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Testing LFU with b→s𝓁𝓁

๏ b→s𝓁𝓁 is a good probe:
• No tree level, CKM suppressed
• Sensitive to various types of BSM
• Up to very high masses

๏ Good to test NP structure
• ex: does NP share LFU couplings?
‣ Can get smoking guns at low energy!
‣ Predicted in various models such as 

leptoquarks or Z'
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Introduction
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Dream scenario
๏ Hints of new dynamics in b→sµµ
• Branching ratios 
• Angular distributions
• Need to deal with QCD

๏ Dream scenario: 
• It’s NP, not QCD
• NP also violates LFU (e vs. µ)  
➥ can study NP "safely" by  
comparing  b→sµµ and b→see

• Example:
‣ ~20% SM uncert. on BR(Kµµ)
‣ < 1% SM uncert. on RK=BR(Kµµ)/BR(Kee)

๏ Hints in RK in right direction, 
• Only 2.6 sigma, need more channels/data
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Figure 1: Two-dimensional constraints in the plane of NP contributions to the real parts of
the Wilson coe�cients C9 and C10 (left) or C9 and C 0

9 (right), assuming all other
Wilson coe�cients to be SM-like. For the constraints from the B ! K⇤µ+µ� and
Bs ! �µ+µ� angular observables from individual experiments as well as for the
constraints from branching ratio measurements of all experiments (“BR only”), we
show the 1� (��2 ⇡ 2.3) contours, while for the global fit (“all”), we show the 1, 2,
and 3� contours.

Figure 2: Left: preferred 1� ranges for a new physics contribution to C9 from fits in di↵erent
q2 bins. Right: preferred 1� ranges for helicity dependent contributions to C9 from
fits in di↵erent q2 bins. The dashed diagonal line corresponds to a helicity universal
contribution, as predicted by new physics.
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electrons as probes of LFU
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Becirevic, Fajfer Kosnik arXiv:1503.09024
Hiller and Schmaltz JHEP 02(2015)055

→ my talk at Edinburgh workshop

→ ;rst in Straub's shopping list 
arXiv:1503.06199

LHCb: PRD 113(2014),151601
BaBar: PRD 86(2012),032012
 Belle:  PRD 103(2009),171801

2.6 σ from SM
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Experimentally

Not a dream scenario experimentally:  
➜ b→se+e− is challenging at LHCb:
• Trigger on large pT e±/h± deposit on 

calorimeters 
(or on track from other B)

• Electron ID relies on calorimeter
• Important combinatorial background: 

MVA selection
• From RK paper:

4
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Selection of electron decays
● Level-0 online hardware trigger lines:

● Electron: large ET deposit in ECAL (main)
● Hadron: large ET deposit in HCAL (low q2)
2 triggering on kaon (also pion for RK*)

● Trigger independent of the signal tracks
2 all types of Level-0 trigger

● Electron identification
● ECAL energy deposit and associated track
● E/pc required to be close to 1

● Pre-selection has been optimized 
● can now go lower in pT
● Still learning how to best treat dielectrons

● Multivariate classifier (BDT) 
● trained to reject combinatorial background
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Level-0 trigger at LHCb

Electron ID at LHCb
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Experimentally

๏ Large p → large bremsstrahlung
• Recover with calorimeter:
‣ Inefficiency causes B mass tail
‣ Mass resolution degraded by photon energy 

measured by calorimeter

๏ Fight backgrounds from:
• Combinatorial tracks
• Semileptonic cascade (missing neutrinos)
• Partially reconstructed rare decay

5
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● Large emission of bremsstrahlung radiation
(FSR included in MC using PHOTOS)

● Emission before the magnet needs recovery
● Di<cult 2 mass tail to lower masses
● Correction depends on ECAL resolution
2 additional term to mass resolution:
    ECAL =E > =p from tracking

● Signal gets mixed with background:
● Pure combinatorial
● Semileptonic cascade such as

 
● Partially reconstructed 
(mainly an additional ?)

Backgrounds and mass shape

LHCb: JHEP 1504 (2015) 064
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q2 versus B mass
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Experimental challenges
๏ Use double ratio:  
 
 

๏ Need to model correctly q2 dependence
• Cross-check MC/data agreement of q2 dependent 

variables on resonant J/ψ decays

๏ Can also check that RK(*) on the ψ(2S) is 1

๏ RK had yield of ~250 B+→K+ee events (versus ~1200 µµ)
• Electron yield is driving the total uncertainty

7
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LHCb: PRL 113(2014),151601

2 cancel systematics
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Additional probes
๏ Change spectator quark  

a.k.a. number of K/π in final state

๏ Vector channels (K*, φ) could help to 
clarify the picture

8
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Follow-up measurements
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Plan to measure in 3 q² bins: 
● [1.1-6] favoured region

 Upper bound at 6 to avoid         
       radiative tail 

● [“0”-1.1] lower q² bin

 no NP expected here (C7)
 crosscheck of q² dependence

● [15-19] above charmonia
 large background
 large bremmstrahlung
 have to deal with 

photon 
pole

Long distance 
contributions 
from cc above 
open charm

1.1           6                 15

threshold for µµ
“0.0004” for ee
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Additional probes
๏ RK* : obvious followup of RK

๏ Rφ : lower yield (due to fs/fd)  
but cleaner sample (narrow φ)

๏ Lots of activity in LHCb…

9
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[JHEP 02 (2016) 104] [JHEP 04 (2015) 064]
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[JHEP 02 (2016) 104] [JHEP 04 (2015) 064]

]4c/2 [GeV2q
5 10 15

]
4 c

-2
G

eV
-8

 [
1
0

2
q

)/
d

µ
µ

φ
→

s0
B

d
B

( 0

1

2

3

4

5

6

7

8

9
LHCb

SM pred.

Data

[JHEP 09 (2015) 179]



TitleMartino Borsato - USC

Additional probes
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Can also look at Λb→Λ(*)𝓁𝓁:

๏ RΛ* ongoing. Prompt Λ*→pK

๏ Λb→Λµµ in LHCb Run 1 dataset yield is:  
276 ± 16 for q2 ∈ [15.0, 20.0] GeV2/c4

๏ 5-10 times less events expected in electrons

๏ Need to combine Run1 and Run2

Decay asymmetries and angular observables 

from Λ0b → Λl+l-  can provide new and 

complementary constraints in Wilson coeff. 

[JHEP 01 (2015) 155] 

Key limiting factor for Run-I dataset     

(e.g.: Λ0b → Λµ+µ-):  

q2 ∈ [1.1, 6.0] GeV2/c4 = 9.4 µ 0.5 

q2 ∈ [15.0, 20.0] GeV2/c4 = 276.1 µ 15.9 

Conservatively 10x less candidates are 

expected to Λ0b → Λe+e- 

[Idea is to combined Run-I and II datasets] 

R. Coutinho (UZH) - Barcelona workshop 6

LFU tests using Λ0
b → Λe+e- decays [RΛ]

Extend LFU tests to the baryonic sector:

]2c) [MeV/µµΛM(
5400 5600 5800 6000

2 c
C

an
di

dt
at

es
 p

er
 3

0 
M

eV
/

5

10

15

20

25
LHCb

4c/2[0.1,2.0] GeV

]2c) [MeV/µµΛM(
5400 5600 5800 6000

2 c
C

an
di

dt
at

es
 p

er
 3

0 
M

eV
/

2
4
6
8

10
12
14
16
18

LHCb
4c/2[2.0,4.0] GeV

]2c) [MeV/µµΛM(
5400 5600 5800 6000

2 c
C

an
di

dt
at

es
 p

er
 3

0 
M

eV
/

2
4
6
8

10
12
14
16
18

LHCb
4c/2[4.0,6.0] GeV

]2c) [MeV/µµΛM(
5400 5600 5800 6000

2 c
C

an
di

dt
at

es
 p

er
 3

0 
M

eV
/

2
4
6
8

10
12
14
16
18
20
22 LHCb

4c/2[6.0,8.0] GeV

]2c) [MeV/µµΛM(
5400 5600 5800 6000

2 c
C

an
di

dt
at

es
 p

er
 3

0 
M

eV
/

10

20

30

40

50 LHCb
4c/2[11.0,12.5] GeV

]2c) [MeV/µµΛM(
5400 5600 5800 6000

2 c
C

an
di

dt
at

es
 p

er
 3

0 
M

eV
/

10

20

30

40

50 LHCb
4c/2[15.0,16.0] GeV

]2c) [MeV/µµΛM(
5400 5600 5800 6000

2 c
C

an
di

dt
at

es
 p

er
 3

0 
M

eV
/

10
20
30
40
50
60
70
80 LHCb

4c/2[16.0,18.0] GeV

]2c) [MeV/µµΛM(
5400 5600 5800 6000

2 c
C

an
di

dt
at

es
 p

er
 3

0 
M

eV
/

10

20

30

40

50

60

70 LHCb
4c/2[18.0,20.0] GeV

JHEP 06 (2015) 1115 

Decay asymmetries and angular observables 
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LFU tests using Λ0
b → Λe+e- decays [RΛ]

Extend LFU tests to the baryonic sector:
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LFU tests using Λ0b → Λ*e+e- decays [RΛ*]

Similar to the Λe+e- case, this mode is yet to 
be observed. However, even its muonic 
counterpart has not been measured yet: 
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Phys. Rev. Lett 111 102003 (2013)

Nsig = 15 581± 178

⇤0
b ! J/ pK�

Clear enhancement  
related to Λ(1520) 

Ongoing [blind] analysis searching for 
the Λ0b → Λ*µ+µ- decay with Run-I 
data, w.r.t. Λ0b → J/ψpK  

Includes a multitude of Λ* resonances, 
e.g. Λ(1520) and Λ(1600), that in the 
following decay to pK 

[arXiv:1108.6129] 

Additional advantage: experimentally 
easier to reconstruct than Λl+l- since 
the pK vertex is not displaced

[PRL 111 102003 (2013)]  
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Additional probes

Can look at angular 
differences as well

๏ Challenging experimentally 
• angular modelling of K*ee 

background

๏ More C9/C10 disentangling:
• could be important in the 

future

11

Example-II: Qi observables. Probing NP in C9,10 with Qi

SM predictions (grey boxes),
NP: CNP

9,µ = ≠1.11 (scenario1) & CNP
9,µ = ≠CNP

10,µ = ≠0.65 (scenario 2) with ”Ci = Ci,µ ≠ Ci,e (and Ci,e SM)

Q2 = Pµ
2 ≠ Pe

2 Q5 = P Õµ
5 ≠ P Õe

5 Q4 = P Õµ
4 ≠ P Õe

4

∆ Q2, Q4 & Q5 show distinctive signatures for the two NP scenarios considered.
⌅ Differences in the high-q2 bins of the large recoil region of Q2 & Q5 are quite significant. Lack of

difference between scenario 2 and SM same reason why P Õ
5 in scenario 2 is worst than scenario 1.

⌅ Q4 at very low-q2 (second bin) is very promising to disentangle scenario 1 from 2.

Joaquim Matias Universitat Autònoma de Barcelona State-of-the-art and future prospects
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Results:

Full 4D $t to data:

Results

LHCb, JHEP 1504 (2015) 064
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[JHEP 02 (2016) 104] [JHEP 04 (2015) 064]

[Q.Matias @MoriondEW2017]
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Need for data

๏ All measurements are 
statistically limited

๏ Run 2 data being collected

๏ High-luminosity run:
• somewhat more 

challenging for electrons
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LHCb signal yields
channel Run 1 Run 2 Run 3,4 (50fb�1)
B0 ! K⇤0(K+⇡�)µ+µ� 2,400 9,000 80,000
B0 ! K⇤+(K 0

S⇡
+)µ+µ� 160 600 5,500

B0 ! K 0
Sµ+µ� 180 650 5,500

B+ ! K+µ+µ� 4,700 17,500 150,000
⇤
b

! ⇤µ+µ� 370 1500 10,000
B+ ! ⇡+µ+µ� 93 350 3,000
B0
s

! µ+µ� 15 60 500
B0 ! K⇤0e+e� (low q2) 150 550 5,000
B
s

! �� 4,000 15,000 150,000

Naively scaling with luminosity and linear scaling of �
bb̄

with
p
s. Extrapolated yields rounded to the nearest 50/500

⌘ Our measurements of dB/dq2 obtained by normalising rare yield to that of
normalisation channel B ! J/ K⇤

⌘ For higher statistics decays, dominant uncertainty of integrated BF is the
knowledge of B(B ! J/ K⇤)
! More b ! s`` decays in Run 1 than B ! J/ K⇤ of B-factories!

⌘ Dominant systematic uncertainty on BFs: Knowledge equivalent J/ BF
! Belle2 could help here also resolving isospin asymmetries at ⌥(4S) M.Jung
[1510.03423]

⌘ With the LHCb upgrade even “tough” modes will be sufficiently populated
K.A. Petridis (UoB) Flavour Trends 2017 Implications 2016 3 / 21
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Future for LHCb
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LHCb upgrade vertex detector, tracking, 
RICH,  move to purely software trigger

Expect 8 fb-1 by 2018

Schedule and luminosity evolution

The upgraded LHCb detector is expected to take physics data for an
integrated luminosity of at least 50 fb-1

Laura Gavardi | LHCb upgrade plans FPCP, June 6-9, 2016 3 / 18
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Run at 5x luminosity: 
collect 50 fb-1 by 2030

High Luminosity LHCb? 
Phase-2 upgrade?

LHCb signal yields
channel Run 1 Run 2 Run 3,4 (50fb�1)
B0 ! K⇤0(K+⇡�)µ+µ� 2,400 9,000 80,000
B0 ! K⇤+(K 0

S⇡
+)µ+µ� 160 600 5,500

B0 ! K 0
Sµ+µ� 180 650 5,500

B+ ! K+µ+µ� 4,700 17,500 150,000
⇤
b

! ⇤µ+µ� 370 1500 10,000
B+ ! ⇡+µ+µ� 93 350 3,000
B0
s

! µ+µ� 15 60 500
B0 ! K⇤0e+e� (low q2) 150 550 5,000
B
s

! �� 4,000 15,000 150,000

Naively scaling with luminosity and linear scaling of �
bb̄

with
p
s. Extrapolated yields rounded to the nearest 50/500

⌘ Our measurements of dB/dq2 obtained by normalising rare yield to that of
normalisation channel B ! J/ K⇤

⌘ For higher statistics decays, dominant uncertainty of integrated BF is the
knowledge of B(B ! J/ K⇤)
! More b ! s`` decays in Run 1 than B ! J/ K⇤ of B-factories!

⌘ Dominant systematic uncertainty on BFs: Knowledge equivalent J/ BF
! Belle2 could help here also resolving isospin asymmetries at ⌥(4S) M.Jung
[1510.03423]

⌘ With the LHCb upgrade even “tough” modes will be sufficiently populated
K.A. Petridis (UoB) Flavour Trends 2017 Implications 2016 3 / 21
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Conclusions
๏ RK result is intriguing ⇒ dream scenario
• that doesn’t increase the number of sigma (2.6)

๏ Many follow-up measurements in the oven: 
• In particular RK*, Rφ, RΛ*, …

๏ Time to look also at angular observables 
differences

๏ Increasing interest in LHCb

๏ Increasing amount of data being collected

๏ Stay tuned!
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Follow-up measurements
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Becirevic, Fajfer Kosnik arXiv:1503.09024
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