

"Current Trends in Flavor Physics" - March 29 2017

Lepton flavour universality tests at LHCb

Martino Borsato

Universidade de Santiago de Compostela

Testing LFU with $b \rightarrow s\ell\ell$

- $b \rightarrow s\ell\ell$ is a good probe:
 - No tree level, CKM suppressed
 - Sensitive to various types of BSM
 - Up to very high masses
- Good to test NP structure
 - ex: does NP share LFU couplings?
 - Can get smoking guns at low energy!
 - ▶ Predicted in various models such as leptoquarks or *Z*′

Martino Borsato - USC

Dream scenario

- Hints of new dynamics in $b \rightarrow s\mu\mu$
 - Branching ratios
 - Angular distributions
 - Need to deal with QCD
- Dream scenario:
 - It's NP, not QCD
 - NP also violates LFU (*e* vs. *μ*)
 - ⇒ can study NP "safely" by comparing $b \rightarrow s\mu\mu$ and $b \rightarrow see$
 - Example:
 - \sim **20**% SM uncert. on BR($K\mu\mu$)
 - \rightarrow < 1% SM uncert. on R_K =BR($K\mu\mu$)/BR(Kee)
- \odot Hints in R_K in right direction,
 - Only 2.6 sigma, need more channels/data

Experimentally

Not a dream scenario experimentally:

- → $b \rightarrow se^+e^-$ is challenging at LHCb:
 - Trigger on large $p_T e^{\pm}/h^{\pm}$ deposit on calorimeters (or on track from other B)
 - Electron ID relies on calorimeter
 - Important combinatorial background:
 MVA selection
 - From R_K paper:

$$\frac{N(B^0 \to K^+ J/\psi (e^+ e^-))}{N(B^0 \to K^+ J/\psi (\mu^+ \mu^-))} \sim \frac{1}{7}$$

Level-0 trigger at LHCb

	00		
	$p_{\mathrm{T}} \text{ or } E_{\mathrm{T}}$		
	2011	2012	
single muon	$1.48\mathrm{GeV}/c$	$1.76\mathrm{GeV}/c$	
dimuon $p_{\mathrm{T}_1} \times p_{\mathrm{T}_2}$	$(1.30{ m GeV}/c)^2$	$(1.60\mathrm{GeV}/c)^2$	
hadron	$3.50\mathrm{GeV}$	3.50 - 3.74 GeV	
electron	$2.50\mathrm{GeV}$	2.72 - 2.96 GeV	
photon	$2.50\mathrm{GeV}$	2.72 - 2.96 GeV	

Electron ID at LHCb

Experimentally

- Large $p \rightarrow$ large bremsstrahlung
 - Recover with calorimeter:
 - ▶ Inefficiency causes *B* mass tail
 - Mass resolution degraded by photon energy measured by calorimeter
- Fight backgrounds from:
 - Combinatorial tracks
 - Semileptonic cascade (missing neutrinos)
 - Partially reconstructed rare decay

q^2 versus B mass

Martino Borsato - USC

Experimental challenges

• Use double ratio:

$$\mathcal{R}_{K} = \frac{\mathcal{B}(B^{+} \to K^{+} \mu^{+} \mu^{-})}{\mathcal{B}(B^{+} \to K^{+} J/\psi (\mu^{+} \mu^{-}))} \frac{\mathcal{B}(B^{+} \to K^{+} J/\psi (e^{+} e^{-}))}{\mathcal{B}(B^{+} \to K^{+} e^{+} e^{-})} = \frac{N_{K^{+} \mu^{+} \mu^{-}}}{N_{K^{+} J/\psi (\mu^{+} \mu^{-})}} \frac{N_{K^{+} J/\psi (e^{+} e^{-})}}{N_{K^{+} e^{+} e^{-}}} \frac{\epsilon_{K^{+} J/\psi (\mu^{+} \mu^{-})}}{\epsilon_{K^{+} \mu^{+} \mu^{-}}} \frac{\epsilon_{K^{+} e^{+} e^{-}}}{\epsilon_{K^{+} J/\psi (e^{+} e^{-})}} = \frac{N_{K^{+} \mu^{+} \mu^{-}}}{N_{K^{+} e^{+} e^{-}}} \frac{N_{K^{+} J/\psi (e^{+} e^{-})}}{\epsilon_{K^{+} J/\psi (e^{+} e^{-})}} = \frac{N_{K^{+} \mu^{+} \mu^{-}}}{N_{K^{+} e^{+} e^{-}}} \frac{\delta_{K^{+} \mu^{+} \mu^{-}}}{\epsilon_{K^{+} J/\psi (e^{+} e^{-})}} = \frac{N_{K^{+} \mu^{+} \mu^{-}}}{N_{K^{+} e^{+} e^{-}}} \frac{\delta_{K^{+} \mu^{+} \mu^{-}}}{\epsilon_{K^{+} J/\psi (e^{+} e^{-})}} = \frac{N_{K^{+} \mu^{+} \mu^{-}}}{N_{K^{+} e^{+} e^{-}}} \frac{\delta_{K^{+} \mu^{+} \mu^{-}}}{\epsilon_{K^{+} J/\psi (e^{+} e^{-})}} = \frac{N_{K^{+} \mu^{+} \mu^{-}}}{N_{K^{+} \mu^{+} \mu^{-}}} \frac{\delta_{K^{+} \mu^{+} \mu^{-}}}{\epsilon_{K^{+} \mu^{+} \mu^{$$

- Need to model correctly q^2 dependence
 - Cross-check MC/data agreement of q^2 dependent variables on resonant J/ψ decays
- Can also check that $R_{K(*)}$ on the $\psi(2S)$ is 1
- - Electron yield is driving the total uncertainty

- Change spectator quark a.k.a. number of K/π in final state
- Vector channels (K^* , ϕ) could help to clarify the picture

Hiller and Schmaltz JHEP 02(2015)055

- R_{K^*} : obvious followup of R_K
- R_{ϕ} : lower yield (due to $f_{\rm s}/f_{\rm d}$) but cleaner sample (narrow ϕ)
- Lots of activity in LHCb...

Martino Borsato - USC

Can also look at $\Lambda_b \rightarrow \Lambda^{(*)}\ell\ell$:

- R_{Λ^*} ongoing. Prompt $\Lambda^* \rightarrow pK$
- $\Lambda_b \rightarrow \Lambda \mu \mu$ in LHCb Run 1 dataset yield is: 276 ± 16 for $q^2 \in [15.0, 20.0]$ GeV²/c⁴
- 5-10 times less events expected in electrons
- Need to combine Run1 and Run2

Can look at angular differences as well

- Challenging experimentally
 - angular modelling of K*ee background
- \bullet More C_9/C_{10} disentangling:
 - could be important in the future

[Q.Matias @MoriondEW2017]

Need for data

- All measurements are statistically limited
- Run 2 data being collected
- High-luminosity run:
 - somewhat more challenging for electrons

Run (years)	Run 1 (2010-2012)	Run 2 (2015-2018)	Run 3 (2021-2023)	Run 4 (2027-2029)	
Integrated luminosity	3 fb ⁻¹	8 fb ⁻¹	25 fb ⁻¹	50 fb ⁻¹	
Instantaneous Iuminosity	4 x 10 ³² cm ⁻² s ⁻¹		2 x 10 ³³ cm ⁻² s ⁻¹		
	Current LHCb		Upgrad	ded LHCb	

channel	Run 1	Run 2	Run 3,4 (50fb^{-1})
$B^0 o K^{*0}(K^+\pi^-)\mu^+\mu^-$	2,400	9,000	80,000
$B^0 o K^{*+} (K_{ m S}^0 \pi^+) \mu^+ \mu^-$	160	600	5,500
$B^0 ightarrow \mathcal{K}^0_{ m S} \mu^+ \mu^-$	180	650	5,500
$B^+ ightarrow ilde{K^+} \mu^+ \mu^-$	4,700	17,500	150,000
$\Lambda_b \to \Lambda \mu^+ \mu^-$	370	1500	10,000
$B^+ \rightarrow \pi^+ \mu^+ \mu^-$	93	350	3,000
$B^0_s ightarrow \mu^+\mu^- \ B^0 ightarrow K^{*0} e^+e^- ext{ (low } g^2)$	15	60	500
$B^0 ightarrow K^{*0} e^+ e^- \text{ (low } q^2\text{)}$	150	550	5,000
$B_{s} o \phi \gamma$	4,000	15,000	150,000

Naively scaling with luminosity and linear scaling of $\sigma_{b\bar{b}}$ with \sqrt{s} .

12

Conclusions

- - that doesn't increase the number of sigma (2.6)
- Many follow-up measurements in the oven:
 - In particular R_{K^*} , R_{ϕ} , R_{Λ^*} , ...
- Time to look also at angular observables differences
- Increasing interest in LHCb
- Increasing amount of data being collected
- Stay tuned!

