV) | Width (MeV) | Observed decays | | | J^{P} | Mass (MeV) | Width (MeV) | Observed decays | |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | D_{0}^{*} | 0^{+} | 2352 ± 50 | 261 ± 50 | $D \pi$ | | $D_{s 0}^{*}$ | 0^{+} | 2317.8 ± 0.6 | <3.8 | $D_{s}^{+} \pi^{0}$ |
| D_{1}^{\prime} | 1^{+} | 2427 ± 36 | 384_{-105}^{+130} | $D^{*} \pi$ | | $D_{s 1}^{\prime}$ | 1^{+} | 2459.5 ± 0.6 | <3.5 | $D_{s}^{*+} \pi^{0}, D_{s}^{+} \gamma, D_{s}^{+} \pi^{+} \pi^{-}$ | |
| D_{1} | 1^{+} | 2421.3 ± 0.6 | 27.1 ± 2.7 | $D^{*} \pi, D^{0} \pi^{+} \pi^{-}$ | | $D_{s 1}$ | 1^{+} | 2535.28 ± 0.20 | <2.5 | $D^{*+} K^{0}, D^{* 0} K^{+}$ | |
| D_{2}^{*} | 2^{+} | 2462.6 ± 0.7 | 49.0 ± 1.4 | $D^{*} \pi, D \pi$ | | $D_{s 2}^{*}$ | 2^{+} | 2572.6 ± 0.9 | 20 ± 5 | $D^{0} K^{+}$ | |

$\mathrm{B} \rightarrow \mathrm{D}^{* *} \rho_{v}, \mathrm{\Sigma}, \mathrm{~B}_{\mathrm{s}} \rightarrow \mathrm{D}_{\mathrm{s}}^{* *} \ell_{v}$

- $\mathrm{B} \rightarrow \mathrm{D}^{* *} \mathcal{C}_{\nu}$ Decay into narrow resonances consistent with prediction
- Decay into wide $1 / 2$ states not clear

- D_{s} excited states are all narrow, so they offer a new path to understand these puzzle
- Moreover SL decays into $D_{s}(2317)$ and $D_{s}(2460)$ can shed light on the nature of these states
- SL BF into $3 / 2$ states have been measured by D0 and LHCb
- Consistent with HQS predictions and B decays

Becirevich et al. PRD87(2013) 054007
Navarra et. al. PRD92(2015) 014031
Zhao et. al. EPJC51 (20017) 601-606
PLB 698 (2011) 14-20

$$
\begin{aligned}
& \frac{\mathcal{B}\left(\bar{B}_{s}^{0} \rightarrow D_{s 2}^{*+} X \mu^{-} \bar{\nu}\right)}{\mathcal{B}\left(\bar{B}_{s}^{0} \rightarrow X \mu^{-} \bar{\nu}\right)}=(3.3 \pm 1.0 \pm 0.4) \% \\
& \frac{\mathcal{B}\left(\bar{B}_{s}^{0} \rightarrow D_{s 1}^{+} X \mu^{-} \bar{\nu}\right)}{\mathcal{B}\left(\bar{B}_{s}^{0} \rightarrow X \mu^{-} \bar{\nu}\right)}=(5.4 \pm 1.2 \pm 0.5) \% ;
\end{aligned}
$$

B_{s} at B-Factories

- At B-Factories B_{s} production requires special runs at the $Y(5 S)$

Y(4S)
 ~100\% BB

Y(5S)
$\sim 80 \% \mathrm{BB}+\mathrm{B}^{*} \mathrm{~B}+\mathrm{B}^{*} \mathrm{~B}^{*}+\mathrm{BB} \pi$ $17.6 \% \mathrm{~B}_{\mathrm{s}}{ }^{*} \mathrm{~B}_{\mathrm{s}}{ }^{*}$
$1.35 \% \mathrm{~B}_{\mathrm{s}} \mathrm{B}_{\mathrm{s}}{ }^{*}$
$0.5 \% \mathrm{~B}_{\mathrm{s}} \mathrm{B}_{\mathrm{s}}$

$$
\mathrm{m}\left(\mathrm{~B}_{\mathrm{s}}^{*}\right)-\mathrm{m}\left(\mathrm{~B}_{\mathrm{s}}\right) \approx 50 \mathrm{MeV}
$$

Belle collected the largest sample at $Y(5 S)$ $\mathrm{L}=121.4 \mathrm{fb}^{-1}$ corresponding to $\mathrm{N}\left(\mathrm{B}_{\mathrm{s}}\right)=6.53 \times 10^{6}$ $\left.\sigma\left(\mathrm{Y}(10860) \rightarrow \mathrm{B}_{\mathrm{s}}{ }^{*}\right) \overline{\mathrm{B}}_{\mathrm{s}}\left({ }^{*}\right)\right)=(53.8 \pm 1.4 \pm 4.0 \pm 3.4) \mathrm{pb}$ Compared with $\sigma(Y(4 S) \rightarrow B \bar{B})=1.06 \mathrm{nb}$

Semi-inclusive of Bs decays measurement

$$
B_{s} \rightarrow D_{s}^{(*)} \ell \nu_{\ell} X
$$

PRD92,072013 (2015)

B_{s} at B-Factories

- At B-Factories B_{s} production requires special runs at the $Y(5 S)$

Hadronic Bs tagging can be exploited to clean up the signal

First studies promising
F. Breibeck @ ICHEP $2016 \mathrm{E}_{\text {tag }}=0.68 \%$

Situation is quite different from $\mathrm{Y}(4 \mathrm{~S})$:
Soft gamma's cannot be reconstructed the momentum of the Signal Bs ca be known with multi-fold ambiguties
at $\mathrm{Y}(5 \mathrm{~S})$
$\left(B_{s}\right)=6.53 \times 10^{6}$
$\left.\sigma\left(\mathrm{Y}(10860) \rightarrow \mathrm{B}_{\mathrm{s}}{ }^{*}\right) \overline{\mathrm{B}}_{\mathrm{s}}\left({ }^{*}\right)\right)=(53.8 \pm 1.4 \pm 4.0 \pm 3.4) \mathrm{pb}$
Compared with $\sigma(Y(4 S) \rightarrow B \bar{B})=1.06 \mathrm{nb}$

Y(4S)
 ~100\% BB

Y(5S)
~80\% $\mathrm{BB}+\mathrm{B}^{*} \mathrm{~B}+\mathrm{B}^{*} \mathrm{~B}^{*}+\mathrm{BB} \pi$ $17.6 \% \mathrm{~B}_{\mathrm{s}}{ }^{*} \mathrm{~B}_{\mathrm{s}}{ }^{*}$
$1.35 \% \mathrm{~B}_{\mathrm{s}} \mathrm{B}_{\mathrm{s}}{ }^{*}$
$0.5 \% B_{s} B_{s}$

$$
\mathrm{m}\left(\mathrm{~B}_{\mathrm{s}}^{*}\right)-\mathrm{m}\left(\mathrm{~B}_{\mathrm{s}}\right) \approx 50 \mathrm{MeV}
$$

Semi-inclusive of Bs decays measurement

$$
B_{s} \rightarrow D_{s}^{(*)} \ell \nu_{\ell} X
$$

PRD92,072013 (2015)

B_{s} at LHCb

- In the LHCb acceptance

$$
\begin{array}{ll}
- & \sigma_{7 \mathrm{TeV}}(\mathrm{bb})=72 \pm 0.3 \pm 6.8 \mu \cap \\
- & \sigma_{13 \mathrm{TeV}}(\mathrm{bb})=154 \pm 1 \pm 14 \mu \cap
\end{array}
$$

- About 14% of the b-hadrons are B_{s}

$$
f_{s} /\left(f_{u}+f_{d}\right)=0.134 \pm 0.004_{-0.010}^{+0.011}
$$

- $\mathrm{SL}_{\mathrm{s}} \rightarrow \mathrm{D}_{\mathrm{s}}\left({ }^{*}\right) \ell v$ decays largely studied for production, mixing and lifetime studies
- SL decays as a function of the q^{2} already studied with only first 3pb-1 (high efficient trigger)
- Crude assumptions on $D_{s}{ }^{*} / D_{s}$
- Need further studies to translate in measurements of the Form Factors

LHCb PRD85(2012) 032008

Semileptonic B_{s} at LHCb: an example

- Preliminary results on flavor-specific lifetime with $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{D}_{\mathrm{s}}\left(^{*}\right) \ell v, \mathrm{D}_{\mathrm{s}} \rightarrow \mathrm{KK} \pi$
- Based on $3 \mathrm{fb}^{-1}$: super-clean sample

Semileptonic B_{s} at LHCb: an example

- Preliminary results on flavor-specific lifetime with $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{D}_{\mathrm{s}}\left(^{*}\right) \ell v, \mathrm{D}_{\mathrm{s}} \rightarrow K K \pi$
- Based on $3 \mathrm{fb}^{-1}$: super-clean sample

Analysis $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{D}_{\mathrm{s}}{ }^{*} \ell v$

- Requires the reconstruction of a soft photon from $D_{s}{ }^{*-->D_{s} \gamma}$ (BF~94\%)
- Already used for $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{D}_{\mathrm{s}}{ }^{*} \pi$ (JHEP06(2015)130)

- $B_{s} \rightarrow D_{s}{ }^{*} \ell v$, expected very clean compared to $B \rightarrow D^{*} \ell v$,
- only down-feed from $\mathrm{D}_{\mathrm{s} 1}{ }^{\prime} \rightarrow \mathrm{D}_{\mathrm{s}}{ }^{*} \pi^{0}(\mathrm{BF} \sim 50 \%)$ decays
- Possible (almost)full angular analysis and extraction of the FFs
- How to proper normalize the signal and extract $\left|\mathrm{V}_{\mathrm{cb}}\right|$?
- Most natural channel is $B_{s} \rightarrow D_{s}{ }^{*} \pi$, but uncertainty is $\sim 20 \%$, we have to rely on external measurements from Belle(II)

Analysis $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{D}_{\mathrm{s}}{ }^{*} \ell v$

- Requires the reconstruction of a soft photon from $D_{s}{ }^{*-->D_{s} \gamma}$ (BF~94\%)
- Already used for $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{D}_{\mathrm{s}}{ }^{*} \pi$ (JHEP06(2015)130)

- $B_{s} \rightarrow D_{s}{ }^{*} \ell v$, expected very clean compared to $B \rightarrow D^{*} \ell v$,
- only down-feed from $\mathrm{D}_{\mathrm{s} 1}{ }^{\prime} \rightarrow \mathrm{D}_{\mathrm{s}}{ }^{*} \pi^{0}(\mathrm{BF} \sim 50 \%)$ decays
- Possible (almost)full angular analysis and extraction of the FFs
- How to proper normalize the signal and extract $\left|\mathrm{V}_{\mathrm{cb}}\right|$?
- Most natural channel is $B_{s} \rightarrow D_{s}{ }^{*} \pi$, but uncertainty is $\sim 20 \%$, we have to rely on external measurements from Belle(II)

Summary and outlook

- $\mathrm{Y}(5 \mathrm{~S})$ useful for precise measurement of absolute Bfs
- SL studied
- For Belle-II, Good Physics Case for a run at $\mathrm{Y}(5 \mathrm{~S})$
- Huge sample of B_{s} available at LHCb
- It is going to be fully exploited to measure Form Factors, BF ratios
- V_{cb} will require a proper normalization channel
- Decays into $D_{s}{ }^{* *}$ can be studied
- Access $R\left(D_{s}\right)$ and $R\left(D_{s}{ }^{*}\right)$
- $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{K} \mu v$: all tools successfully used for $\Lambda_{b} \rightarrow \mathrm{p} \mu \nu$ can be used also in this case

Backup

Improve kinematic resolution

- Can we get useful estimation of the b-momentum without using the momentum of the b-decay products?

Exploit the flight informations

- Study performed with Pythia: pp->beauty at 7,13 and 100 TeV
- Case study: $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{K}^{(*)} \mu \mathrm{v} / \mathrm{D}^{(*)} \mu \mathrm{v}$
- Vertex quantities smeared with the LHCb VELO resolution

Unbiased momentum reconstruction

- How to exploit these features and some practical applications
- Arxiv:1611.08522 G.Ciezarek, A.Lupato, MR, M.Vesterinen

1) $1 / \mathrm{sin} \theta_{\text {flight }}$ 2) $|F|$

Modest momentum estimate

Application to semileptonic events

- 2-fold ambiguity in the neutrino momentum reconstruction
- Resolution of $P_{\text {inf }}$ is enough to improve the chance to choose the right $P_{+/-}$ solution over random choice $B_{s} \rightarrow K^{(*)} \mu v$

- Application in $\mathrm{d} \Gamma / \mathrm{dq}^{2}$ measurements
- Bin purity as figure of merit: fraction of candidates for which the reco- q^{2} falls in the same true- q^{2} bin

Pari

Other usage: oscillation measurements

- Large impact on the oscillation measurements with $S L$ decays $B_{s} \rightarrow D_{s} \mu v$

$$
\frac{\Gamma\left[D_{s}^{-} \mu^{+}, t\right]-\Gamma\left[D_{s}^{+} \mu^{-}, t\right]}{\Gamma\left[D_{s}^{-} \mu^{+}, t\right]+\Gamma\left[D_{s}^{+} \mu^{-}, t\right]}=
$$

$$
\frac{a_{\mathrm{sl}}^{s}}{2}-\left[\frac{a_{\mathrm{sl}}^{s}+2 A_{P}}{2}\right]\left[\frac{\cos \left(\Delta M_{s} t\right)}{\cosh \left(\Delta \Gamma_{s} t / 2\right)}\right]
$$

Rate of correct solution depends on the asymmetry between the two solutions

ArXiv:1611.08522

Kinematics++ exploiting the resonances

- Additional constraints if the heavy meson comes from a narrow resonance
- Sheldon, Zhang Adv.HEP 2014, 9312571

Λ_{b} from Σ_{b}, challenge from the many overlapping states
Promising but we still need to fully exploit these techniques
$\mathrm{B}_{\mathrm{s} 2}{ }^{*} \rightarrow \mathrm{~B}^{+} \mathrm{K}^{-}$

Narrow well separated resonances and clean signature due to the Kaon. It allows to study B_{u} decays

- $\mathrm{B}^{+} \rightarrow \pi \pi \mu \mathrm{v}$
- $\mathrm{B}^{+} \rightarrow \mathrm{KK} \mu \mathrm{v}$

Other SL decays... in our backgrounds:

- Large contribution from $\wedge_{b} \rightarrow \mathrm{~N}^{*} \mu \mathrm{v}$
- Reconstructing $\mathrm{N} \rightarrow \mathrm{p} \pi \pi$
- Reduce uncertainty due to N^{*} states in $\Lambda_{b} \rightarrow p \mu v$ now included with a Gaussian constraints
- Could be crucial in the study of backgrounds in $\Lambda_{b} \rightarrow$ ptv

- Study explicitly the contributions from $\Lambda_{b} \rightarrow \Lambda_{c}{ }^{*} \mu v$
- Adding 2 pions ($\left.\mathrm{BF}\left(\Lambda_{\mathrm{c}}{ }^{*} \rightarrow \Lambda_{\mathrm{c}} \Pi^{+} \pi^{-}\right)=67 \%\right)$
- Crucial to understand these background in the study of $\Lambda_{b} \rightarrow \Lambda_{c} \tau v$
- The D_{s} * got down feed only from $\mathrm{D}_{\mathrm{s} 1}$, higher order resonances decay mainly through DK channels
- Excited $D_{s}{ }^{*}$ states are well separated $\sum_{\sum}^{\pi / 4}$
- The states below the DK threshold can be studied explicitly reconstructing the soft π^{0} and γ
- To extract $\left|\mathrm{V}_{\mathrm{cb}}\right|$ a proper normalization is required

	J^{P}	Mass (MeV)	Width (MeV)	Observed decays
$D_{s 0}^{*}$	0^{+}	2317.8 ± 0.6	<3.8	$D_{s}^{+} \pi^{0}$
$D_{s 1}^{\prime}$	1^{+}	2459.5 ± 0.6	<3.5	$D_{s}^{*+} \pi^{0}, D_{s}^{+} \gamma, D_{s}^{+} \pi^{+} \pi^{-}$
$D_{s 1}$	1^{+}	2535.28 ± 0.20	<2.5	$D^{*+} K^{0}, D^{* 0} K^{+}$
$D_{s 2}^{*}$	2^{+}	2572.6 ± 0.9	20 ± 5	$D^{0} K^{+}$

LS2 Upgrade

LHCC-I-018
40 MHz readout $5 \times$ higher luminosity

	LHCb
Run 1	3
Run 2	10
Run 3	25
Run 4	50
Run 5	300

RICH detectors

Muon system new off-detecor electronics

- Crucial to perform the measurements in bins of q^{2}

LHCb paper on Bs and Lb production

- SL decays as a function of the q2 already studied with only $3 \mathrm{pb}^{-1}$ (high efficient trigger)
- Need further studies to translate in measurements of the Form Factors

J^{P} Mass (MeV) Width (MeV) Observed decays

D_{0}^{*}	0^{+}	2352 ± 50	261 ± 50	$D \pi$
D_{1}^{\prime}	1^{+}	2427 ± 36	384_{-105}^{+130}	$D^{*} \pi$
D_{1}	1^{+}	2421.3 ± 0.6	27.1 ± 2.7	$D^{*} \pi, D^{0} \pi^{+} \pi^{-}$
D_{2}^{*}	2^{+}	2462.6 ± 0.7	49.0 ± 1.4	$D^{*} \pi, D \pi$

Composition of SL decays

- Inclusive excited charm production
- Narrow states at higher masses
- Predicted radial excitations
- He D* helicity angles allow to disentangle the various states

